180
Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari B.S., Physics, University of Maryland 1988 Submitted to the Department of Nuclear Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 1994 Massachusetts Institute of Technology 1994. All rights reserved. Autho Department 0 Nuclear Engineering May 15, 1994 Certified b Paul P. Woskov Principal Research Engineer, Plasma Fusion Center Thesis Supervisor Certified by Ian H. Hutchinson Professor, Nuclear Engineering Department Thesis Reader Certified by Daniel R. Cohn Senior Research Scientist, Nuclear Engineering Department Thesis Reader Accepted by Allan F. Henry 'Sciencp Chairman, Departmental Graduate Committee MASSACHOSMS INSTITUTE JUN 01994 UbHAHES

Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Electron Cyclotron Emission FluctuationDiagnostic on JET and PBX-M Tokamaks

by

All M. Zolfaghari

B.S., Physics, University of Maryland 1988

Submitted to theDepartment of Nuclear Engineering

in partial fulfillmentof the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1994

Massachusetts Institute of Technology 1994. All rights reserved.

AuthoDepartment 0 Nuclear Engineering

May 15, 1994

Certified bPaul P. Woskov

Principal Research Engineer, Plasma Fusion CenterThesis Supervisor

Certified byIan H. Hutchinson

Professor, Nuclear Engineering DepartmentThesis Reader

Certified byDaniel R. Cohn

Senior Research Scientist, Nuclear Engineering DepartmentThesis Reader

Accepted byAllan F. Henry

'Sciencp Chairman, Departmental Graduate Committee

MASSACHOSMS INSTITUTE

JUN 01994

UbHAHES

Page 2: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Electron Cyclotron Emission Fluctuation Diagnostic onJET and PBX-M Tokamaks

byAli M. Zolfaghari

Submitted to the Department of Nuclear Engineeringon May 15, 1994, in partial fulfillment of the

requirements for the degree ofDoctor of Philosophy

AbstractSpatially localized electron cyclotron emission (ECE) fluctuation measurements weremade in the Joint European Torus (JET) and in the Princeton Beta Experiment-Modification (PBX-M) using multichannel heterodyne ECE radiometers. Measure-ments of MHD mode fluctuations were made in JET highs plasmas. High-n (toroidalmode number) MHD modes were observed in the core of JET pellet enhanced perfor-mance plasmas where the magnetic shear is predicted to be negative. Measurementsof MHD mode fluctuations were also made in PBX-M high-Op plasmas. Medium tohigh n-number modes with ballooning characteristics were observed in the core of ionBernstein wave assisted high-Op plasmas preceding a sudden collapse in the centralplasma pressure. The, observations of ballooning modes in PBX-M agree with thetheoretical predictions of high n-number ideal MHD ballooning stability.

Thesis Supervisor: Paul P. WoskovTitle: Principal Research Engineer, Plasma Fusion Center

Thesis Reader: Ian H. HutchinsonTitle: Professor, Nuclear Engineering Department

Thesis Reader: Daniel R. CohnTitle: Senior Research Scientist, Nuclear Engineering Department

Page 3: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Thanks go, first and foremost, to Allah (SWT) who guided me through the religion

of Muhammad and his blessed Household (peace be upon them) and enriched my life

with countless gifts.

This work is dedicated to my parents, Badri and Parviz, who inspired me to choose

the path of learning and knowledge. Nothing that I can say is enough to thank them

for their love and support throughout my life and especially in the last ten years of

being away frorn Iran. I a especially grateful to my uncles, Nasser and Ali, who

were like fathers to me during my stay in U.S., and my wife for her patience and

encouragements throughout the two beautiful years of our marriage. I would like to

thank my brothers and sisters, Amir, Roya, Kamyar, Azita, Hedayat, and Donna for

their kindness and support.

They are many friends and colleagues whom I would like to acknowledge for

their help throughout the course of this work. I am very thankful for the insight,

guidance and patience of Dr. Paul Woskov and Dr. Stan Luckhardt, throughout

the development of this work. Grateful thanks are also due to my supervisor in

Princeton, Dr. Robert Kaita and my supervisors in JET, Dr. Alan Costley and

Dr. Doug Bartlett. I would also like to especially thank Dr. Daniel Cohn and for his

guidance and financial support in the form of a Research Assistantship, and Professor

Ian Hutchinson for his valuable suggestions.

Many scientists and graduate students have helped tremendously with the de-

velopment of this thesis. Specifically, I would like to gratefully thank Drs. John

Machuzak, Roger Smith, Michio Okabayashi, Ernesto Mazzucato, Julian Dunlap,

and Morrell Chance, and Keith Voss, Ernest Lo, and Peter Cripwell.

I would like to thank Janet Anderson for her help and countless advice and for

making herself a shield for us against the bureaucracies of MIT administration. The

same thanks go to Clare Egan, Barbara Sarfaty, Dick Shoe, Niccie Avery, Dolores

Bergmann, and Kenyatta Vonmuller. Many thanks to Hans Oosterbeek, Ian Hurdle,

John Semler, Phyllis Roney, Tom Gibney and Shaz Hosein for their technical helpthroughout this work.

The most enriching experience in my graduate student life at MIT was being a

member of the MIT Masjid and the Muslim Student Association. In this regard, I

would like to thank my brothers, Ali Kazeroonian, Farid Kaymaram, Babak Ayazi-

far, Haisam Haidar, Chahid Ghaddar, Mohsem Mosleh, Ghasem Heidarinejad, Yusuf

Dedications and Acknowledgments

Page 4: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Shatilla, Ahmad Attarchi, Sabri Jarrar, Hisham Hasanein, Shamsettin, Yuksel Par-

latan, Mustafa Khamirah and Ahmad Biyabani-

During My graduate student life at MIT, JET and Princeton, I have made many

friends (I hope), whose support has meant a great deal to me. In this regard, I would

like to thank, Babak and Soosan Ayazifar, Ali and Rubina Kazeroonian, Henrik

Bindslev, Laurie Porte, Cristina Tanzi, Shakeib Ali-Arshad, Mick Comiskey, Alberto

Loarte, Gerrit Kramer, Franco Paoletti, Steve Jones, Jim Lierzer, Dan Lo, David

Rhee, James Wei, Chikang Lee, Shige Kabuta, Ali Shajii, Justin Schwartz, Ed Chao,

Hans Hermann, Sherrie Preische, and Wonho Choe.

The support and friendship of above and all those who helped and were not

mentioned are deeply appreciated.

Page 5: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

1 Introduction

1.1 Application of Millimeter-Wave Technology to Plasma Diagnostics

1.2 O bjective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2.1 Measurement of Plasma Fluctuations . . . . . . . . . . . .

1.3 Historical Review . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

16

18

18

20

20

2 Theory Related to Measurement Techniques2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2 Review of ECE Theory ........................

2.2.1 Single Electron Radiation . . . . . . . . . . . . . . . . . .

2.2.2 Emission from a Plasma . . . . . . . . . . . . . . . . . . .

2.2.3 Radiation Transport, Absorption, and Emission . . . . . .2.2.4 Wave Polarization and Finite Density Effects . . . . . . . .

2.2.5 Radially Varying Field in Tokamaks . . . . . . . . . . . . .

2.3 Measurement of MHD Mode Characteristics . . . . . . . . . . . .

2.3.1 ECE Fluctuations from an Optically Gray Plasma

2.3.2 ECE Fluctuations Produced by MHD modes . . . . . . . .

2.3.3 Use of Signal Processing Techniques . . . . . . . . . . . . .

2.3-3.1 Discrete Fourier Transform (DFT) . . . . . . . .

2.3.3.2 Correlations and Power Spectra . . . . . . . . . .

2.3.3.3 Power Spectrum Estimation . . . . . . . . . . . .

2.3.3.4 The Welch method of Power Spectrum Estimation

21

. . 21

. . 21

. . 21

. . 25

. . 26

. . 28

. . 29

. . 31

. . 31

. . 34

. . 40

. . 40

. . 42

. . 43

44

2.3.3.5 The Connection with the ECE Fluctuation Measure-

ments . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Description of Experimental Systems3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2 ECE Fluctuation Measurements on JET . . . . . . . . . . . . . . . .

46

4949

49

5

Contents

Page 6: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

6 CONTENTS

3.2.1

3.2.2

3.2.3

3.3 ECE

3.3.1

3.3.2

The JET Experiment .................The JET Multichannel Heterodyne Radiometer

3.2.2.1 Antenna and Transmission Waveguide

3.2.2.2 Heterodyne Receiver Systems . . . . . . .

3.2.2.3 Video Stage and Data Acquisition . . . .The Radiometer Upgrade . . . . . . . . . . . . . .

Fluctuation Measurements on PBX-M . . . . . . . .

The PBX-M tokamak . . . . . . . . . . . . . . . . .

The PBX-M Multichannel Heterodyne Radiometer

3.3.2.1 Viewing Dump . . . . . . . . . . . . . . .

3.3.2.2 Test of Viewing Dump Performance . . . .

3.3.2.3 Optical Antenna System and Transmission

. . . . . . 49

. . . . . . 52

. . . . . . 52

. . . . . . 52

. . . . . . 53

. . . . . . 58

. . . . . . 60

. . . . . . 60

. . . . . . 62

. . . . . . 62

. . . . . . 66

Line . . . 70

System - 73

. . . . . . 82

. . . . . . 85

Antenna3.3.2.4

3.3.2.5

3.3.2.6

Design and Testing of the Optical

Receiver Design Considerations

Heterodyne Receiver Description

4 Ideal MHD Stability4.1 Introduction ................4.2 Ideal MHD Model .............

4.3 MHD Equilibrium and Figures of Merit .

4.4 MHD Stability . . . . . . . . . . . . . .

4.4.1 The Energy Principle . . . . . . .

4.4.2 Ballooning Modes . . . . . . . . .

4.4.3 Beta Limit . . . . . . . . . . . . .

95

. . . . . . . . . . . . . . . . 95

. . . . . . . . . . . . . . . . 95

. . . . . . . . . . . . . . . . 96

. . . . . . . . . . . . . . . . 99

. . . . . . . . . . . . . . . . 99

. . . . . . . . . . . . . . . . 101

. . . . . . . . . . . . . . . . 105

5 Data and Interpretation5.1 Introduction . . . . . . . . . . . . . . . . . .

5.2 Data from JET Experiments . . . . . . . . .

5.2.1 High-ot, Low-Field Discharges . . . .

5.2.1.1 Observation and Analysis

5.2.2 High-,3p, PEP H-mode Discharges

5.2.2.1 Observation and Analysis of

5.2.3 High-op, Low-current Discharges . . .

5.3 Data from PBX-M Experiments . . . . . . .

5.3.1 High-,3p, H-mode Discharges . . . . .

109. . . . . . . . . . . . . . 109

. . . . . . . . . . . . . . 109

. . . . . . . . . . . . . . 110

. . . . . . . . . . . . . . 110

. . . . . . . . . . . . . . 124

PEP Plasmas . . . . . 127

. . . . . . . . . . . . . . 133

. . . . . . . . . . . . . . 137

. . . . . . . . . . . . . . 138

5.3.2 High-op, H-mode Discharges with IBW heating 144

Page 7: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

CONTENTS 7

6 Conclusions 167

6.1 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.2 Future W ork ... ... .... .... ... .... ........... 169

6.2.1 Future work on JET ....................... 169

6.2.2 Future work on PBX-M . . . . . . . . . . . . . . . . . . . . . 170

A Appendix 171A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171

A.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171

Page 8: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

8 CONTENTS

Page 9: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

List of Figures

2-1 Coordinate system for the motion of the gyrating electron . . . . . . 23

2-2 Shape of the electron cyclotron emission line for perpendicular propa-

gation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2-3 Ray path through a plasma slab . . . . . . . . . . . . . . . . . . . . . 27

2-4 Spatial and spectral shapes of the cyclotron resonance . . . . . . . . . 302-5 Characteristic frequencies of a PBX-M plasma . . . . . . . . . . . . . 32

2-6 A computer simulation of a n = 3 MHD mode displacement vector field 35

2-7 The location of the resonance and the line of sight of an ECE detector 37

2-8 Demonstration of the method of obtaining spectral amplitudes . . . . 47

3-1 Diagram of the JET apparatus . . . . . . . . . . . . . . . . . . . . . 51

3-2 Basic concept of the heterodyne receiver . . . . . . . . . . . . . . . . 54

3-3 Schematic of the JET ECE heterodyne radiometer . . . . . . . . . . . 55

3-4 A JET ECE heterodyne radiometer subsystem . . . . . . . . . . . . . 55

3-5 Radial coverage of the JET ECE radiometer . . . . . . . . . . . . . . 57

3-6 Upgrade system for the JET heterodyne radiometer . . . . . . . . . . 59

3-7 PBX-M tokamak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3-8 Third harmonic optical depth profile for PBX-M shot 310724 . . . . 63

3-9 Top and side views of the Macor viewing dump . . . . . . . . . . . . 65

3-10 Macor viewing dump before installation in the vacuum vessel . . . . . 66

3-11 Setup for the test of the 00 reflection from the beam dump . . . . . . 67

3-12 Schematic of the 135 GHz heterodyne receiver . . . . . . . . . . . . . 67

3-13 Experimental setup for the test of the viewing dump reflectivity as a

function of the angle of incidence . . . . . . . . . . . . . . . . . . . . 68

3-14 Viewing dump attenuation . . . . . . . . . . . . . . . . . . . . . . . . 69

3-15 ECE fluctuation diagnostic setup . . . . . . . . . . . . . . . . . . . . 71

3-16 The corrugated copper horn . . . . . . . . . . . . . . . . . . . . . . . 72

9

Page 10: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

10 LIST OF FIGURES

3-17 Beam intensity radius w of a 120 GHz gaussian beam launched from

the corrugated horn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3-18 Gaussian antenna pattern of the focusing optics system . . . . . . . . 75

3-19 Experimental setup for the measurement of the focused gaussian beam

spot size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3-20 Cyclotron harmonics and X-mode and 0-mode cutoffs for a typical

PBX-M plasm a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3-21 PBX-M plasma X-mode refractive index for 120 GHz radiation . . . . 78

3-22 Ray tracing of a 120 GlIz ray, launched parallel to the midplane in:

(a) vacuum; (b) plasma with Bo = 1.5 Tesla and no = 77 x 1011CM-3 - 78

3-23 Gaussian pattern of the optical antenna system in: (a) vacuum; (b)a

high-beta PBX-M plasma . . . . . . . . . . . . . . . . . . . . . . . . 80

3-24 PBX-M plasma density profile used in the gaussian beam computation 81

3-25 The third harmonic ECE coverage of a 1.55 Tesla PBX-M plasma with

a 110-140 GHz Receiver . . . . . . . . . . . . . . . . . . . . . . . . . 82

3-26 Three ifferent heterodyne receiver architectures . . . . . . . . . . . . 84

3-27 A schematic of the PBX-M heterodyne receiver . . . . . . . . . . . . 86

3-28 Spectral response of a channel of the radiometer . . . . . . . . . . . . 87

3-29 Radial coverage of the radiometer for Bo= 1.55 Tesla . . . . . . . . . 88

3-30 Waveguide cutoff filter attenuation . . . . . . . . . . . . . . . . . . . 90

3-31 Measured cutoff filter attenuation vs. frequency . . . . . . . . . . . . 91

4-1 Coordinate system used to describe toroidal equilibrium . . . . . . . . 96

4-2 Magnetic flux surfaces in a tokamak plasma . . . . . . . . . . . . . . 97

4-3 Top view of a toroidal section of a tokamak plasma, showing regions

of stabilizing and destabilizing curvature . . . . . . . . . . . . . . . . 102

4-4 Ballooning mode concentration in the bad curvature region . . . . . . 103

4-5 Ballooning mode stability diagram for circular flux surfaces . . . . . . 105

4-6 Regions of first and second stability for indented plasmas . . . . . . . 106

5-1 Overview of JET discharge 26236 . . . . . . . . . . . . . . . . . . . 111

5-2 D, (divertor) signal along with signals from two ECE, showing the

beta collapse is coincident with a giant ELM . . . . . . . . . . . . . . 112

5-3 Poloidal flux contours in the plasma of discharge 26236 . . . . . . . 113

5-4 Vacuum and plasma toroidal magnetic fields in shot 26236 . . . . . 114

Page 11: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

LIST OF FIGURES 11

5-5 Third harmonic ECE frequencies for the total equilibrium field in shot

# 26236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5-6 First three ECE harmonics and the right-hand cutoff for shot 26236 115

5-7 DC coupled signal and the AC fluctuations on the ECE channel at

R = 262 cm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5-8 Power spectra of the ECE fluctuations in two 20 msec periods before

the beta collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5-9 Power spectrum of ECE fluctuations before the beta collapse . . . . . 119

5-10 Contour plot of coherence ) between R=266 and R=362 cm . . . . 120

5-11 Ballooning stability boundary for shot 26236 . . . . . . . . . . . . . 121

5-12 MHD normal displacement vector �,n of the 23 kHz mode in discharge

# 26236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5-13 Overview of JET discharge 26243 . . . . . . . . . . . . . . . . . . . 123

5-14 Autopower spectrum of ECE fluctuations from R=312 cm, in discharge

# 26243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5-15 Contour plot of power spectra of ECE fluctuations from R=31 c 125

5-16 The q profile for a typical ICRF+NBI heated PEP H-mode plasma 126

5-17 Parameters of JET discharge 26734 . . . . . . . . . . . . . . . . . . 128

5-18 Poloidal flux contours in the PEP phase of discharge 26734 . . . . . 129

5-19 First ad second harmonic ECE frequencies and the O-mode cutoff for

discharge # 26734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5-20 DC coupled signal and the AC fluctuations on the ECE signal from

R = 312 cm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5-21 Contour plot of power spectra of ECE fluctuations from 31 c . 133

5-22 Power spectra of the fluctuations (in shot 26734) on four channels of

the ECE radiometer . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5-23 The profile of ECE fluctuations produced by the high n-number mode

in the core of the PEP discharge 26734 . . . . . . . . . . . . . . . . 135

5-24 LIDAR electron density and pressure profiles in discharge 26734 . . 136

5-25 MHD normal displacement vector �,, of the high n-number mode in the

core of the PEP discharge 26734 . . . . . . . . . . . . . . . . . . . . 137

5-26 Overview of PBX-M discharge 309712 . . . . . . . . . . . . . . . . . 139

5-27 Electron temperature and density profiles for high-,8p shot 309712 140

5-28 Contours of coherence (7 > 06) between fluctuations from two ECE

channels in discharge 309712 . . . . . . . . . . . . . . . . . . . . . . 141

Page 12: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

LIST OF FIGURES12

5-29 Contours of coherence between fluctuations from two Mirnov coils with

120' toroidal separation . . . . . . . . . . . . . . . . . . . . . . . . . 142

5-30 Autopower spectra of the ECE fluctuations from R=182 cm and R=170

cm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5-31 Neutron source strength in a CH-mode plasma compared with a H-

mode plasma with similar NBI heating . . . . . . . . . . . . . . . . . 145

5-32 Electron temperature and density profiles for IBW shot 310724 . . . 146

5-33 Overview of PBX-M discharge 310724 . . . . . . . . . . . . . . . . . 147

5-34 Detail of the plasma evolution in the msec time period before the

core collapse in discharge 310724 . . . . . . . . . . . . . . . . . . . 148

5-35 Contour plot of coherence between ECE fluctuations at R=168 and

R=171 cm showing the evolution of the MHD activity in the core - - 149

5-36 Contour plot of coherence between fluctuations on two Mirnov coils

with 120 separation in discharge 310724 . . . . . . . . . . . . . . . 150

5-37 Contour plot of coherence between ECE fluctuations in the 0-150 kHz

range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5-38 Lines-of-sight of the horizontally-viewing soft x-ray diagnostic . . . . 152

5-39 Power spectrum profile of the SXR signals for the n=4 mode in dis-

charge # 310724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5-40 Autopower spectra of the ECE fluctuations from R= 71 cm and R= 168

cm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5-41 ECE fluctuation profile of the n=4 mode in discharge 310724 . . . . 155

5-42 Poloidal. flux contours in discharge 310724 . . . . . . . . . . . . . . 156

5-43 Pressure fluctuation profile of the n=4 mode in discharge 310724 157

5-44 Ballooning mode stability diagrams for different flux surfaces in dis-

charge # 310724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5-45 The TRANSP q-profile for shot 310724 . . . . . . . . . . . . . . . . 159

5-46 Overview of PBX-M discharge 310721 . . . . . . . . . . . . . . . . . 160

5-47 Contour plot of coherence between ECE fluctuations at R=170 and

R=173 cm in discharge 310721 . . . . . . . . . . . . . . . . . . . . . 161

5-48 ECE fluctuation profile of the high-n mode in discharge 310721 . . 162

5-49 Pressure fluctuation profile of the high-n mode in discharge 310721 163

5-50 Ballooning mode stability diagrams for different flux surfaces in dis-

charge # 310721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Page 13: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

List of Tables

3.1 Summary of JET original design parameters . . . . . . . . . . . . . . 50

3.2 JET ECE radiometer frequency channels . . . . . . . . . . . . . . . . 56

3.3 Summary of PBX-M design parameters . . . . . . . . . . . . . . . . . 62

3.4 PBX-M ECE radiometer frequency channels . . . . . . . . . . . . . . 85

3.5 Response of receiver channels to a 600'C black body source . . . . . . 93

5.1 Radial locations of the fast radiometer channels in shot 26236 . . . 116

5.2 Radial locations of the fast radiometer channels in shot 26734 . . . 132

13

Page 14: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

14 LIST OF TABLES

Page 15: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Chapter

Introduction

The modern human civilization is almost entirely built on the technologies developed

after the industrial revolution. These technologies have created machines and devices

that use an enormous amount of nonrenewable energy to perform their tasks. The

standard of living of a nation today is directly proportional to its rate of energy

consumption. The average rate of energy consumption in the world is expected to

rise well beyond the present figures as the developing countries of the third world

follow the path of the industrial nations. At the present rate of energy consumption

by the industrial nations and the present world population, the proven reserves of

fossil fuels is expected to last about 100 years [1]. Furthermore, the use of fossil fuels

has resulted in the increase in environmental pollution and the level of greenhouse

gases that contribute to the global warming effects. The need to have a secure and

clean supply of energy for our growing industrial civilization has led us to search

for alternative supplies of energy. Nuclear fusion may be capable of supplying our

energy needs via a process which uses the inexhaustible supply of light elements on

earth's surface as fuel and does not have waste products as harmful as those resulting

from burning of fossil fuels. The fusion of light nuclei, which are typically isotopes

of hydrogen to form a heavier nucleus such as helium, generates a large amount of

energy while producing a low level of short half-life radioactivity. In order to achieve

fusion energy through a controlled thermonuclear fusion reaction, light element gases

are heated to high temperature in which their molecular and atomic bonds are broken

and a highly ionized plasma is created. The plasma is confined by a strong magnetic

field. Typical reactions in fusion experiments today are:

'D + 2 D __ 3He(2.45MeV) + n(O.82MeV) (I. 1)

15

Page 16: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

16 CHAPTER 1. INTRODUCTION

2D + 2D -�'T(1.OlMeV) +'H(3.02MeV) (1.2)1 1 1 1

2D + 3T , 4 He(3.52MeV) + n(14.lMeV) (1.3)1 1 2

A large fraction of energy generated from these reactions are carried outside the

plasma by neutrons. A fusion reactor will have a surrounding blanket which will

convert the kinetic energy of the neutrons into thermal energy.

During the course of the magnetic fusion research, a large number of magnetic

configurations for the confinement of plasma have been tried. For over 20 years, the

fusion research has become mainly centered upon the tokamak configuration 2] which

has produced the best confinement results. With its toroidal geometry and strong

longitudinal magnetic field, the tokamak is able to achieve the high temperatures

and densities necessary to generate appreciable fusion reactions 3 without being

susceptible to endlosses common to mirror devices 4 or certain types of severe fluid

instabilities suffered by other approaches. Tokamak plasmas are susceptible to many

instabilities that tend to limit the confinement of the plasma. These instabilities

can be in the form of fluid instabilities as predicted by the magnetohydrodynamic

(MHD) theory or turbulences that directly affect the transport mechanism. These

instabilities can be experimentally investigated by diagnosing the fluctuations they

produce in plasma parameters. This thesis contributes to the challenge of detection

and study of the limiting instabilities in fusion plasmas.

1.1 Application of Millimeter-Wave Technologyto Plasma Diagnostics

The millimeter-wave range of electromagnetic spectrum is of great interest in fusion

plasma diagnostics since the characteristic electron frequencies of most fusion grade

plasmas fall in this range. Millimeter-wave Technology has been used in the mea-

surements of electron density profile using interferometry and reflectometry, electron

temperature profile using ECE radiometry [5] and plasma fluctuation measurements

using collective Thomson scattering 6.

In a tokamak, plasma is confined and stabilized by a combination of an internal

poloidal magnetic field and a strong externally applied toroidal magnetic field. Theelectrons, subject to Lorentz's force, gyrate around the field lines at frequency:

eB(1.4)

27M,

Page 17: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Where is the magnetic field, e is the electron charge and Me is the electron mass.

The gyrating electrons emit electromagnetic radiations known as electron cyclotron

emission (ECE) at fe and its harmonics. These frequencies fall in the millimeter-

wave region of the EM spectrum. This radiation from electrons will be responsible

for a considerable fraction of radiated energy loss from fusion plasmas. On the other

hand, ECE is a useful tool for plasma diagnostics. The tokamak geometry creates a

radially dependent toroidal magnetic field which is greater on the inner side of the

plasma and falls like 1, where R is the major radius of the tokamak. This spatiallyR

varying magnetic field causes the electrons to emit cyclotron radiation at frequencies

corresponding to their radial location in plasma. Thus separating ECE into different

frequency components enables us to examine the plasma along the major radius. A

region of plasma that is emitting ECE at its cyclotron frequency is also an absorber

of radiation at the same frequency incident on it. For certain plasma parameters

this absorption is strong and the plasma behaves locally as a black body; thus the

intensity of its adiation is proportional to the electron temperature. In these cases

the plasma is said to be optically thick for that radiation. In other cases where the

above mentioned absorption is not strong, the plasma is said to be optically thin

and the ECE intensity from that layer is a function of its electron density as well as

temperature. These properties of ECE have made it a powerful spatially localized

diagnostic of electron parameters in tokamak plasmas.

The advances in millimeter-wave technology have enabled us to use multichannel

heterodyne receivers for the simultaneous measurement of ECE at different frequen-

cies. The research described in the present thesis has used multichannel heterodyne

radiometers to make measurements of ECE fluctuations from tokamak plasmas. A

multichannel heterodyne receiver system uses a fixed frequency local oscillator (LO)

and a mixer. The mixer converts high frequency radiation to lower frequencies by

combining the signal with the constant LO signal in a non-linear element to produce

sum and difference frequencies. The difference frequency is usually a lower interme-

diate frequency (IF) which can be easily amplified and frequency separated, and have

other signal processing performed on it.

Mixers have been updated by improvements in metal to semiconductor junctions

and through better theoretical models. A process called molecular beam epitaxy isused to deposit semiconductor material in layers with highly accurate doping pro-

files. This process has made the junction from metal to semiconductors more efficient

by greatly decreasing the noise and conversion losses from frequencies corresponding

Page 18: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

CHAPTER 1. INTRODUCTION18

to millimeter wavelengths to intermediate frequencies. The use of this process with

Gallium Arsenide (GaAs) Schottky-Barrier diodes has greatly improved mixer perfor-

mance at the millimeter wavelengths. Typical receiver noise temperatures can be as

low as 1000' K (single sideband) at room temperature when used with a state of the

art, low noise amplifier operating at the intermediate frequency. Conversion losses are

approximately 6 dB for these noise temperatures. In addition, the noise and conver-

sion loss performance of the millimeter-wave mixers can now be predicted accurately

by measurable device and circuit parameters 7 which is of great importance in the

understanding and development of these devices [6].

1.2 Objective

1.2.1 Measurement of Plasma Fluctuations

In a tokamak, the toroidal magnetic field is used to stabilize the plasma while the

poloidal magnetic field generated by the plasma current is primarily responsible for

the confinement of the plasma. The plasma which behaves like a perfectly conduct-

ing fluid, is kept in force and pressure balance by a combination of vertical and

toroidal magnetic fields. This equilibrium state is a prerequisite for formation of any

magnetically confined plasma, and is referred to as magnetohydrodynamic (MHD)

equilibrium. Since making strong magnetic fields is expensive, we need to maximize

the amount of plasma confined by a given magnetic field strength in order to make

fusion energy economically feasible. The figure of merit of such effort is the ratio of

the plasma pressure to the magnetic pressure, known as the plasma "beta,"

13 2goP (1.5)B 20

where P is the total plasma pressure, and Bo is the magnetic field on axis. In trying

to reach high beta, the plasma may become unstable by a variety of fluctuations

with different spatial mode structures. These instabilities are consequences of the

free energy that is supplied to the plasma from the heating sources used to raise

temperature and pressure. These fluctuations can grow in time, and affect the plasma

confinement by displacing the plasma and bending the field lines, or by enhancingtransport along and across the field lines.

Detection ad study of plasma fluctuations is currently considered to be one of

the key prerequisites to an advancement in our understanding of plasma confinement

Page 19: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

1.2. OBJECTIVE 19

in magnetic fusion devices. The objective of this thesis is to develop an improved

localized electron temperature and density fluctuation capability in the fluctuation

wavenumber range (0. < k < I cm-'). This fluctuation wavenumber range is an

important range because density fluctuations due to turbulence and drift waves are

known to peak here [8]. In addition, MHD ballooning modes which are predicted to

be the main instability limiting high beta and second stability tokamak operation 9,

also fall in this range.

Conventional scattering diagnostics using microwave or infrared radiation are lim-

ited in providing localized information in this wavelength range because the Brag

condition47 . 0

k sin- (1.6)AO 2'

where AO is the diagnostic wavelength and is the scattering angle, can not be satisfied

for the wavelengths that can access the plasma unless the scattering angle is made

very small. This, in turn, leads to a large scattering volume. Soft X-ray diagnostics

sensitive to electron density and temperature fluctuations, which can provide some

information at the longer wavelength end of this range, do not provide completely

localized measurements and are not useful in future DT experiments that produce

strong neutron rates. Infrared phase contrast imaging [101 which can be used for

density fluctuation measurements in this range is a line-averaged measurement. It is

also a difficult diagnostic to implement and needs a direct throughput access to the

plasma which is limited in future DT reactor experiments. Magnetic diagnostics and

reflectometry which are also suitable fluctuation diagnostics are limited to the edge

region of the plasma.

By comparison, ECE radiometry is a relatively simple, passive and single view

localized diagnostic of electron temperature and its long wavelength fluctuations when

viewing an optically thick harmonic. It is sensitive to electron density fluctuations

as well when viewing an optically thin harmonic. The field gradient gives ECE the

capability to view the plasma across its entire width. The new ultrawide bandwidth

(> 18GHz) millimeter-wave heterodyne receiver technology used in this research is an

attractive choice for ECE measurements. It provides the advantage of having many

spatial channels per mixer/LO. It also has faster response time and is more sensitive

than the cryogenic detectors used in millimeter-wave grating polychromators and itoperates at room temperature.

Page 20: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

20 CHAPTER 1. INTRODUCTION

1.3 Historical Review

ECE diagnostics are routinely used in many magnetic confinement experiments. Gen-

erally these diagnostics employ fast scanning interferometers [11] or rapidly tuned

heterodyne receiver instrumentation 12] for swept profile measurements, or grat-

ing polychromators 13] for simultaneous frequency channels for instantaneous profile

measurements. Swept ECE diagnostics are not useful for wavenumber resolved fluc-

tuation measurements with frequencies > I kHz. Grating polychromators have been

applied to fluctuation measurements 14], but have the limitation stated above real-

tive to wide-band receivers. Heterodyne ECE radiometers have been used in cross

calibration with Michelson interferometer systems to make electron temperature pro-

file measurements [5]. Heterodyne radiometers have also been used with limited

success for turbulence fluctuation measurements [15]. The present thesis research is

the first time ECE heterodyne radiometry along with correlation analysis techniques

have been used to study the spatial and temporal structure of limiting MHD modes

in high-beta tokamaks.

1.4 Thesis OutlineThis thesis is organized into six chapters. Chapter 2 describes the physics which

is directly related to the ECE diagnostic technique and the use of ECE correlation

radiometry for the study of MHD phenomena in fusion plasmas. In Chapter 3 the

Joint European Torus (JET) and the Princeton Beta Experiment-Modified (PBX-M)

machines are briefly introduced and the description of the heterodyne ECE diagnostic

systems used on these machines are detailed. Chapter 4 is a brief review of the MHD

stability theory relevant to the the plasmas investigated by the diagnostics. Chapter

5 presents the results of the fast correlation ECE radiometry measurements made on

both experiments and the MHD activity observed on high-beta discharges. Chapter

6 is the thesis summary and will provide recommendations for future work.

Page 21: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Chapter 2

Theory Related to 1\4easurementTechniques

2.1 Introduction

This chapter contains a brief review of the theory of electron cyclotron radiation from

a magnetically confined plasma. This review is based on the full treatment by 1 H.

Hutchinson 16].

The chapter also reviews the theory of electron cyclotron emission fluctuations

caused by coherent Ideal MHD modes. This theory serves as the basis of our experi-

mental deduction of the MHD mode displacement vector. The spectral and correlation

analyses techniques of signal processing are introduced in this chapter. The use of

these techniques on ECE signals for detection and measurements of the spatial and

temporal structure of the MHD mode fluctuations are also discussed.

2.2 Review of ECE Theory

2.2.1 Single Electron Radiation

The first step i deriving expressions for electron cyclotron emission is to calculate

the electron motion in a magnetic field. The force experienced by an electron movingin a uniform magnetic field is:

dp e(v x B) (2.1)dt

21

Page 22: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

22 CHAPTER2. THEORYRELATEDTOMEASUREMENTTECHNIQUES

where p, v, and -e are the electron momentum, velocity, and charge, respectively.

The relativistic relation between velocity and momentum is

P 7MV (2.2)

whereV 2 12 P 2 12 E

1+ (2.3)C MC MC2

E is the total energy of the electron. The electron does not gain energy from the

field since the force is always perpendicular to its motion. The electron however,

loses energy by radiation. If we make the assumption that this energy lost is a small

fraction of the electron's energy in the time it takes to execute this motion, the can

be taken to be constant in time. Using momentum from Eqn 22 in Eqn 21 gives

dv -ev x B (2.4)

dt

Now define the coordinate system , Y, ) where is along B. Writing the componentsof Eqn 24 separately:

dvx -eB- ��Vydt 7M,

dvY eB- -_ VX (2-6)dt -YMe

dvz - 0 (2.7)dt

Eqn 27 implies the velocity parallel to B is constant. Now we define

Q eB- = (2-8)'Y Me'Y

whose physical significances will become evident shortly. Taking the derivative of

Eqn 25 with respect to time and eliminating vy using Eqn 26 gives

d2Vx - -WC2 VX (2.9)dt'

which is the equation of motion for the harmonic oscillator with frequency W,. If Y -- I

this frequency reduces to Q, which is called the cyclotron frequency. Equations 26

and 25 can be similarly decoupled to solve for v, The solution for v is then

= V Icoswj+�v I sinwt+2vjj (2.10)

Page 23: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

2.2. REVIEW OF ECE THEORY 23

v

B71

observer

Figure 2- 1: The coordinate system for electron motion. The calculated orbit is shown.

where the arbitrary phase has been chosen such that, at t = ,

V - XV + V11 (2.11)

Integrating Eqn 210 in time gives the particle displacement:

r _01 OLx -sin (A),t - y -et i311 t (2.12)c We We

where,311,i = Vii I 1c. The particle motion is a helical path with a constant pitch (see

Fig. 2- 1). The orbits calculated above are used in conjunction with the common

formulae describing the radiated power from an accelerating electron to yield the

power radiated by a single particle per unit solid angle per unit frequency at the

particle, [16]. The result is

2 2 2e W COS j2 C + 2 j2

6(G) (2.13)87r2EOC sin M M

M=1

Page 24: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

24 CHAPTER 2 THEORY RELATED TO MEASUREMENT TECHNIQUES

sin (2.14)

rn, W(I (2.15)

where is the angle between the magnetic field and the line of sight, J' is the Bessel

function of the first kind of order m. The function in Eqn. 213 implies that the

emission is a resonance phenomenon. The fact that G is different from the expected

( - ) describes three physical effects. The term 1, cos implies that the shift in

the resonance frequency is proportional to the amount of parallel velocity along the

line of sight. This is just the Doppler effect. The -y which is hidden in w, implies the

particle gyration frequency is lowered from by the relativistic mass increase. The

implies that the charged particle radiates at all integer harmonics of its characteristic

frequency. This occurs because the orbit has a finite radius and therefore is not a

perfect dipole.

The two terms inside the bracket in Eqn. 213 also have physical significance

in terms of describing the two linear polarizations of the electromagnetic radiation

from a gyrating electron. The electric field which represents the polarization can

be calculated using the orbits of Eqn 212 in the Lienard-Wiechert potentials. The

resulting electric field is 16]:

00 iew,,, exp(-iw )E (t) E Re m X Pioi�]Jm=

M=1 27reocR I - 011 cos

+ [-coso (Cos R (Cos - 011 ] (( (2.16)sin

where wm = w(G 0). This shows that the electromagnetic radiation described by

the j2 term in Eqn. 213 has its electric field in the xz plane formed by the line

of sight and the magnetic field, and the radiation described by the y2 term hasM

its electric field perpendicular to that plane. For propagation perpendicular to the

magnetic field = 2), the term with j2 has its polarization vector along B. These

electron cyclotron waves are called ordinary waves or the ordinary mode (0-mode).

The term with j12 has its polarization vector perpendicular to B. These waves are

called extraordinary waves or the extraordinary mode (X-mode).

These results have been derived with the assumption of uniform magnetic field,

but they can easily be extended to nonuniform magnetic fields if the scale length

on which the field changes is much greater than the gyroradius. In a tokamak, the

dominant toroidal field changes with a scale length on the order of the major radius.

Page 25: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

2.2. REVIEW OF ECE THEORY 25

In PBX-M, this length is 165 cm. The gyroradius of a keV electron in a .5 tesla

field is approximately 001 cm. Therefore the assumption that the field is uniform

across the gyroradius is quite good.

2.2.2 Emission from a Plasma

In a tenuous plasma where the preceding free space treatment is applicable ( > p),

we can obtain the emissivity of a plasma by adding all the intensities from individual

electrons. If the particles have a distribution in velocity space f (O Oil) and are

uniformly distributed in space, the emissivity is

j(W'0) = 3f H(0'W"3)f(O II O,, ) 27ro 1 do I d,,. (2.17)

For all the plasmas in this thesis, we can assume that the electron velocities are

small, < and we can obtain nonrelativistic approximations for the emissivity.

The frequency shifts explained in the last section are small so we can treat each

harmonic separately and expect a narrow broadening around the harmonic frequencies

w,,, = mQ. We can also make the approximation that C, which is of the order gyration

radius (O. mm) divided by the radiation wavelength (millimeter range), is small. The

integral in Eqn 217 can be performed using the < I approximation for the Bessel

function and using a Maxwellian distribution of electrons at temperature T,

3/2 _MeC2(02 + 2)M,f (O "31 ) = ne exp (2.18)

27rT 2T

The calculated emissivity of a single harmonic can be expressed in the form 6]

im M = m OM, (2.19)

f O(w) d = (2.20)

where j-,, f j,,,(w)dw is the total emissivity of the mth harmonic integrated over

frequency in the vicinity of O(w) is the normalized shape function which rep-

resents the shape of the mth harmonic emission peak in the spectrum. For close to

perpendicular propagation (O 7/2), which is the case in all the measurements inthis thesis, we have 16]

2 2 2 1e wmne M _ T mi = 87r260C (M- 1! 2Tne C2 (2.21)

Page 26: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

26 CHAPTER2. THEORYRELATEDTOMEASUREMENTTECHNIQUES

Shane ffinefinn b

0.8

0.6Mass

Shifted

0.4

0.2

1.05 1.100.90 0.95 1.00Normalized Frequency col(on,

propagation giv'ng the mass-Figure 22: Shape of the ECE lne for perpendicularshift-broadened shape.

and

W 2MeC2

O(W = 2 7r(MQ)2 T

(2.22)

The only broadening mechanism for perpendicular propagation is the relativistic

down-shift with a spread due to the maxwellian velocity distribution of the electrons.

This broadening has a width of order (T/mc 2)w,,,. This shape function is illustrated

in Fig. 22.

2.2.3 Radiation Transport, Absorption, and Emission

The formulae i the previous section will eventually be used to calculate the ECE

radiation intensity received by an antenna at the plasma periphery. Therefore it

is necessary for us to understand the processes that can affect the waves as they

propagate away from their source. As might be expected there is an inverse process by

which electrons can resonantly reabsorb the ECE radiation. The absorption coefficient

a(w) is defined as the fractional rate of absorption per unit path length. We also define

the intensity, I(w), as the radiated power per unit area per unit angular frequency

m+3/2 'M! W 2 m+1/2

(2m + 1! I M 2Q2

-'MC2 U)2

x exp 2T 1 M2Q2 '

Page 27: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

........... . . . . . . . . . . . ................ ...........I............................................................................. I....... I............ I I....................-.............................I.....................................................I I .............. ........................ ... ..... I I...... ........................... ]s ........................ ..................IN) 02)

...... ......................Pafli.........................1 .......................................................................................

Figure 23: The ray path through a plasma slab.

per unit solid angle. In the tenuous plasma approximation this intensity is governed

by

2.2. REVIEW OF ECE THEORY 27

dl _ j(w) - a(w),ds

(2.23)

where s is the distance along the ray trajectory. The solution to this equation known

as the equation of transfer is:

32

f 1 j (,)) e -"I ds,1(-S2 = (si) e (71 -T2 ) + (2.24)

where the optical depth", is defined as

'T = a(w) ds. (2.25)

We take our source function j1a to be constant, by the assumption of uniformity,

along the ray path crossing a plasma slab as illustrated in Fig. 23. The intensity

of radiation at point 2 is determined by an integration of the transfer equation from

point along te ray path s. So we have

1'2 ( / .) .r ̀2 drIT(82 = (si) e-2 +

= -I(si) e-11 + (j/a) [1 - e-11], (2.26)

where -r2l = 2 - is the total optical depth of the plasma slab.

Page 28: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

28 CHAPTER2. THEORYRELATEDTOMEASUREMENTTECHNIQUES

When 2l 1 the slab is said to be "optically thick" and we have

I(82) j1a. (2.27)

The slab is a perfect absorber of radiation (at this frequency) incident on it and is

therefore a thermodynamic blackbody. We can use the Planck's formula for blackbody

intensityhW3

1 B (w = � � (2.28)87r3C2 elico/T - II

which for low frequency hw < T (which is a good approximation for ECE from

laboratory plasmas) may be written

W 2T

-B (W) 1 3 2 (2.29)87r c

Therefore, for an optically thick thermal plasma

I(w) = j1a = B(w). (2.30)

We can now write the absorption coefficient for the mth harmonic for a tenuous

nonrelativistic thermal plasma, using Eqn 221 as

i.(w) a,,, O(w = � � OMB(w.)

7r e 2n, m 2M-1 T M-1OM (2.31)2c ,,- - 2C2

We can now see from Eqn 229 and Eqn 230 that for an optically thick plasma, the

power observed at frequency by the ECE diagnostic, which is just (W) times the

constant 6tendue of the optical antenna, is proportional to the temperature of theelectrons.

2.2.4 Wave Polarization and Finite Density Effects

In the previous sections we have ignored the dielectric effects of the plasma and based

our derivations on the single particle approach. The derivation of the absorption and

emission in O-mode and X-mode polarizations in a plasma in which the refractive

index is different from 1, is very involved. In this section we present the formulae for

the polarizations and harmonics of interest from the full treatment by Bornatici et

al. [ 1 7].

Page 29: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

2.2. REVIEW OF ECE THEORY 29

We define 771 and q� to be the fraction of power in 0-mode and X-mode respec-

tively. Therefore we can write

iM+ = j771, (2-32)

a = amnm- (2.33)M

The cases of interest for us in this thesis are:

1. Perpendicular propagation in the 0-mode for the fundamental ('M 1) har-

monic. The absorption integrated over the ie shape is

+ 7 2 Ta -- Wp(l - X) (2.34)22c M'C

where2

= W; (2.35)M2Q2

2. Perpendicular propagation in the X-mode for m > 2 harmonics. In this case

the absorption, am(w), is given by Eqn 231, with the additional factor of

(I X)2 M 2 - m-3/2 Mx 2

77 - (I X)M2 - I I (J-X)M2-1 (2.36)

to account for finite density effects.

2.2.5 Radially Varying Field in Tokamaks

As we mentioned before, in a tokamak the dominant toroidal magnetic field is related

to the major radial location inside the vacuum vessel as

B o 11R. (2.37)

This magnetic field varies slowly, with a scale length of order major radius Ro(R JET = 30 m, R PBX 1.65 m). Fig. 24 shows the cyclotron resonance at a certain0 0

radial location R with a narrow spectral shape O(w, R), mapped by the slow mQ

variation (i.e. field variation) into a resonance with the similar spatial shape 0(wo, R).

The mQ variation scale length is much larger than the millimeter wavelengths of the

ECE radiation so a WKBJ approach is possible. Therefore for a specific frequency ,

the mth harmonic emission and absorption is appreciable only in a narrow resonanceregion where

[mQ(R - wo] < wo. (2.38)

Page 30: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

30 CHAPTER2. THEORYRELATEDTOMEASUREMENTTECHNIQUES

co

co0

RO R

Figure 24: The spatial and spectral shapes of the cyclotron esonance.

Since this resonance layer is small compared to R (smaller by a factor - Tlmc 2

in our cases), we can make the approximation that the gradient of 'MQ is constant

through it. With this approximation we can calculate the total mth harmonic optical

depth through the resonance layer at frequency wo as

-1

TM - f a (wo) dR =f a (wo) dR d(mQ)

dQ - 1= lam R) dR f 0 W - ) d. (2.39)

Here we have assumed that the frequency integrated absorption a is effectively

constant over the narrow resonance region and can be taken out of the integral. Since

0 is by presumption narrow,

I.jO(wo-mQ)dQ= 1 JO(wo - mQ) dwo

M M

by the normalization of the shape function (section 22.2). Therefore,

-r = am(R) - Ram(R)mldQ/dRI mQ I

(2.40)

(2.41)

Page 31: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

2.3. MEASUREMENT OF MHD MODE CHARACTERISTICS 31

where we have used QlldQldR =R obtained using equations 237 and 28.

The intensity observed from a region of plasma, provided there is no radiation

incident on it from outside, will be

2T(R)0 ( - (2.42)8700

In the case of optically thick plasma, > 1, the temperature profile can be obtained

using the intensity spectrum of the emitted radiation, I(w). If the plasma is not opti-cally thick (which is known as optically thin plasma) the measured ECE intensity is a

function of electron density (through a,,,) as well as electron temperature. Therefore,

in principle, one can obtain electron density information from the measured ECE

intensity provided the temperature profile is known from an optically thick harmonic

or from other diagnostics (e.g. Thomson scattering diagnostic). But the only diffi-

culty with such determination is that Eqn 242 was derived assuming that there was

no radiation incident on the plasma. The optically thin plasma can not completely

absorb the wo radiation coming from other locations which are multiply reflected from

the walls and incident on the portion of the plasma viewed by the optical antenna.

This means that the measured intensity is partly emitted from those other locations

in the plasma. o solve the reflection problem, a "viewing dump" (Chapter 3 must

be installed on the inner wall of the vacuum vessel in order to reduce the reflections

from the walls.

2.3 Measurement of MHD Mode Characteristics

2.3.1 ECE Fluctuations from an Optically Gray Plasma

In our experiments on JET, measurements were made of 0-mode ECE from = I

harmonic in high field discharges, and X-mode ECE from m = 3 in low field high-beta

discharges.

In PBX-M, first harmonic 0-mode and second harmonic X-mode which are opti-

cally thick, are cut off by the plasma frequency wp and right hand cutoff frequency ,

respectively. This is due to low toroidal fields in PBX-M. Fig. 25 shows the cyclotron

harmonics and cutoffs in a typical PBX-M plasma. Therefore, all ECE measurementson PBX-M were made on X-mode, = 3 harmonic. The choice of X-mode as opposed

to 0-mode third harmonic was made because 0-mode third harmonic was optically

thin. Third harmonic X-mode ECE in PBX-M and JET plasmas have optical depths

Page 32: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

32 CHAPTER2. THEORYRELATEDTOMEASUREMENTTECHNIQUES

250

200

WXO 150r-n>1aa(DI100Cr(D

U-

50

0

4co

2co.

----------

140 160 180 200Major Radius [R in cm]

Figure 25: Characteristic frequencies of a PBX-M plasma with B=1.5 T and no =7 x 1013CM-3 . The 0-mode fundamental harmonic is cut off by wp, and 2 X-modeis cutoff by w,. X-mode can not propagate n the shaded area between W, and theupper hybrid frequency Wh

Page 33: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

2.3. MEASUREMENT OF MHD MODE CHARACTERISTICS 33

of order 1 a region of optical depth which is referred to as optically gray. Therefore,

in this section our emphasis is mainly on the optically gray third harmonic ECE

fluctuations caused by the coherent MHD mode pressure perturbations. The case of

optically thick m 1 measurements then follows from our analysis as a special case

in the limit > 1

Combining equations 231 236 and 241, we get

,T. = R a.n;�. (2.43)MQ

For third harmonic X-mode we can write

817rR e2 T 2

T3 n. n34c mEOQ 2mC2

T 2

A3(R) n,,q3 2mc2 (2.44)

where A3(R) is a function of R and independent of electron density n, and temper-

ature T,, and we have omitted the X-mode superscript On q3 for simplicity. Since

the cyclotron emission is a function of local values of ne and T,, any fluctuations in

these values will affect the emission intensity. MHD fluctuations are fluid fluctua-

tions where the local thermodynamic equilibrium approximation can be applied, so

the fluctuating electron distribution function can be written as

6f (R, t = fo 6n, (R, t) + 9fo 6T, (R, t), (2.45)an, aT,

where f is the maxwellian distribution given by Eqn 218 and denotes fluctuation in

a quantity. This fluctuating electron distribution results in a fluctuation in the ECE

intensity [18]

61 6n, (R, t) + al 6T, (R, t). (2.46),9n, 19T,

Combining this equation with I given by Eqn 242 gives the relative fluctuation inthe ECE intensity

61 - 6ne + bi 6T, (2.47)I n, T.,

with

a, '73 I (2.48)e7 - I 773

Page 34: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

34 CLIAPTER2. TI-IEORYRELATEDTOMEASUREMENTTECI-INIQUES

bi = I 2 3 (2.49)e'r -

here is defined as ft/,9n, which we can evaluate knowing the density profile.

2.3.2 ECE Fluctuations Produced by MHD modes

The ideal MHD theory is able to predict values of plasma pressure p = nT, but

not n or T separately. In the following, we will consider the response of an ECE

receiver, which is sensitive to both n, and T, fluctuations, to MHD mode pressure

perturbations.An MHD mode characterized by a fluid displacement vector field �(x, t) will gen-

erate a pressure perturbation by fluid convection, hence the perturbed pressure at a

location inside the plasma can be given by 19]

P = Po � V0, (2.50)

where po is the equilibrium pressure at the same location. Note that the term 7po V �

describing the compressional effects of a sound wave 19] has been omitted in Eqn 250

by the assumption of incompressibility [19]. The MHD frozen-in law relates the

magnetic field perturbations to the fluid perturbations through

B _- Bo V x x BO). (2.51)

The can be thought of as being a displacement in the plasma caused by the mode.

Fig. 26 displays an example of the displacement vector field (in a poloidal plane) for

an ideal MHD mode 20]. Suppose we have an "ideal ECE detector" (at frequency

w) which could measure plasma pressure fluctuations. We would like it to measure

pressure fluctuations at a fixed radial location corresponding to B(R = B, However,

if the pressure fluctuations also cause fluctuations in the local B-field (i.e. MHD mode

fluctuations), the radius corresponding to the fixed frequency also fluctuates. The

signal measured by such detector is thus

6 = (B = ,,, - po (Bo = B,,), (2.52)

where po denotes the equilibrium pressure.

Our aim is to show how this measured pressure fluctuation can be related to themagnitude of the local displacement vector �- rom Eqn 251 we can write, to the

Page 35: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

2.3. MEASUREMENT OF MHD MODE CHARACTERISTICS 35

- I- I I

-1

. . . . I - I - . - -.L I . -

Figure 2-6: A computer simulation of a n = 3 MHD mode displacement vector field.

Page 36: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

36 CHAPTER 2 THEORY RELATED TO MEASUREMENT TECHNIQUES

first order in I ,2 2B =Bo +2[Bo-Vx(�xBo)]. (2.53)

The field perturbation x x BO) is small compared to Bo, so the relative change

in the magnitude of the field, due to the perturbation can be written as

AB B - Bo Bo [V x x Bo)] (2-54)

Bo Bo Bo 2

Appendix A shows how this can be reduced to the form

2AB 1 V Bo- -;:;_2 - (2.55)Bo Bo 2

where r. (Bo V)Bo is the magnetic field curvature. The displacement for MHD-----B'2modes of interest that are driven unstable in high beta plasmas must satisfy

V-� + 2�1 -. = 0. (2.56)

This can be used to simplify Eqn 255 to

AB 1 VI B2 + (2.57)Bo Bo 2 2

The general MHD equilibrium,

2

VP = V Bo + (Bo. V)B , (2.58)2

can be used to write Eqn 257 as

AB 17po (2.59)2Bo Bo

or= Bo VP0 (2-60)

Bo

In equations 259, 260 and hereafter, the I subscript has been dropped from

Eqn. 260 establishes the relation between the perturbed and equilibrium magnetic

'This relation corresponds to the fast magnetosonic (compressional Alfven) term of the energyprinciple determining the stability against high toroidal n-number pressure driven modes (see chap-ter 4 The term - I 2 I . can be shown to be of higher order > 2 in /n and can beapproximated to zero for high n-number modes 21].

Page 37: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

2.3. MEASUREMENT OF MHD MODE CHARACTERISTICS 37

R

Figure 27: The location of the esonance and the line of sight.

fields at the same location. But, as we mentioned before, the location viewed by the

ECE detector varies as the magnetic field fluctuates.

Let xo be the equilibrium location in the plasma viewed by the single frequency

detector so that Bxo = B, and let be the distance that the resonance layer

moves along the direction of the detector's line of sight s (see Fig. 27) as the result of

the perturbation. (xo +,o e,), where e, is the unit vector along s, is then the perturbed

location viewed by the detector, ad B(xo + p e, = B. The perturbed magnetic

field at the perturbed location can therefore be written as

B(xo + pe,) Bo(xo) +,oe, VBo + VP0 (2.61)Bo

and similarly,

p (xo + p e,,) po xo + p e,, Vpo - Vpo. (2.62)

Since the detector is at fixed frequency and views a fixed magnetic field , we must

set Bxo +Loe,, = Bxo),

B(xo +Lo e, = Bo xo)

Page 38: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

38 CHAPTER2. THEORYRELATEDTOMEASUREMENTTECHNIQUES

Bo(xo) +,oe, VBo + VP = Bo(xo)Bo

VPOO eq Bo = 0 (2.63)

Bo

to obtain VPO

Lo e. V(B 2/2) (2.64)0

Now that we have obtained p, we are in a position to calculate 6p.

Combining equations 262 and 252, we have

6p = po(xo)+pe,,-Vpo-�-Vpo-po(xo)

= Lo e Vo - VP0 (2.65)

Using Lo from Eqn 264,

VP0 (2.66)6P 'VPo I 2

e,, (Bo 2)

Using the general MHD equilibrium (Eqn 258), we can write this as

6P VPO) e. [(Bo. V)BO] (2.67)e, V(B 2/2)

The term inside the brackets would vanish if the magnetic field lines were straight(i. e. B "7)B 0). In that case the signal from the MHD perturbation would

0

be identically zero, but in a tokamak it equals

+ e, V (2.68)e. V(B 2 /2) + 00101

0

where - is the inverse aspect ratio of the tokamak and is the pressure ratio discussed

in chapter 1. To a good approximation this is unity, so we can write

6 = -� V0 - (2.69)

This is the principal result of our analysis, showing the relationship between the

pressure fluctuations measured by an ideal ECE detector, and the displacement vector

field of a MHD perturbation. A real ECE detector, though, can not measure pressure

fluctuations directly. It can, however, measure a combination of electron temperature

and density fluctuations (as derived in 247) which can be related to the pressure

Page 39: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

2.3. MEASUREMENT OF MHD MODE CHARACTERISTICS 39

fluctuations.For small fluid displacements 1�1 < R, we can assume to a good approximation

that the electron pressure fluctuations as measured by our ideal detector are a com-

bination of the local electron density and temperature fluctuations through

6p, 6n, + 6T, (2.70)Pe ne Ye

Moreover, for an ideal MHD mode, the density and temperature are convected with

the fluid so that n, 6T, nIVTl77e = (2.71)

Te 6n, = - TejVnej

77e typically takes on values in the range of 1-3. Combining equations 271 270,

and 247, and working out the algebra we get

61 a, b177, bPe(2.72)

+ n Pe

or6P, + 77, 6IPe a, blq, , I (2.73)

The total pressure fluctuation is the sum of ion and electron pressure fluctuations.

For the fast MHD scale, over which our modes of interest grow, the electron and ion

fluids can be assumed to move coherently, allowing us to write

6 = pe + 6 = I I VP" Ibpe (2.74)

= A pe.

Using this and Eqn 269, we can write

61 a, b, 1 Vpo(2.75)

+'q' A Pe

Defining the component of normal to the isobaric surfaces as Vp01jVp0j,

the above equation can be written

_ A Pe I + 7e 61

TVpo I a, + b I (2.76)

Equations 276 and 273 are the key results of our analysis in this section. Eqn 276

enables us to obtain values of �,, at different radial locations for a coherent ideal

Page 40: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

40 CHAPTER2. THEORYRELATEDTOMEASUREMENTTECHNIQUES

MHD mode, from the measurements of the ECE fluctuations. Eqn 273 allows us

to calculate the pressure fluctuations due to MHD modes from measurements of

ECE fluctuations. Values of a,, bl,,q,, p, I Vpland A are usually obtained from other

diagnostics since they depend on the density and temperature profiles.

2.3.3 Use of Signal Processing Techniques

In this section -we will discuss the digital signal processing techniques used for the

detection, and study of the spatial and temporal characteristics of fluctuations. The

signals recorded by a multiple frequency channel ECE receiver correspond to the ECE

intensities from different locations inside the plasma. The signals are combinations of

the ECE fluctuations caused by the local perturbations in the plasma, and the inher-

ent ECE thermal noise. Heterodyne receivers which are used in our measurements of

ECE, have limited signal to noise ratios (as we will discuss in the following chapters).

In order to detect and study the small plasma fluctuations associated with a pertur-

bation (e.g. MHD modes, waves, etc.), we need to be able to extract the fluctuation

signal out of the noise. Correlation and power spectral techniques of signal processing

are well-known for their usefulness in detecting and recovering signals buried in noise.

In the following, we will review some key ideas of these techniques that are related

to our measurements.

2.3.3.1 Discrete Fourier Transform (DFT)

The Fourier transform has long been used for identifying the frequency components

making up a continuous waveform. However, when the waveform is sampled by a

digitizer and the sampled digital data is to be analyzed using computers, it is the

finite discrete version of the Fourier transform (DFT) that must be used. Although

most of the properties of the continuous Fourier transforms (CFT) are retained by

the DFT, some differences result from the fact that the DFT is used on digitized

waveforms defined over finite intervals. The Fourier transform pair for a continuous

signal can be written in the form

G(f) g(t)e -ilrf t dt (2.77)00

XO FCC G(f)e1"2rft df. (2.78)

Page 41: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

2.3. MEASUREMENT OF MHD MODE CHARACTERISTICS 41

G(f) represents the frequency-domain function, and g(t) represents the time-domain

function. The analogous discrete Fourier transform pair that applies to sampled

versions of these functions can be written in the form

1 N-1 -i2rik/NG(fk-) - q(tj) e (2.79)

N =0

N-1'2,,jklNg(tj) G(fk) ez (2-80)

k=O

Here, N is the number of elements in the sampled time array. fk =_ kAf, and tj =_ jAt,

where j = , 1, . . . , N - ; k = , 1, . . , N - . g(tj) is the equal-interval sampledtime-data function which is represented by a Nelement array of real numbers. G(fk)

is the corresponding DFT and is generally complex. A derivation of the DFT from

the continuous Fourier transform can be found in reference 22].

The sampled data to be transformed has the length of N points spaced At seconds

apart. Therefore the time duration of the sample is T = NAt seconds and thesampling frequency is f = I/At Hz. The elementary bandwidth is Af = IIT Hz. The

DFT is defined at N discrete values of frequency from zero up to, but not including,

f = nAf.Eqn 279 shows that for real g(tj), G(fo) and G(fN12) are real. Eqn 279 also

shows that the real part of G(fk) is even or folded about the folding or "Nyquist

frequency" fN = f,12 = NAf /2, and its imaginary part is asymmetrical about theNyquist frequency. This folding is expected mathematically and can be understood in

the following manner. Since the transform of N real data numbers by DFT generates

N complex numbers that require 2N real numbers to specify, it would make sense

that the folding property make half of the transforms complex conjugates of the other

half and therefore make half of the 2N real numbers redundant.

From sampling theory we know that for a time waveform to be reconstructed

from its samples, it is necessary that f, be equal to or greater than twice the highest

frequency component fh present in the waveform. That is, for the sampling theorem

to hold, fh fv. In this case, the Fourier transform is correctly represented by the

DFT. If however, there is a frequency component f in the waveform such that f > fN,

the spectrum will show a spurious peak corresponding to that frequency component

that is folded around the Nyquist frequency and appears at fN - f - fN = f - f.

In any experiment, one is limited in sampling speed by the hardware capability.

Page 42: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

42 CHAPTER2. THEORYRELATEDTOMEASUREMENTTECHNIQUES

Therefore to avoid aliasing one must bandlimit the signal using a low pass filter with

a cutoff frequency equal to or less than fN.

The fast Fourier transform (FFT) 23] is a more efficient algorithm for computing

the DFT than the direct calculation of the sums. The greater the number of points in

the sampled data to be transformed, the larger the savings in computer time relative

to the DFT algorithm.

2.3.3.2 Correlations and Power Spectra

Let g(t) and 92(t) denote two time-domain waveforms. The crosscorrelation function

for these two signals is defined as

P12(,T) 00 91 (t) 92 (t - ) dt. (2-81)

Eqn 281 indicates that the crosscorrelation function has a similar form to the con-

volution (in the time-domain) of the two signals. The effect of this convolution is to

bring out the frequency components that are correlated between the two waveforms.

This is the direct result of the inhibition of the uncorrelated random fluctuations 24].

The crosspower spectrum of gl(t) and 92(t) is defined as the Fourier transform of

the crosscorrelation function 24],

(T)e-i2,,'rIdr. (2-82)IF12(f) P12

The reasoning behind this definition is the following: the crosscorrelation is a func-

tion in time domain which contains the frequency components which are correlated

between the two signals, so its Fourier transform is representative of the frequency

spectrum of the correlated components (i.e. crosspower spectrum). For real g(t) and

92(t), this can be written

1712(f) f 00 00 91(t)92(t )dt e-i2"fdrOc 'O

f 00 gi (t) f 00 92(t - re-'27rrf dT dt00

-i27,91 (t) e f'G*(f)dt00

Gj(f)G*(f), (2.83)

where Gi(f) G2(f) are the Fourier transforms of 1(t) and 92(t)-

To obtain the crosspower spectrum of a finite length signal, one can calculate the

Page 43: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

2.3. MEASUREMENT OF MHD MODE CHARACTERISTICS 43

integral in Eqn 281 numerically and then take its transform to obtain the crosspower

spectrum, or take the easier route of performing the transform on the individual wave-

forms using the FFT and obtaining the crosspower spectrum using Eqn 283. The

first approach is known as the Blackman-Tukey method 22]. The second approach

is known as the FFT spectral analysis method.

Eqn 283 can be used to obtain the autopower spectrum for any single waveform

by calculating the crosspower spectrum of the waveform with itself. The autopower

spectrum for g(t) is therefore

1711(f = G1(f)G*(f = G, (f 12. (2.84)

2.3.3.3 Power Spectrum Estimation

Equation 284 suggests that in order to obtain the autopower spectrum for a finite

length digitized signal, one must obtain the FFT of the signal and multiply that with

its complex conjugate. Since there are differences (due to the finite length of the

data) between FFT and the continuous fourier transform, this is only an estimate of

the true power spectrum. In digital signal processing literature, it is customary to

define a quantity called the "periodogram as

-IN(fk) =_ IG(fk) 12, (2.85)

where the subscript N indicates that the FFT was performed on the sampled data

g(tj) with length N.In the majority of physical systems including our measurements of ECE from

plasma fluctuations, the data can be modeled as a random signal generated by ex-

citing discrete linear modes, with noise. Such random signal can be sampled for a

finite duration of time (finite number of samples), and the power spectra which char-

acterize the behavior of the discrete modes and the noise, can be estimated by the

periodogram. Assuming that the system was active long enough so that we could

make many of these finite-duration measurements, our power spectrum estimates for

the corresponding measurements would generated a statistical spread around the true

value of the power spectrum. This spread indicates a probability density distribution

for our estimator. In order to compute the variance (width squared of the spread,or a 2 of this estimator, one needs to know the probability distribution of the ran-

dom variable g(tj). A gaussian distribution is a good assumption for most physical

systems.

Page 44: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

44 CHAPTER2. THEORYRELATEDTOMEASUREMENTTECHNIQUES

Making the assumption of a gaussian probability density distribution for g(tj),

the variance of the periodogram estimator is 25]

var[IN(fk)] -- IG(fk) 14 = N2 (fk). (2.86)

The variance of the periodogram is basically large and independent of the number

of samples N. The variance does not approach zero as N increases, thus it is not

a statistically consistent estimate of the true power spectrum. However, Eqn. 286

suggests that we could reduce the variance by breaking the data length N into K =

Nlm, segments of m point sequences and estimate the power spectrum by averaging

the K pieces of 1,,,. Combining the K spectra reduces the variance of the estimate by

a factor of 11K at the expense of the loss of frequency resolution by the same factor.

This method of variance reduction will be discussed more in the following section.

Another consequence of the estimation of the power spectrum using FFT on a

finite length of data, is the problem of "leakage". The problem of leakage is the

following: to represent a finite data length of T seconds, one might consider it as

the product of the data length of infinite duration and a square window of unity

amplitude and duration of T seconds. The multiplication by the data window in

the time domain is equivalent to performing a convolution in the frequency domain.

Consider the eample of a continuous sinusoidal waveform with frequency fo the

Fourier transform of the waveform is a delta function at fo. The effect of the square

windowing and selection of a finite length data is the convolution of the delta function

with the Fourier transform of the square step function, resulting in a function with

an amplitude of the (sin xlx form centered about fo. The resulting transform has a

main lobe centered on fo and many spurious sidelobes. The contribution of the true

delta function transform can therefore be said, to be "leaking" out of the main lobe

through the sidelobes. The way to solve this problem is to apply windows that have

lower sidelobes in the frequency domain and can localize the contribution of a given

frequency to the main lobe. The most frequently used window in spectral analysis is

a raised cosine window, also known as Hanning window

1 27rnw(n = I Cos , n= ...... M - 1 . (2.87)

2 M 1

2.3-3.4 The Welch method of Power Spectrum Estimation

The Welch 26] method of power spectrum estimation involves sectioning of the data

length N, into K = N/rn segments of m samples. A suitable window (normally

Page 45: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

2.3. MEASUREMENT OF MHD MODE CHARACTERISTICS 45

a Hanning window) w(j) of length m is then applied to each segment before the

computation of the periodogram, thus we obtain K modified periodograms

i M-1 2'(fk) = - E g(,) e-, 27rjk/m i 1, -,K (2.88)

M2 1, (ti) W W Ij=0

which are averaged and divided by a window factor

M-11: W2(j) (2.89)=0

to get the autopower spectrum estimate 26]

1 K

B11(fk = - j:1m('1(fk) (2.90)KU 1

for signal gj. The variance of this estimate is 26]

var[B11(fk)] -_ I B21 (A) (2.91)K 1

The crosspower spectrum B12 for signals g, and 92, can be estimated in the same

fashion as B11 with the squared magnitude term in Eqn 288 replaced with

m-1 M-1N -2 jk/m g(') (tj) w (j) e-i2.,rjk/m (2.92)

1 g (tj) W(j) e' 2

j=0 j=0

B12 is generally complex and can be written in the form of

B12 A) = IB12 A I ei6'1 2 A) (2.93)

where I B12 A I is the cross-amplitude spectrum, and012(fk) is the cross-phase spec-

trum which is equal to the phase difference between the two signals, of an oscillation

at frequency fk 26]. Another spectrum which is of particular use for the identification

of coherent oscillations between two signals is the coherence spectrum and is defined

in terms of the auto and crosspower spectra as follows:

-Yl2(fk)- IB12 A) 1 (2.94)[Bll(fk)B22 (fk)] 1/2

712 is simply a cross-amplitude spectrum that is normalized by the crosspower spectra

of both g, and92- It is interpreted as the degree of correlation between g, and 92

Page 46: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

46 CHAPTER2. THEORYRELATEDTOMEASUREMENTTECHNIQUES

at each frequency with differences in phase ignored. If 712 is zero at a particular

frequency then g, and 2 are "incoherent" at that frequency. For < 12 < , g, and

92 are said to be "partially coherent." The coherence spectrum is also used (as we will

see shortly) to obtain the variances of the power and crossphase spectra estimates.

The variances for the crosspower, coherence and crossphase spectra estimates are

derived in reference 27] to be

Var[jB12(fk)j1 - 1 B12 A) 12 1 + (2.95)2K [-Yl2(fk)]'

Ivar[012(fk)] - (fk)]2 I (2.96)

2K [712

var[-Yl2(fk)] - ' [I - 712 (fk)]2 12 (2.97)2K

The equations above show that the crosspower and crossphase spectra have lower

variances (and are, therefore, better estimates) for the frequencies that have high

coherency between the two signals. The mean-square error of an estimator is defined

as its variance. We will use the square root of the variance as the uncertainty for the

estimate.The autopower spectrum of a signal can be used to identify fluctuating modes

with discrete frequencies in a signal. The discrete modes appear as peaks in the

power spectra. In our analysis of the ECE fluctuations, we are interested in the

amplitude of the fluctuations identified by the peaks. Using the Welch method of

obtaining the power spectrum, the rms value (A) of the amplitude of the oscillations

at a particular frequency is related to the sum of the power spectrum values for the

frequency interval under the peak, through 25]

kf

A L 2 (Bi (fk - B) , (2.98)ki

where ki and kf are the spectrum frequency indices for the beginning and the end of

the peak respectively (see Fig. 28), and is the value of the background noise power

under the peak (which can be determined graphically).

2.3.3.5 The Connection with the ECE Fluctuation Measurements

As we mentioned in the previous sections, the ECE from a tokamak plasma can

be frequency separated (bandpass filtered) to give localized information about the

Page 47: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

2.3. MEASUREMENT OF MHD MODE CHARACTERISTICS 47

A

-- :1=3

C�

I--,-*..-v

01F

;0

k

Figure 28: The shaded area under the power spectrum peak is used to calculate thecorresponding fluctuation amplitude. k is the frequency index.

Page 48: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

48 CHAPTER2. THEORYRELATEDTOMEASUREMENTTECHNIQUES

plasma fluctuations. Each channel of an ECE receiver records cyclotron emission

intensity, 1, from a narrow localized layer at the location of the cyclotron resonance.

Consider data recorded by two channels of an ECE receiver, g(t) and 92(t) from R,

and R2, with a radial separation of AR JR, - R21. The autopower spectrum of gi,

B"'(fk) helps us identify the coherent fluctuations that appear in the form of peaks

in the ECE power spectrum. If the fluctuations in the ECE have been caused by

MHD modes in the plasma, Eqn 276 can be used to obtain the mode displacement

��. The 1 in Eqn 276 can be calculated using Eqn 298 for the peak in the ECE

power spectrum corresponding to the coherent MHD fluctuations. Combining the

two equations we get

I + kf(Rj = L 2 (Bece (fk) - B) (2.99)lece Vpo I a, + blR,, ki 11

The coherence spectrum between gl(t) and 92(t) signals indicates how strongly the

observed fluctuations at locations R, and R2 correlate with each other. The coherence

analysis between all the radial channels of an ECE receiver gives the spatial extent

and the correlation length of the observed plasma fluctuations. We recall in the

previous section, it was pointed out that the crossphase spectrum 012(fk) is equal

to the phase difference between g, and 92 signals at frequency fk. The crossphase

spectrum can, therefore, be physically interpreted as the phase shift each spectral

component undergoes in traveling a distance AR between the two spatial points at

which g, and 92 are being monitored. If the fluctuation of interest is a wave in the

plasma, this phase shift can be written

012(fk = k(fk) (2.100)

where k is the fluctuation wave vector. The radial wavelength, AR of the fluctuation

can be calculated using27r 2ir 27 AR

AR = - (2.101)k R -12- 012AR

Page 49: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Chapter 3

Description of ExperimentalSystems

3.1 Introduction

This chapter will describe the diagnostic apparatus which were used to make ECE

fluctuation measurements on JET and PBX-M. The development of the ECE ra-

diometer system for PBX-M started in 1990. But due to delays in PBX-M startup,

the implementation of the diagnostic was delayed until 1992. In the interim period,

the JET radiometer system was upgraded and ECE fluctuation measurements were

made on a large number of JET discharges. The experimental systems in JET and

PBX-M are described in this chapter.

The chapter is organized in two parts. The first part is dedicated to the exper-

iments on JET. It includes a brief overview of the JET tokamak, a description of

the existing multichannel heterodyne radiometer system, and the implementation of

the radiometer pgrade for fast ECE fluctuation measurements. The second part of

the chapter covers the experiments on PBX-M. An overview of the PBX-M tokamak

and a detailed description of the design and implementation of the ECE fluctuationdiagnostic are icluded.

3.2 ECE Fluctuation Measurements on JET

3.2.1 The JET Experiment

The Joint European Torus (JET) uses a tokamak magnetic configuration for con-

finement of high temperature plasmas. A diagram of the JET apparatus is shown

49

Page 50: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

50 C11APTER 3 DESCRIPTION OF EXPERIMENTAL SYSTEMS

Plasma minor radius:horizontalvertical

Plasma major radiusFlat-top pulse lengthToroidal magnetic field at centerPlasma current:

circular plasmaD-shape plasma

Neutral beam heating powerRF heating powerVolt-seconds for plasma current driveWeight of iron core

1.25 m2.10 m2.96 m20 s

3.45 T

3.2 MA4.8 MA20 MW22 MW34 Vs2800 t

Table 31: Summary of JET original design parameters.

in Fig. 31 and the principal design parameters are presented in Table 31. The

toroidal component of the magnetic field on JET is generated by 32 large, D-shaped

coils equally spaced around the torus. The primary winding of the transformer, used

to induce the plasma current which generates the poloidal component of the field, is

situated at the center of the machine. Coupling between the primary winding and

the toroidal plasma, acting as the single turn secondary, is provided by the massive

eight-branched transformer coil. Around the outside of the machine, but within the

confines of the transformer core, is the set of 6 poloidal field coils used for shaping

and stabilizing the position of the plasma.

JET pulses are produced at a maximum rate of about one every ten minutes, with

each lasting up to 20 seconds. The plasma is enclosed within the doughnut-shaped

vacuum vessel which has a major radius of 2.96m and a D-shaped cross-section of 42m by 25 m.

Two main heating methods, in addition to plasma current ohmic heating, are usedin JET:

1-Neutral Beam Heating: JET has two neutral beam 140 kV) injection units at two

toroidal locations which together supply up to 20 MW of heating.

2- Radio requency Heating: JET uses eight antennae in the vacuum vessel which

propagate 25-55 MHz RF waves corresponding to the ion cyclotron frequencies. Thismethod supplies up to 22 MW of heating [281.

Page 51: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

3.2. ECE FL UCTUATION MEASUREMENTS ON JET 51

............. ....................... ........ ............ ....... ............................................ .. ................. ........ ....................... ..... .. .............. .............. ..................I........I....................................................................................................................................................... ......................................

............ ............

Figure 31: Diagram of the JET apparatus.

Page 52: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

52 CHAPTER 3 DESCRIPTION OF EXPERIMENTAL SYSTEMS

The fueling of JET plasmas is achieved primarily by three techniques: Injection

of neutral beam particles which penetrate to the inside of the plasma, injection of

millimeter-sized solid gas pellets, and puffing of gas on the outside of the plasma.

The pellet injection can launch 27-6.0 mm cylindrical Deuterium ice pellets at

speeds of 12-1.5 km/sec at multiple times into a plasma discharge. A single-shot

launcher for a 6 mm pellet at speed of 4 km/sec is also used which can double the

plasma density instantaneously. The pellet injection techniques are also used to shape

the density profiles for better confinement performance.

3.2.2 The JET Multichannel Heterodyne Radiometer

The instrument used to perform the ECE fluctuation measurements on JET is a

44-channel ECE radiometer system. This system was originally constructed with

channels (band 1) by N. A. Salmon 29]. The system was expanded later to include 3

additional bands with 12 channels each [5]. The following sections describe different

parts of the radiometer system.

3.2.2.1 Antenna and Transmission Waveguide

The optical system of the diagnostic consists of an in-vacuum antenna, a quartz

window and 40 in of oversized S-band rectangular waveguide. The antenna is situated

on the low field. side of the torus, 25 cm above the midplane and views the plasma

along a major radius. The antenna aperture is rectangular with dimensions of 5 mm

in the horizontal and 65 mm in the vertical direction. The S-band waveguide has a

total of 12 Eplane and Hplane bends and transmits the ECE through the biological

shield to the diagnostic area with approximately 10% transmission.

3.2.2.2 Heterodyne Receiver Systems

A heterodyne receiver converts high frequency RF waves which are difficult to mea-

sure, to lower intermediate frequency (IF) signals that are more easily measured and

manipulated in electronic circuits. A heterodyne receiver mixes a RF signal with fre-

quency AF and the local oscillator signal fL0 in a solid state device called a "mixer"

and takes advantage of the nonlinearity of the special diode in the mixer to output

frequencies that are the sum and difference of the frequencies of the mixed signals

(I AF ± fLO 1) Follow-on amplifiers are used to pick out the difference frequency whichis lower and is referred to as IF, while attenuating the sum frequency. Fig 32 illus-

Page 53: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

3.2. ECEFLETCTUATIONMEASUREMENTSONJET 53

trates the basic concept of a heterodyne receiver. The difference frequency in the IF

is, however, the absolute value I fRF - AO 1, which means that a RF signal fRFl which

is lower than will be indistinguishable from another RF signal higher than fL0

by the same amount. In other words, a heterodyne receiver translates RF frequencies

in the two sidebands on both sides of fL0 (each as wide as the mixer bandwidth) into

the same IF band. Therefore, filters are normally used on the RF signal to cut out

the lower or higher sideband and remove the ambiguity.

The JET radiometer has four heterodyne receiver subsystems with frequency

ranges: 73.1-78.9 GHz, 79-91 GHz, 91-103 GHz, and 115-127 GHz which share the

same transmission waveguide system (Fig. 33). Each receiver subsystem consists

of a local oscillator (LO), mixer, IF amplifier, power divider, bandpass filters and

Schottky-diode detectors (Fig. 3-4).The merits of this choice of heterodyne receiver

design are explained later in this chapter in the section describing the PBX-M ECE

receiver system. The first subsystem (band 1) is the original receiver and has equally

spaced frequency channels each with a bandwidth of 250 MHz (corresponding to a

radial resolution of 12 cm), while the other three subsystems each have 12 channels

with bandwidths of 500 MHz corresponding to a radial resolutions of 23 cm. Ta-

ble 32 lists the frequency channels of each band. A polarizer is placed at the RF

entrance of each heterodyne subsystem to enable either O-mode or X-mode polar-

ization selection. The combination of these receivers yields a total of 44 observation

channels which span a significant fraction of the plasma (at first, second, and third

harmonics of the electron cyclotron frequency), the precise range depending on the

toroidal field. There is a frequency gap, at 103-115GHz, between bands 3 and 4.

Fig. 35 shows the radial coverage of the radiometer for various toroidal magnetic

fields.

3.2.2.3 Video Stage and Data Acquisition

The video stage and data acquisition of the radiometer were upgraded for faster data

handling. Description of this upgrade system follows in the next section. The upgrade

system was used in parallel with the previous video and data acquisition system of

the radiometer. The system prior to the upgrade used fixed gain (x 100) preamplifiers

with a bandwidth of DC to 150 kHz, followed by main amplifiers with variable gain(xO.2 to X 103 ) and DC to 150 kHz bandwidth. A set of two-pole active high and

low-pass filters were used. The high-pass filters had 3 dB settings at 0.1 to 100 Hz,

and the low-pass filters had 3dB settings at 100 Hz to 100 kHz. The data acquisition

Page 54: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

CHAPTER 3. DESCRIPTION OF EXPERIMENTAL SYSTEMS54

TYPICAL HETERODYNE RECEIVER

Mixer IF Amplifier

fRF,1 & fRF,2fIF,1 & f IF,2

fIF I RF- fL I

LocalOscillator

k

RF Stage

a)-0:3

:11aE

fr, . f I f0m n -,- f

IF Stage

f0 TIFJ

Figure 32: Basic concept of the heterodyne receivers

Page 55: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

3.2. ECE FLUCTUATION MEASUREMENTS ON JET 55

Figure 33: Schematic of the JET heterodyne rdiometer.

I.F. BandpassAmplifier Filter

LocalOscillator Schottky

DiodeDetector

ModeSelector

PowerDivider

BalancedMixer

Figure 34 A JET ECE heterodyne radiometer subsystem.

Page 56: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Channel1

2

3

4

5

6

7

8

9

10

11

12

CHAPTER 3 DESCRIPTION OF EXPERIMENTAL SYSTEMS56

Band Frequency (GHz)

73.1273.9474-7675-5876.4177.2378.0578.87

Band 3Frequency (GHz)

91.592.593.594.595.596.597.598.599.5

100.5101.5102.5

Band 2Frequency (GHz)

79.580.581.582.583.584.585.586.587.588.589.590.5

Band 4Frequency (GHz)

115.5116.5117.5118.5119.5120.5121.5122.5123.5124.5125.5126.5

Channel1.

2

3

4

5

6

7

8

Channel1

2

3

4

5

6

7

8

9

10

II12

Channel1

2

3

4

5

6

7

8

9

10

11

12

Table 32: JET ECE radiometer frequency channels.

Page 57: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

3.2. ECE FLUCTUATION MEASUREMENTS ON JET 57

1-1

ECn=3

-0CZIr0CZ'2

1.0 1.5 2.0 2.5 3.0Toroidal Field (T)

3.5

Figure 35: Radial coverage of the JET adiometer as a function of the central toroidalmagnetic field. The upper two shaded zones show the radii accessible to the radiometerwhen measuring second harmonic emission. The gap between the two zones Z's due toa fequency gap between bands 3 and 4 and the inner radius limit is set by harmonicoverlap. The lower two zones correspond to the first harmonic.

Page 58: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

CHAPTER 3 DESCRIPTION OF EXPERIMENTAL SYSTEMS58

modules were 0-10 V, 12 bit ADCs with maximum digitization rate of 100kHz and

memory capacity of 16 kwords per channel.

3.2.3 The Radiometer Upgrade

The previous data acquisition system of the radiometer was limited to resolving fre-

quency fluctuations of 5kHz. However, the unstable MHD activity in JET was pre-

dicted to be in the range of 50-500 kHz 30]. In addition, the small amount of data

storage 16 kword per channel) made it hard to time the data acquisition to coincide

with onset of the predicted fluctuations. Therefore a video stage and data acquisition

upgrade was implemented in order to resolve faster (up to 500 kHz) fluctuations and

provide larger data storage. The upgraded system consists of wide bandwidth (DC to

10 MHz) amplifiers, switchable low and high-pass filters, and a PC based stand-alone

data acquisition system. Using this system any channels from the 44 channels of the

radiometer can be selected (for the desired coverage of the plasma) for fast recording.

The signals chosen for the fast system are shared with the existing video stage of the

radiometer using SMA "T"s after the detector diodes. Fig. 36 is a block diagram of

the pgrade system. The video amplifiers are fixed gain (x250) DC-10 MHz ampli-

fiers which require ±15V differential power. There are a total of amplifiers for

channels of the radiometer which share a common power supply. A set of high and

low-pass filters was made for filtering the signal output of the video amplifiers. The

high-pass filters are single-pole with 3 dB at 500 Hz, and can be turned on or off.

The low-pass anti-aliasing filters are also single-pole with 3 dB settings at 100 kHz,

400 kHz, ad 800 kHz.

Data are recorded by two LeCroy 6810 ADC modules. Each module is a 4 channel

12-bit ADC with 128 kwords per channel and variable sampling frequency up to

I MHz. The CAMAC crate is controlled by a PC through a GPIB interface and a

crate controller (LeCroy 8901A). The data acquisition control software on PC was

developed by modifying the LeCroy Catalyst software. The large fluctuation data

files are stored on a Panasonic WORM optical disk drive 940 megabyte/cartridge).

The ADC modules are triggered by a JET timing trigger signal. The trigger signals

can be obtained either from a programmable fixed trigger clock or from a series of

event triggers generated by the JET soft X-ray diagnostic. The event triggers included

sawtooth, ELM (edge localized mode) and disruption triggers. The digitizer's circular

memory could be partitioned to pre and post-trigger segments in order to allow signals

from immediately before an event to be recorded.

Page 59: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

3.2. ECE FL UCTUATION MEASUREMENTS ON JET 59

JET TIMING TRIGGER

LECROY 8901CRATELECROY 6810

4 CH 5MHz ADC512 K MEMORY

VARIABLE BANDWIDTHLi

800KHz, I'4ELS

rAL)

I

LOW PASSFILTER

Figure 36: The upgrade system for the JET heterodyne radiometer.

Page 60: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

60 CHAPTER 3 DESCRIPTION OF EXPERIMENTAL SYSTEMS

3.3 ECE Fluctuation Measurements on PBX-M

3.3.1 The PBX-M tokamak

The Princeton Beta Experiment-Modification (PBX-M) is the second major upgrade

of the Poloidal Divertor Experiment (PDX), which began operation at PPPL in

1979 31, 32] A primary goal of PDX was the study of perpendicular neutral beam

injection (NBI) 33]. Further goals of this tokamak were the study of the physics of di-

verted plasmas and attainment of high in a diverted configuration. These goals were

to be accomplished using poloidal divertors to control plasma impurities and provide

clean plasmas for high-0 studies. The use of poloidal divertors for plasma shaping

and its effects on plasma confinement and MHD stability were to be investigated.

In 1983, the PDX tokamak went through its first major reconfiguration, resulting

in the Princeton Beta Experiment (PBX) 34]. The PDX tokamak was redesigned

to include new poloidal field coils for plasma shaping, the most significant being the

indentation or "pusher" coil on the midplane. The pusher coil indented the flux

surface by running a current parallel to the plasma current. On PBX, indentations

of 15-20% were obtained. Other shaping coils provided elongation of the plasma,

resulting in a bean-shaped poloidal cross-section. The stabilization of the MHD

external kink activity was provided by a passive/active feedback system consisting of a

partial conducting shell in the divertor region, near the lobes of the bean, and an active

feedback system connected to the shaping field coils. The PBX tokamak was further

modified in 1986 to include a close fitting conducting shell consisting of a system of

passive stabilizing plates 35]. The Princeton Beta Experiment Modification, PBX-

M, has passive plates completely surrounding the its plasma except for a 40 cm

gap on the outer midplane for neutral beam and diagnostic access. A diagram of

the PBX-M apparatus is shown in Fig. 37 and the principal design parameters are

presented in Table 33. Additional poloidal field coils were installed to improve the

plasma shaping capability, and an improved pusher coil was installed to increase the

attainable indentation from 20% to 28%. A schematic of a poloidal cross-section of

the PBX-M indicating the locations of the passive plates and shaping coils, is shown

in Fig. 315. Like its predecessor PBX, the PBX-M tokamak's goal is the study of

stability improvement, confinement optimization, and attainment of second stability

through plasma shaping and current and pressure profile modifications. PBX-M

plasma discharges are produced at a maximum rate of about one every two minutes,

with each lasting up to I second. The plasma has an indented bean-shape cross-

Page 61: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

3.3. ECEFLtTCTUATIONMEASUREMENTSONPBX-M 61

Poloidal Field Coils

Torque

StronglyPlasma

Vacuum Vessel

Figure 3-7: PBX-M tokamak.

Page 62: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

CHAPTER 3 DESCRIPTION OF EXPERIMENTAL SYSTEMS62

Plasma minor radius:horizontalvertical

Plasma major radiusIndentationPlasma VolumeFlat-top pulse lengthToroidal magnetic field at centerNeutral beam heating powerVolt-seconds for plasma current drive

0.6 m0.91 m1.65 m>0.37.2 m3

0.5 s

2.2 T4.0 MW3 Vs

Table 33: Summary of PBX-M design parameters.

section of 06 m by 091 m.

3.3.2 The PBX-M Multichannel Heterodyne Radiometer

The instrument used to measure third harmonic ECE fluctuations in PBX-M is a

heterodyne radiometer system. This diagnostic system, shown in Fig. 315, consist of

a beam dump, an optical antenna system, an 8-channel heterodyne receiver covering

112-127 GHz, and a data acquisition system. The following sections describe different

parts of the radiometer system in detail.

3.3.2.1 Viewing Dump

As discussed in section 23.1, the third harmonic ECE in PBX-M is optically gray

(,r - 1). Fig. 38 shows a plot of the third harmonic optical depth (3) for a typical

PBX-M plasma shot of interest. A viewing dump is needed in order to reduce the

multiple reflections of the ECE radiation from the highly reflective vacuum vessel

walls. A viewing dump which can reduce the wall reflections is essential to thelocalization of te ECE diagnostic.

Viewing dumps have been constructed in the past for the absorption of wall re-

flections in diagnostics involving millimeter and submillimeter-wave measurements

such as electron density profile measurements using ECE 36] and ion temperature

measurements using FIR Thomson Scattering 37]. A viewing dump material must be

compatible with high vacuum (10-8 Torr) and be able to withstand the high tempera-

tures, high particle flux and harsh mechanical environment inside a high temperature

Page 63: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

3.3. ECE FLUCTUATION MEASUREMENTS ON PBX-M 63

PBX-M Optical Depth for X-mode, Harmonic m = 30.50

0.40

Ea0aco0.B.0

0.30

0.20

0.10

0.00140 160

Major Radius [cm]180 200

Figure 38: Third harmonic optical depth ) profile for PBX-M shot 10724.Electron density and temperature values are obtained from the Thomson scattering(TVTS) diagnostic. The dark line is a fit to the experimental values. The peak T,and ne are 73 x 1013 cm-' and 148 keV respectively. The magnetic field at R is 1.5Tesla.

Page 64: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

64 CHAPTER 3 DESCRIPTION OF EXPERIMENTAL SYSTEMS

plasma vacuum chamber. Most materials compatible with these requirements are not

good absorbers of millimeter-wave radiation. This further requires that the dump be

designed to trap the radiation for many reflections to dissipate its intensity 38] In

PBX-M a spatial constraint arising from the limited space on the pusher coil between

the two sections of the graphite armor, limits the size of the dump to 16 cm x 16 c.

The short distance to the plasma edge limits the thickness of the dump to 22 c.

Several different dump configurations (e.g. parallel V-grooves, Raleigh horns,

pyramids, and conical holes) made from different materials (e.g. Pyrex, graphite,

Macor 39], and alumina) have been constructed and tested in preparation for Thom-

son scattering and ECE measurements in the past 38, 40, 41]. Kato et al. 41]

calculated the expected absorptivity of beam dumps with parallel grooves using the

assumptions of geometrical optics, and large dump absorptivity. These two assump-

tions are not, however, valid for our viewing dump design. In our setup on PBX-M,

the gaussian beam is expected to illuminate a large area on the viewing dump. A

large number of wave trapping structures (e.g. conical holes or grooves) are neces-

sary in this area in order to attenuate the reflections. The assumption of geometrical

optics validity breaks down for our wavelengths (-- 2 - 3 mm) which are comparable

to the dimensions of the trapping structure. The assumption of large absorptivity

breaks down since the thickness of the dump 2.2 cm) is comparable to the reciprocal

of the absorption coefficient (e.g. for Macor, -_ 09 c 42]). Therefore, we relied on

the empirical results by Woskov et al. 38] and Kato et al. 41] for the design of our

viewing dump.

A. Macor 39] (a machinable glass ceramic material) viewing dump with a conical

hole configuration was designed and constructed for an expected reflectivity 10%.

Fig. 39 shows the design of the viewing dump. Conical holes with cone angles

of 300 and cone depths of 15.9mm were drilled into one face of a 22 cm slab of

Macor. The cones were overlapped so there were no flat reflecting surfaces between

them. The conical hole configuration has not been widely used in the past because of

machining difficulties, in spite of the configuration's good polarization independent

performance. Our decision to use this configuration was influenced by new precision

machining technology for ceramic materials. The viewing dump had only a few minor

imperfections from the machining. Fig 310 is a photograph of the viewing dump

before installation in the machine.

Page 65: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

3.3. ECE FLUCTUATION MEASUREMENTS ON PBX-M

--- 6 -000 so -

65

0 75

Figure 39: Top and side views of the viewing dump showing the dimensions of thedump and the conical hole structure (dimensions are in inches).

Page 66: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

66 CHAPTER 3 DESCRIPTION OF EXPERIMENTAL SYSTEMS

Figure 310: The Macor viewing dump before installation in the vacuum vessel.

3.3.2.2 Test of Viewing Dump Performance

The constructed viewing dump was tested prior to installation in the machine. The

experimental procedure for the test of the dump reflectivity was performed in two

stages. The first setup was intended to test the O' incident angle (straight on) re-

flection. Fig. 311 shows the setup for this measurement. A 135 GHz Impatt diode

was used to launch the radiation. The beam splitter at a 45' angle allows 60% of the

radiation to pass through. The reflected beam from the dump was then reflected off

the same beam splitter and measured by a 135 GHz heterodyne receiver 6 (Fig. 3-

12). The reflected power from the dump was compared to the reflection from the

gold-coated mirror which was essentially a 00% reflector at 135 GHz. The power

supply to the Impatt diode was dithered to produce a .5 GHz sweep in the frequency,

canceling the effects of the standing wave patterns in the setup.

The second test stage was designed to measure the reflectivity of the viewing

dump at different incident angles. Fig. 313 shows the setup for this measurement.

The dump was placed directly in front of the receiver, and the transmitter was moved

on a circular path to different incident angles. In this measurement, the reflectivity

Page 67: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

3.3. ECE FLUCTUATION MEASUREMENTS ON PBX-M 67

Heterodyne Reciever

Gold-coated

Calibratedsplifter Aftenuator

)dez

Viewing Dump

Figure 311: The setup for the test of the O' reflection from the beam dump. Thedump is approximately 45 cm from the launching antenna, and the receiver is 30 cmfrom the beam splitter. The TE11 to HE,, mode converter before the launching hornis not shown here.

135 GHz HETERODYNERECEIVER

45 GHzATTENUATOR

45 GHzOSCILLATOR

133.5-136.5 GHzSIGNAL _ /M

0.005-1.5 GHz AMP

Figure 312: Schematic of the 135 GHz heterodyne receiver.

Page 68: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

68 CHAPTER 3. DESCRIPTION OF EXPERIMENTAL SYSTEMS

Diode;'I H z

iever

DiodeI Hz

iever

Figure 313: Experimental setup for the test of the viewing dump reflectivity as afunction of the angle of incidence.

Page 69: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Viewing Dump Attenuation............. I... I....... I ..... I--- ---

...........................................

3.3. ECEFLUCTUATIONMEASUREMENTSONPBX-M 69

10

0 o - - - Gold Mirror

3--------Ei Macor Dump

-10

-20

-30

6SC0.16

C0)

-40

-500 10 20 30

Angle (degrees)40

Figure 314: Attenuation of thecoated mirror. The figure showsducing reflections.

radiation by the Macor viewing dumpthe effectiveness of the Macor viewing

and a gold-dump in e-

of both the gold mirror and the viewing dump was tested. The measurements were

performed at 100, 15', 200, and 30' incident angles. For each angle measurement,

the mirror was rotated to the half angle position to get the maximum reflected signal

(Fig. 313(a)). This reflected signal served as the reference signal. The gold mirror

was then moved to the normal position (Fig. 313(b)) and the reflected signals for

both the gold-coated mirror alone and the viewing dump (in front of the gold-coated

mirror) were recorded. Fig. 314 shows the results of these, and the O' reflection

measurements. It is clear from this figure that the reflectivity of the viewing dump

is much lower than the gold mirror. At O' incidence, the attenuation by the viewing

dump is 12 dB which equals to 63% reflectivity. It is important to note that the

reflectivity at O' incidence is dominated by the absorption of the beam traveling twice

through the dump in being reflected from the back mirror. The effect of the wave

trapping conical hole structure is manifested in the rapid drop of the reflectivity at

larger angles of incidence. This performance of the Macor beam dump combined with

the optical grayness of the plasma provides excellent radial resolution for the ECE

Page 70: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

70 CHAPTER 3 DESCRIPTION OF EXPERIMENTAL SYSTEMS

diagnostic.

3.3.2.3 Optical Antenna System and Transmission Line

The optical antenna system for the ECE diagnostic consists of an external corrugated

horn antenna, which views the plasma through a focusing polyethylene lens attached

to a quartz window on the midplane of the tokamak, a HE,, to TE11 mode converter,

and an overmoded circular waveguide run. This optical system provides the ECE

diagnostic with the necessary spatial resolution in the transverse direction to measure

short-, poloidal wavelength (large poloidal m-number) fluctuations. Fig. 315 shows the

diagnostic setup and the optical antenna system components.

The horn antenna 43] collects the focused ECE and transmits HE,, mode radi-

atioin. to the mode converter. The horn is made of copper, and tapers with 4 angle

from a 30.48 mm i.d. input end to a 12.7 mm i.d. output end. The corrugation period

is 071 mm and the groove depth is 056 mm. Fig. 316 is a drawing of the corrugated

horn. This horn was originally designed for launching 137 GHz HE,, mode from a

gyrotron, for the collective Thomson scattering diagnostic on TARA tandem mirror

experiment 6.

The polyethylene lens is designed to focus the ECE from the plasma into the horn

antenna. The lens is a 15.24 cm 6 in.) diameter planar convex lens which is attached

to a 6 in. circular fused quartz window. The focal length of the lens is 37.0 cm and

its radius of curvature is 19.24 cm. The parameters for the lens design, as we will

see shortly, are calculated for a uniform focused spot diameter of _- 56 cm in thevacuum vessel.

The HE,, to TE11 mode converter 44, 45] is a cylindrical corrugated waveguide

mode converter with a corrugation period of 073 mm and linearly varying groove

depth from 0.55 mm to 1.10 mm. The overmoded waveguide is a circular smooth-

wall copper tube with 12.7 mm i.d. and 19.05 mm o.d A Miter bend 46] is used

to provide a 90" turn in the transmission line. The waveguide is tapered down to

a rectangular WR-7 (D-band) waveguide before entering the receiver. This is done

using a WC-50 to WC-9 taper and a WC-9 to a WR-7 converter. The waveguidesystem has -_ 70% transmission at a frequency of 120 GHz.

Page 71: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

3.3. ECEFLUCTUATIONMEASUREMENTSONPBX-M 71

8-CHANNEL

UAR COPPERAVEGUIDE

. . .......... ...... .....

...........

.....................

.............

. .... ......

........ .......RD X-RAY CAMERA

i 50 cm

PBX-M VACUUM VESSEL

Figure 315: ECE fluctuation diagnostic setup.

Page 72: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

72 CHAPTER 3. DESCRIPTION OF EXPERIMENTAL SYSTEMS

. 715 1A

1.500 IAINSIOE

INSIDE

.

-�[--O. 014 TYR0.026 TYR

Figure 316: The corrugated copper horn.

Page 73: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

3.3. ECE FLUCTUATION MEASUREMENTS ON PBX-M 73

3.3.2.4 Design and Testing of the Optical Antenna System

The spatial resolution of the diagnostic in the vertical and toroidal direction is deter-

mined by the antenna pattern of the focusing optics. The theoretical and experimental

determination of the receiving antenna pattern of the horn-lens combination can be

done by considering the reverse process (reciprocity) of propagation of the gaussian

beam from the horn-lens combination into the plasma.

The radial itensity variation in the transverse plane of a gaussian beam is given

by 47]2P 2r 2/W2

2e (3-1)7rW

where P is the total power in the beam, w is the IO beam intensity radius, and r is

the radius in the transverse plane. The beam power transmitted through an aperture

of diameter 2 is

power transmitted = 2P b27rre-2r2 /W2 dr = p _ e-2,2 /W2 (3.2)��W2 Jo

Therefore, a circular area of radius w contains -_ 86% of the gaussian beam power.

The radius w is therefore usually referred to as the spot size of a gaussian beam.

The gaussian beam launched by the horn is characterized at the output aperture,

by a radius of curvature equal to the horn radius of curvature, and a radius w = 0596 a

[43, 48], where a is the radius of the horn output aperture. These beam parameters

at the cap of the horn are used to find the beam radius at the imaginary beam waist

inside the throat of the horn. Using the beam parameters at the waist, w can be

calculated for ay location in the far and near-field of the horn antenna. Fig. 317 is

a plot of the beam intensity radius or spot size for a 120 GHz beam, versus distance

from the horn aperture. This figure shows that in the absence of a focusing element

the diameter of the beam will diverge and become larger than the beam dump by the

time it travels that far. In addition, the large beam diameter limits the resolution of

the diagnostic in the vertical direction. Focusing the gaussian beam provides a smaller

beam size and therefore better vertical resolution throughout the vacuum vessel. In

principle, the minimum focused beam diameter, for wavelength A achieved by

a lens of focal length f and diameter D is 47]

dmin - 2fA (3.3)D

which for our geometry is approximately 1.0 cm. But to have a gaussian beam waist

Page 74: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

CHAPTER 3. DESCRIPTION OF EXPERIMENTAL SYSTEMS74

Gaussian Beam1

E�

0M�0asCf-'

0.r-?-1C.2r-Eco(DcoW

1

0 50 100Distance from Horn Aperture (cm)

150

Figure 317: Beam intensity adius w of a 120 GHz gaussian beam launched from thecorrugated horn.

Page 75: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

3.3. ECEFLUCTUATIONMEASUREMENTSONPBX-M 75

Gaussian Beam1

1

E�4�CD

'acocc

h.F21C2CEcoa)coW

(D

0 50 100 150Distance from Horn Aperture (cm)

Figure 318: The gaussian antenna pattern of the focusing optics system.

with this diameter, the beam needs to converge very rapidly on the waist and diverge

as rapidly, leaving a significant portion of the plasma with very large beam diameters.

In our experiments, we need to design the gaussian focusing to achieve, as much

as possible, a uniform minimum beam diameter throughout the plasma. The lens

parameters and the lens-horn distance were chosen to achieve this optimum pattern.

Fig. 318 shows the calculated beam intensity radii (in vacuum) versus distance from

the horn aperture, for beams with 135 GHz and 120 GHz frequencies. The plot also

shows the measured beam radii at several locations with and without the lens.

The measurement points in Fig. 318 are obtained using an experimental setup

(Fig. 319) devised to measure the focused beam intensity radius as a function of

distance. A 135 GHz Impatt diode was used to launch the radiation, and the 135

GHz heterodyne receiver was used to detect the beam power at different locations.

The receiver measuring the beam intensity was scanned vertically at each horizontal

position. The values of w were then obtained by fitting the intensity measurements to

a gaussian of the form in Eqn. 3.1. As can be seen in Fig. 318, the measurements are

in good agreement with the calculated beam intensity radii for 135 GHz. The beam

intensity radius for a 120 GHz radiation is approximately 23.5 cm. The effective beam

Page 76: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

AVertical

Polyethylene ScanLens

A

Impatt Diode No.135 GHz Horizontal

Scan

Figure 3-19: Experimental setup for the measurement of focused gaussian beam in-tensity radii. The Miter bends and mode converter are used to better mimic the realexperimental ituation. No feed horn is used on the receiver in order to obtain a di-rectionally unbiased measurement. All eflecting surfaces in the setup are covered byEccosorb.

diameter or the transverse spatial resolution of the diagnostic is therefore between 4

to 7 cm and approximately uniform throughout.

These calculations and measurements are, however, done for the case of propa-

gation of the gaussian beam in vacuum. In the following section, we shall treat the

optical effects of the plasma on this gaussian antenna pattern.

Effects of Plasma on the Antenna Pattern

The 3rd harmonic X-mode ECE from PBX-M plasma is very near in frequency to

the X-mode right-hand cutoff (see Fig. 320). The cyclotron radiation passing close

to the cutoff is expected to bend significantly due to the refraction caused by the

plasma, and the resulting gaussian antenna pattern will therefore be distorted. This

effect has been investigated in microwave reflectometry and scattering experiments.

The bending is best understood by writing the Appleton-Hartree plasma refractive

index, N. The refractive index given by Appleton-Hartree formula for perpendicular

(to the B-field) propagation of X-mode radiation with frequency is 49]

N 2 = I _ X(i - ) (3.4)1 X - 21

where2

= (3.5)2

CHAPTER 3 DESCRIPTION OF EXPERIMENTAL SYSTEMS76

Page 77: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

. . . . . . . . . . . . . . .

3.3. ECEFLLTCTUATIONMEASUREMENTSONPBX-M 77

250

200

.... ......................

........... ......

7O.E

a0:3Cr2

LL

150

100

50

n

200140 160Major Radius [R in cm]

180

Figure 320: Cyclotron harmonics and X-mode andplasma with B=1. 5 T and no = 77 x1013CM-3.

and= ,

W

0-mode cutoffs for a PBX-M

(3.6)

The refractive index of the PBX-M plasma of Fig. 320 for X-mode radiation can

be calculated using Eqn 34. Fig. 321 is a plot of this refractive index for 20 GHz.

The radiation experiences a varying refractive index substantially different from I

and therefore bends as it traverses the plasma. TORAY [50] ray tracing code was

used to study this ray bending in the PBX-M plasma. TORAY is a geometrical

optics ray tracing code which uses the cold plasma dispersion relation. The code was

originally developed for the study of electron cyclotron heating and current drive in

tokamaks [51]. Fig 322 shows the TORAY ray tracing results for a ray launched

parallel to the midplane in the plasma of Fig. 320. The effect of the plasma is to

bend the ray outward. The extent of the refraction is large enough that the gaussian

pattern of the optical system is expected to be considerably different from the previous

results in vacuum. It is important to point out that TORAY is written for circular

cross-section plasmas. But, because the rays studied here are launched close to the

midplane region, the ray tracing results for a bean-shaped (PBX-M) cross-section

plasma are expected to be much the same as the circular case.

A code has been developed by E. Mazzucato 52] to study the propagation of

Page 78: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Refractive Index. ... . . . . . . . . . . . . . .. .

7�� - -. I 11.1 N

k

. I- - - - - - - - -- - - - - - - - - - - - - - - - - - -

Ik I

I

78 CHAPTER 3. DESCRIPTION OF EXPERIMENTAL SYSTEMS

1.00

0.90

0.80

z

0.70

0.60

0.50120 140 160

Major Radius (cm)180 200

Figure 321: PBX-M plasma X-mode refractive index for 120 GHz radiation.

Pololdal View Poloidal View

30- 30-

20-

10-

0- - - - - - - - - - - - - - - - - - - - - - - - - - - -

ik I

11- .1

20-

10-

z

Mc

z

Mc0.

-10-

-20-

-30-

.10-

-20-

-30-

I I I I I I I I130 140 150 160 170 180 190

. I I I- I - - I --130 140 150 160

I - I . 1

170 180 190200 200R cm)

aR (cm)

b

Figure 322: Ray tracing of a 120 GHz ray, launched parallel to the midplane in: (a)vacuum; (b) plasma with Bo = 1.5 Tesla and no = 7.7 x 1013CM-3.

Page 79: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

3.3. ECE FLUCTUATION MEASUREMENTS ON PBX-M 79

gaussian beams in inhomogeneous plasmas. The code is different from conventional

ray tracing codes in that it models the modulation of the wavefront (perpendicular

to the beam) in a gaussian beam profile by using a complex phase (or eikonal) In

simple words, the code computes the gaussian propagation of a beam in an inhomo-

geneous plasma by simultaneous launching of multiple rays. The distance between

the rays are calculated and the wave trajectory equations are solved at each itera-

tion along the propagation path. The ray trajectory equations involve the imaginary

part of the eikonal which is devised to represent the variation of the wavefront in the

direction perpendicular to the beam, as well as the real part of the eikonal which is

normally used in conventional ray tracing. This code was used to calculate the gaus-

sian propagation of the optical antenna system in PBX-M plasmas. Fig. 323 shows

the propagation of the gaussian beam in vacuum, and in a typical high-beta Ion

Bernstein Wave (IBW) heated PBX-M plasma. The density profile for this plasma

is shown in Fig. 324. The off axis shift of the magnetic surfaces and the density

profile in these figures is the high-beta Shafranov shift (Chapter 4 Fig. 3-23(a is

basically the same gaussian spread of Fig. 318. The effect of the plasma refraction is

to significantly diverge the beam as it passes the center of the plasma. This indicates

that the resolution of the diagnostic is considerably larger in that region.

A worrisome consequence of this unexpectedly large gaussian spread is that the

beam appears to illuminate an area larger than the size of the viewing dump (15 x

15 cm) on the edge of the plasma, and therefore, reduce the effectiveness of the dump.

However, this is not a major problem for the following reasons: The central density

no = 77 x 1013CM-3 and peakedness of the density profile in Fig. 324 are the highest

achieved in PBX-M and corresponds to the worst case scenario as far the diagnostic

is concerned!). Even in this case however, the value of w = 95 cm at the plasma edge,

gives 75% of the gaussian beam power (see Eqn 32) being incident on the viewing

dump. Also the refractive spread of the gaussian beam is expected to be less in the

toroidal direction than in the vertical direction due to smaller density gradients in

the path length of the toroidally refracted rays. Another important aspect to be

considered is that an actual PBX-M plasma with elongation of 1.5 will have smaller

density gradients in the vertical direction, and therefore cause less refraction than

the circular case of Fig. 3-23(b). Altogether, we estimate that more than 95% of the

gaussian beam power will be incident on the viewing dump for majority of PBX-M

plasmas.

Page 80: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

80 CHAPTER 3. DESCRIPTION OF EXPERIMENTAL SYSTEMS

(a)

TSLN

120 140 160 180 200 220

R [cm]

(b)

_f.SLN

120 140 160 180

R [cm]

200 220

Figure 323: Gaussian pattern of the optical antenna system in:high-beta PBX-M plasma.

(a) vacuum; (b)a

Page 81: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

3.3. ECEFLUCTUATIONMEASUREMENTSONPBX-M 81

C�-.E0

co!"R

C

130 140 150 160 70R (cm)

180 190 200

Figure 324: PBX-M plasma density profile used in the gaussian beam computation.

Optical Alignment

The optical antenna system alignment is crucial to the signal level and precision of

the diagnostic. There are two important alignments for the optical antenna system.

The first alignment is that of the horn antenna, so that it views the plasma on the

midplane of the tokamak. This was achieved using an alignment He-Ne laser at the

receiver end of the waveguide. The waveguide system was aligned so that the laser

beam traveling along the center of the waveguide and reflected from the Miter bend

and the mirror would pass on the midplane of the machine and illuminate the center

of the viewing dump. The second aignment is that of the waveguide system in the

major radial direction (perpendicular to the toroidal B-field). This is the necessary

condition discussed in chapter 2 of ECE propagation perpendicular to the B-field.

This alignment also ensures maximum TE11 transmission of the X-mode (vertical

E-field) radiation in the waveguide. The radial alignment was achieved by carefully

centering the radial section of the waveguide run between the two neighboring TF-coil

casings.

Page 82: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

CHAPTER 3 DESCRIPTION OF EXPERIMENTAL SYSTEMS82

NX0C

>10COD:3U(D

U.

140 160 180 200Major Radius [R in cm]

Figure 325: The third harmonic ECE coverage of a 1. 55 Tesla PBX-M plasma witha 110-140 GHz Receiver.

3.3.2.5 Receiver Design Considerations

To enable the radiometer to detect third harmonic ECE from PBX-M plasmas oper-

ating in the B=1.3-1.7 Tesla range, the receiver needs to be sensitive in the frequency

band 110-140 GHz. The large aspect ratio of the PBX-M tokamak (-- 47) provides

reduced harmonic overlap and therefore good spatial coverage of the plasma on the

ECE third harmonic (Fig-3-25).

The spectral resolution of the radiometer should be chosen to optimize the radial

resolution and the statistical photon signal to noise ratio. The radial resolution of

the ECE diagnostic is the sum of the radial width of the relativistically broadened

emission line shape (discussed in sections 22.2 and 22.5) and the width due to the

spectral resolution of the receiver. The width due to relativistic broadening, as we

shall see later, is 12 cm for PBX-M plasmas with electron temperatures 1.0-1.5 keV.

The gradient of the third harmonic emission frequency (Fig.3-25) is approximately

750 MHz/cm. A 750 MHz bandpass filter gives a radial resolution -_ 1cm. It also

provides the diagnostic with the desired signal level and signal to noise ratio (this will

Page 83: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

3.3. ECEFLUCTUATIONMEASUREMENTSONPBX-M 83

be discussed later in this chapter)-

It is desired that the time resolution of the diagnostic be < 4s so that plasma

fluctuations up to MHz can be resolved.

Choice of Receiver Architecture

Several different heterodyne receiver architectures have been previously used for

measuring cyclotron emission from plasmas. All of these systems are capable of

covering the 110-140 GHz frequency range with < GHz spectral resolution and with

1 ps time response. The three most basic receiver architectures and their suitability

for fast ECE fluctuation measurement are discussed here.

The first of these receiver architectures uses a fixed frequency local oscillator

and a wide bandwidth (up to 40 GHz) mixer to produce a wide IF band. The IF

band is then divided in to several frequency channels using IF bandpass filters. A

schematic of this architecture is shown in Fig. 3-26(a). This is the same type of

receiver as the JET heterodyne multichannel receiver introduced in section 32.2.2.

The main characteristic of this design is that it can simultaneously detect ECE at

several frequency channels. This is essential for the analysis of the ECE fluctuations

discussed in chapter 2.

The second type of receiver shown in Fig. 3-26(b) uses a single narrow band IF

section (-- 500 MHz) and a swept frequency local oscillator (usually a backward-wave-

oscillator (BWO)). This type of heterodyne receiver has been used on TFTR 12] By

sweeping the local oscillator, the receiver can detect radiation over a wide bandwidth

(tens of GHz). However, the sweep period of the BWO is limited to ms. This

limitation makes the design unsuitable for detection of fluctuations with frequencies

above kHz

The third type of heterodyne receiver uses a narrow IF bandwidth (-- 500 MHz)

and an array of Gunn diode local oscillators at different frequencies. Radiation can be

detected at different frequencies by switching between the different local oscillators.

A system of this type has been used in THOR and a schematic is shown in Fig. 3-

26(c). This system is also limited by the millisecond switching transients and is not

suitable for fast fluctuation measurements.

The architecture best suited to the measurement of fast (up to MHz) ECE

fluctuations is the system with the fixed frequency local oscillator and the wide IF

band. Such a receiver enables ECE from plasma at several adjacent radial locations

to be measured simultaneously.

Page 84: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

84 CHAPTER 3. DESCRIPTION OF EXPERIMENTAL SYSTEMS

BandpassFilter Detector

Mixer IF Amplifier

PowerDivider

(a) Multichannel, wide band IF, fixedfrequency local oscillator.

LocalOscillator

Low passPiltarMixer IF Amplifier

el, narrow IF, sweepable)r frequency.

Low passMItar - - -

el, narrow IF, multiple)rs.

Variable FrequencyLocal Oscillator

Mixer IF Amplifier

Local Oscillators

Figure 326: Three different heterodyne receiver architectures.

Page 85: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Channel No. Frequency (GHz) 1 112.85

2 114.81

3 116-89

4 118.925 121.02

6 123.00

7 124.978 126.97 1

3.3. ECE FLUCTUATION MEASUREMENTS ON PBX-M 85

Table 34: PBX-M ECE receiver frequency channels. Frequencies listed here are thecenter frequencies of the channels measured by a D-band frequency-meter.

3.3.2.6 Heterodyne Receiver Description

This section describes the PBX-M heterodyne receiver and its individual components

in detail. The receiver was designed to have a fixed frequency local oscillator at -_110

GHz, and an ultra-wideband 2-27 GHZ) mixer. A multiplexer was used to divide this

IF band into three IF sub-bands for amplification. A combination of power dividers

and IF bandpass filters were employed to divide the 28 GHZ and 18 GHz IF sub-

bands into frequency channels each with a bandwidth of 750 MHz. The 18-27 GHz

sub-band was not developed due to lack of funds. Fig. 327 is a schematic of the

heterodyne receiver.

The local oscillator was tuned (by setting the power supply voltage) to 110.25

GHz. This frequency was confirmed by measurement using a calibrated frequency-

meter. The center RF frequencies of the channels of the receiver were measured and

are listed in Table 34. This measurement was performed using a 110-122 GHz, and

a 122-129 GHz tunable Gunn diode oscillators (from TFTR X-mode reflectometry

diagnostic) to launch RF, which was measured by the radiometer. The Gunn diodes'

frequencies measured by a D-band (WR-7) frequency-meter, were varied over the

range of 110-129 GHz. The response of each channel of the receiver was recorded

versus the frequency. Fig. 328 shows the spectral response of channel to frequency

between 116-126 GHz.

The channel frequencies (in Table 34) are slightly different from the values ob-

tained by adding the center frequencies of the IF bandpass filters 2.5 GHz 45 GHz,

etc., see Fig. 327) to the frequency of the local oscillator 110.25 GHz). This may

Page 86: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

86 CHAPTER 3 DESCRIPTION OF EXPERIMENTAL SYSTEMS

WaveguideHPF

1 26 GHz

110GHzGunn Oscillator

MIraqi

U::*�

L

IF Arnplifie

dB

Mixer

oerders

(GHz)VIHZpass

,Dris

MHziers

) Hzass Filters

le Bandwidthpass Filters

'hannelg to DigitalnvArtAr-,

Figure 327 A schematic of the PBX-M heterodyne receiver.

PBX-MHeterodyne

Receiver

3-Way Multiplexer

Page 87: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

3.3. ECEFLUCTUATIONMEASUREMENTSONPBX-M 87

Channel 5u

SC0.0w.EwCEm. -20

116I I I I I I I

118 120 122Frequency (GHz)

124 126

Figure 328: Spectralresponse of channel 5. The fluctuations in the center of the peakare due to the Gunn oscillator.

Page 88: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Desired Receiver Coverage

4co

..................

.................... .. .......... .

..............I....................

...................I

............................................

................. ................

..... ............ ..................................................... .... ............................. ................ .................. ........ ... ......... ....................... ........... .................................... ........................................................... ....................................... ................... ...........................................II..... ................. ... ............ ..........................I....... ...... ................................................I........... I-- .......................................................................................................................................... ........................................ .............................................................. . .. .................... . .............. .......................................... ...I........................................ ...................................I............................................................................ . ............................................... ..........................

CIIAPTER 3 DESCRIPTION OF EXPERIMENTAL SYSTEMS88

250

200

Na:0.9

>10Ca)CrTU_

150

100

50

0180 200140 160

Major Radius [R in cm]

Figure 329: The radial coverage of the radiometer for Bo = 1.55 Tesla.

be due to the sght errors in the calibration of the frequency-meter.

With the frequency range of 112-127 GHz, the radial coverage of the receiver for

plasmas with Bo = 14 - 16 Tesla is approximately 20-25 cm in the outer part of the

plasma cross-section. Fig. 329 shows the coverage of the radiometer for a Bo = 1.55

Tesla plasma.

The radial resolution of each channel is the sum of the radial width of the rela-

tivistically broadened emission line shape and the radial width corresponding to the

pass-band of the IF filter. The radial width (figures 22 and 24) due to relativistic

broadening is 17]AR = R (m-- T (3.7)

MC2)

where m is the harmonic number and T is the electron temperature. AR is 12 cm

for typical central electron temperatures of 1.0-1.5 keV. The 750 MHz pass-band of

the IF filters gives radial width of approximately cm in the plasma (section 33.2.5),

so the total radial resolution of each channel of the receiver is 23 cm.

The instrumental sensitivity of the radiometer to fluctuations in ECE is limited

Page 89: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

3.3. ECE FLUCTUATION MEASUREMENTS ON PBX-M 89

by photon statistics (in the thermal limit of detection) to 53]

AIee B,,, 1/27 (3.8)Lee Bif

where Bf is the IF bandwidth, and B, is the video bandwidth. For an IF bandwidth

of 750 MHz and video bandwidth of 500 kHz, the sensitivity of the radiometer is

-_3%. The sensitivity of the radiometer refers to the ratio of the minimum detectable

level of fluctuations (level of thermal noise) to the DC value of I,,,. Autocorrelation

techniques discussed in section 23.3.2 will be used to greatly enhance this sensitivity

by pulling out coherent fluctuations with amplitudes far below the noise level, from

the uncorrelated thermal noise. The sensitivity enhancement of this "correlation

radiometry technique" was shown in section 23.3.4 to be limited by the integration

time (i.e. number of averages in the Welch estimation). The integration time in

our experiments is limited either by the available data acquisition memory or by the

amount of time a coherent fluctuation (e.g. a MHD mode) stays around in the plasma.

Receiver Components

This section describes the individual components of the receiver from the RF input

end to the video output in detail.

As explained in section 32.2.2, RF filters are used in heterodyne receivers to

remove one of the two side bands, and therefore remove the ambiguity in the frequency

folding around the local oscillator frequency. For the PBX-M heterodyne receiver,

a waveguide cutoff high-pass filter was designed to cut off the lower side band of

the mixer. The waveguide high-pass filter uses the cutoff property of rectangular

waveguides. A rectangular waveguide with dimensions a and b, (a > b) has a cutoff

frequency 54]

f-tof f (3.9)2 a VA-,E

corresponding to the lowest frequency (TEo) mode that can travel in the waveguide.

Our cutoff filter was designed to have dimensions a = 136 mm and b = a/2 = 068

mm, corresponding to a cutoff frequency of 110 GHz. The roll-off characteristic of the

waveguide filter above its cutoff frequency is determined by the attenuation (in the

waveguide walls) of the radiation with different frequencies. Attenuation of radiation

Page 90: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

. . . . . . . . . . . . . . . . . . .

I I I I I I I I I , .

90 CHAPTER 3 DESCRIPTION OF EXPERIMENTAL SYSTEMS

Wavequide Cutoff Filter0

-1

J I

j

I

M'D

C0(nW.E(n

P

-2

.3

-4

1105

112 114 116Frequency(GHz)

118 120

Figure 330: Waveguide cutoff filter attenuation.

with frequency f in a waveguide with dimensions a and b is [551

Attenuation (nepers/meter = (3.10)

where R, is the surface resistance of the waveguide wall and is related to the conduc-

tivity, a (in mohs/meter) through

.5 Ir A01

(3.11)

The waveguide filter was designed to be 5.44 mm long to achieve a sharp roll-off.

Fig. 330 is a plot of the calculated attenuation (based on Eqn. 39) for a copper

waveguide filter with our dimensions. The filter roll-off is sharp and the 3 dB point is

predicted to be very near 110 GHz. The waveguide filter was built to our specifications

(by Custom Microwaves Co. of Colorado). The waveguide filter was then tested using

the tunable 110-122 GHz Gunn diode oscillator. Fig. 331 shows the results of this

test. The figure shows the measured filter attenuation (insertion loss) for frequencies

R 1 2 f,,t,,f f2-8 =__ +

A 1 fcut.f f2 -b a fIE ( f )

Page 91: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

3.3. ECE FLUCTUATION MEASUREMENTS ON PBX-M 91

- Cutoff Filter Insertion Loss0

-5

coS -loWW0_jC00 .15W_

-20

-25110 112 114 116 118 120

Frequency(GHz)

Figure 331: Measured cutoff filter attenuation vs. frequency.

110-120 GHz. The measured 3 dB point is at 112.65 GHz.' This is slightly different

from the predicted value of 110 GHz. This difference can be attributed to slight errors

(2% in 138 mm) in the manufacturing process.

The receiver local oscillator is a 110 GHz fixed frequency Gunn diode oscillator

with 20 mW output. It requires a 0 volt bias potential and draws 180 mA A 1 dB

waveguide directional coupler is used to couple the RF and the local oscillator waves

before entering the single ended mixer. The mixer is a tunable, 227 GHz bandwidth

single-ended mixer (Millitech MXW series). It has a conversion loss (ratio of RF

power in, to IF power out) of 10-17 dB in the 110-137 GHz range. The mixer is

biased with 15 volts and draws zero current.

A passive solid-state multiplexer is used to divide the IF band into three sub-

bands. Gain in the IF sub-bands are provided by IF amplifiers using metal/semiconductor

field effect transistors (MESFETS). The amplifier for the 28 GHz sub-band has a

gain of approximately 35 dB and a relatively high noise figure (the signal-to-noise

'This is in agreement with an independent measurement by millitech which put the 3dB pointof the filter at 112.05 GHz, considering that our earlier measurements indicated that the frequency-meter may be high by 500 MHz.

Page 92: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

92 CHAPTER 3 DESCRIPTION OF EXPERIMENTAL SYSTEMS

ratio at the input to the the signal-to-noise ratio at the output) of -_ 5.5 dB. Theamplifier for the 18 GHz sub-band has a gain of approximately 44 dB and a 37 dB

noise figure.

750 MHz bandpass filters are used to divide the IF sub-bands into individual

channels. The IF filters have out-of-band rejection ratios > 32 dB and insertion losses

in the range of 02-1.3 dB. Low barrier Schottky (LBS) diodes were used as square law

detecting elements as they can operate effectively up to 27 GHz with submicrosecond

response times.

The video amplification and filtering stages, and the data acquisition modules

are exactly the same as the JET radiometer upgrade system discussed in section

3.2.3. The radiometer data acquisition was integrated into the PBX-M central data

acquisition and control system.

Receiver Calibration and Testing

As we saw in section 23, the study of ECE fluctuations from plasma instabilities

involves measurement of relative fluctuations in the electron cyclotron

emission. Therefore, an absolute or relative power calibration of individual channels

is not necessary. However, a power calibration of individual receiver channels was

performed in order to gain a better understanding of the ECE profile in the plasma.

The power calibration was performed using a wideband 600'C stable thermal

source as a black body emitter. The radiation from the source was detected on

individual channels using a chopper and a lock-in amplifier. A more traditional

calibration scheme using a piece of liquid nitrogen soaked eccosorb was not adequate

for measuring weak signal levels of the channels in the 28 GHz IF sub-band (channels

1-3). The result of the measurements with the 600'C source is listed in Table 35 It

is important to note that in these measurements the black body radiation from the

hot source was directly coupled to the horn without going through the lens or the

quartz window.

Noise temperatures of the two sub-bands of the of the receiver were measured

after the IF amplifiers using the difference in signal levels between a liquid nitrogen

source and a room tempreture source. The noise temperature for the 28 GHz band

and the 18 GHz band were 39000 K and 51000 K 3.4 eV and 44 eV) respectively.

Another important check of the radiometer system is a test for possible cross-

talks between receiver channels. Cross-talk between different channels, either from

inductive pickup in the video-stage, or from frequency leaking in the IF stage, can

Page 93: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Channel No. signal level (pV)1 1.0 0.12 2.0 ± 0.13 4.6 ± 024 16.5 ± 55 19.8 ± 0.56 9.5 ± 0.57 13.0 ± 5

8 55. ± 5

3.3. ECEFLUCTUATIONMEASUREMENTSONPBX-M 93

Table 35: Response of receiver channels to a 600'C black body source.

introduce difficulties in interpreting fluctuation signals from different radial locations

in the plasma. As mentioned in section 23.3.5, cross-correlation of the signals from

different spatially localized channels of the radiometer gives information about the

radial extent and propagation of observed fluctuations in the plasma. A small amount

of cross-talk between channels can appear as a false peak in the cross-power spec-

tra. The cross-talk check of the video stage was performed by sending strong high-

frequency (i.e., 10-500 kHz) signals (from a signal generator) through the input of a

video amplifier and cross-correlating the signal from that channel with others. This

test was performed for each channel of the receiver and no cross-talk was found. The

cross-talk check of the IF system was performed using a tunable 110-122 GHz Gunn

diode oscillator. The Gunn diode was tuned for the center RF frequency of one of the

receiver channels and its output was modulated using a chopper. The receiver, aided

by a lock-in amplifier, was then used to view this RF output on all other channels. No

cross-talks (within 60 dB dynamic range of the lock-in amplifier) were found between

the channels.

Page 94: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

94 CHAPTER 3. DESCRIPTION OF EXPERIMENTAL SYSTEMS

Page 95: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Chapter 4

Ideal A4HD Stability

4.1 Introduction

In this chapter a brief review of MHD equilibrium and stability will be presented

and discussed. The aim of this chapter is to provide a familiarity with the theory

of the predicted MHD activity in the discharges which are investigated using ECE

fluctuation measurements. The treatment below is based on references 191, 21]

and 56] which are excellent sources of more detailed information on the theory of

MHD equilibrium and stability.

4.2 Ideal MHD Model

The most successful theoretical approach in studying the effect of magnetic geometry

on the global equilibrium and stability properties of a tokamak plasma is the Ideal

Magnetohydrodynamic (MHD) model. The ideal MHD equations are 19]

,9P + V PV = (4.1)at

p av + p(v )v = -Vp + J x B (4.2)at

E + (v x B = (4-3)

d p= 0 (4.4)

dt p-t

V - = (4.5)

V x = zOJ (4-6)

95

Page 96: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

96 CHAPTER 4 IDEAL MHD STABILITY

Z

R

Figure 41: Coordinate system used to describe toroidal equilibrium.

V x E_ - B (4.7)at

where p=pressure, J= current density, B=magnetic field, E=electric field, and -Y=ratio

of specific heats. The first three equations are derived by taking the appropriate mo-

ments of the plasma kinetic equations. Eqn. 41 shows mass conservation for the

plasma. The equation of motion for the plasma fluid is given by Eqn 42. Eqn 43 is

a specialized form of Ohm's Law for a plasma with zero resistivity. It is this assump-

tion of zero resistivity which makes the ideal MHD model "ideal." The assumption

that the plasma evolves adiabatically is expressed by the equation of state 44. Fi-

nally, Eqn. 45, sometimes referred to as Gauss's law for magnetism, 46, Ampere's

law, and Eqn 47, Faraday's law, complete the set.

4.3 MHD Equilibrium and Figures of Merit

In order to study the MHD stability of a plasma, it is important to first characterize

the MHD equilibrium. The conditions for MHD equilibrium in a toroidal geometry

(Fig 41) separate into two parts. First, the magnetic configuration should provide

radial confinement (i.e., radial pressure balance) in the minor radial direction ( in

Fig. 41). Second, the configuration must compensate the outward expansion force

in the major radial direction (i.e., toroidal force balance) inherent in all toroidal

geometries 19]. In a tokamak, the MHD equilibrium is achieved by a combination of

external toroidal and vertical magnetic fields and an internal poloidal field generated

Page 97: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

4.3. MHD EQUILIBRIUM AND FIGURES OF MERIT 97

Figure 42: Magnetic flux surfaces are a set of nested tori on which the plasma pressureis constant.

by the plasma current itself.

For a plasma in equilibrium, d1dt -* 0 and the ideal MHD equations reduce to

the magnetostatic equationsVP = J x B (4.8)

- = (4.9)

V x = 0J. (4.10)

Eqn. 48 represents a balance between the plasma pressure force and the magnetic

force, while equations 48 and 49 are the time independent forms of Maxwell's equa-

tions.

Taking the scalar (dot) product of Eqn 48 with and J yields the relations

B V = , (4.11)

J VP = . (4.12)

Eqn. 411 shows that the magnetic field lines lie on (and never cross) constant

pressure surfaces. These surfaces are also called magnetic flux surfaces. Eqn. 412

shows that the current also flows on these constant pressure surfaces. In a tokamak

geometry, the magnetic flux surfaces are nested tori (Fig. 42). The innermost of

these surfaces is a closed curve called the magnetic axis.

Although the complete description of a tokamak plasma equilibrium involves de-

termination of the internal profiles and the boundary shape, certain global quantities

are often evoked to convey the general characteristics of the equilibrium. The first

such quantity is the plasma beta ), which serves as a "figure of merit" describing

the efficiency of the magnetic field in confining the plasma. The toroidal beta is given

Page 98: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

98 CHAPTER 4 IDEAL MHD STABILITY

by2po (p) (4.13)

Bo2

where (p) is the volume averaged pressure of the plasma, and Bo is the value of the

vacuum toroidal magnetic field at the major radius (Ro). Similarly, the poloidal beta

is defined as2 AO

13P f3 2 (4.14)

where Bp is the flux-surface average of the poloidal magnetic field at the boundary.

For tokamaks, t is usually on the order of a few percent and p is on the order of

unity.

The magnetic field in a plasma is altered from its vacuum configuration by the

presence of finite plasma pressures and currents. This is particularly important

for ECE measurements where the localization is determined by the magnetic field

strength. Plasmas with Op < are said to be paramagnetic: the presence of the

plasma adds to the magnetic field. Plasmas with,3p > are said to be diamagnetic:

the presence of the plasma causes the magnetic field to be less than its normal vacuum

value 19]. Another important effect of the plasma beta is the shifting of the magnetic

axis from R. This is referred to as the "Shafranov shift." The Shafranov shift is

due to the combined effects of the toroidal force balance condition of the tokamak

equilibrium and the finite plasma pressure.

The second parameter that is important for the study of tokamak equilibria is the

safety factor q, defined as

q = 1 Bt d1l (4.15)2ir RBp

where the path of integration is along the flux surface in the poloidal direction, and

Bt is the toroidal magnetic field. Each helical magnetic field line has a value of q

which is a measure of the pitch of the field line. The q of a field line is the number

of turns it makes around the torus (on its associated magnetic surface) during one

rotation in the poloidal direction.

A quantity closely related to q is the kink safety factor, q*, defined as

2ira 2qBOq = - (4.16)

AOR010

where Bo and are the field and current on axis, a is the plasma minor radius,

,q = A/7ra' is the plasma elongation, and A is the plasma cross-sectional area. q is

Page 99: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

4.4. MHD STABILITY 99

a measure of plasma stability against modes driven by toroidal plasma currents (i.e.,

kink modes, section 44).

4.4 MHD Stability

The ideal MHD odel provides a basis for the study of plasma instabilities. The most

tractable method of MHD stability analysis involves perturbations from MHD equi-

libria sufficiently small that quadratic terms in the MHD equations can be neglected.

This technique of linear stability analysis is well-suited for determining the boundary

between stable and unstable tokamak operation, and for identifying the structure of

the unstable modes. In the following we present a well-known method of linear ideal

MHD stability analysis, called the Energy Principle, which is widely used in studying

the stability of tokamak plasmas.

4.4.1 The Energy Principle

Consider a static equilibrium (vo = 0) that satisfies the equilibrium equations 4.8-

4.10, and assume that this equilibrium is given an arbitrarily small perturbation. All

quantities in equations 4.1-4.7) can therefore be linearized about their equilibrium

values

Q(r, t = Qo(r) + Qj(r, t), (4.17)

where Q is the equilibrium value and I Qo I < is a small first-order perturbation.

Substituting linearized expressions of this form for B, v, p, and p, and defining a

displacement vector a� (4.18)at

we obtain the momentum equation

X� (4.19)at,

The force operator

F(� = J x fj) + (, x B - VP, (4.20)

can be written as

F(�) (V x B) x Q + _(V x Q) x B + V� - Vp + -ypV (4.21)I-Lo Po

Page 100: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

CHAPTER 4 IDEAL MHD STABILITY100

with Q =_ f3 = V x x B) being the linearized perturbation in the magnetic field.

The vector defined in Eqn. 418 represents the displacement of the plasma away

from its equilibrium position, and for a tokamak geometry it can be written as

�(r = t(r) exp [ i (m + no) ], (4.22)

where n and m are called the toroidal and poloidal mode numbers, respectively, of

the perturbation.If the time-dependent perturbation is expressed in the form �(r, t = �(r) exp(-iwt),

the equation of motion (Eqn 419) takes the form

- 2p = F�). (4.23)

This equation which represents the normal-mode formulation of the linearized MHD

stability problem. It can be solved as an eigenvalue problem, with the appropriate

boundary conditions, for the eigenvalue W2 . An eigenvalue > gives stable oscil-

latory solutions, whereas 2 < implies an imaginary frequency, = ±iwi, with a

negative sign corresponding to instability.

The linearized. eigenvalue equation (Eqn. 423) can be cast into the variational

form2 (4.24)

where

6WW' 6 F(�) dr, (4.25)2

and

K(� ItJ2 dr. (4.26)2

The quantity 6W(�*, represents the change in potential energy associated with the

perturbation and is equal to the work done against the force F�) in displacing the

plasma by an amount �. The quantity K is proportional to the kinetic energy. From

this variational form it is possible, because of the conservation of energy, to derive

an Energy Principle. The Energy Principle states that a plasma is stable under ideal

MHD if and only if the change in potential energy

6W(t*' > (4.27)

for all possible displacements t(r).

For the case of a plasma surrounded by a conducting wall and separated from it

Page 101: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

4.4. MI-ID STABILITY 101

by a vacuum region, the Energy Principle as defined by Eq. 4.27) can be expressed

as the sum of surface and vacuum boundary terms, and a plasma (fluid) term. The

Extended Energy Principle can thus be written as

b = WF + 6S + 6V, (4.28)

where

I Q_L 12 B2 r.12 + /PI _ 126WF dr JV-�j +2�1

2 f go Ao Vsound wave

hear Alf ven compressional Alf ven

2(t Vp)(r- - t* J11(t* x B QL (4.29)L I -Bpressure driven current driven

B 212Ws = 1 dSjn-t, n- V + (4-30)2 2go

126WV = 1 dr JB, (4-31)

2 2AO '

The plasma contribution, WF, has been written in the "intuitive form" suggested by

Furth et al. 571. The I and 11 signs refer to components parallel and perpendicular

to B, and r. is the magnetic curvature defined in section 23.2. The first three terms

correspond to shear Alfv6n waves, compressional Alfv6n waves (i.e., magnetosonic

wave for l < ), and sound waves, respectively. These terms are positive definite

and are therefore stabilizing. The last two terms, however, representing pressure

driven and current driven modes, can be destabilizing.

Application of the Energy Principle to the study of MHD stability in a compli-

cated 3-dimensional geometry as found in tokamak experiments are, in general, done

numerically.

4.4.2 Ballooning Modes

The class of predicted instabilities in the high-beta plasmas investigated in this thesis

has as the dominant destabilizing term in the potential energy integral the one pro-

portional to Vp. These instabilities are referred to as pressure-driven instabilities and

are divided into two categories: interchanges and ballooning modes. These modes are

Page 102: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

102 CHAPTER 4 IDEAL MHD STABILITY

VPZ V713

/11 N

Figure 43: Top view of a toroidal section of a tokamak plasma, showing region ofstabilizing curvature on the inner side and destabilizing curvature on the outer side.

caused by the tendency of the pressure to push the plasma and the field lines outward.

The interchange perturbation is a perturbation that interchanges two adjacent

flux tubes. If, during an interchange caused by the pressure, a field lines becomes less

bent, it releases some of its potential energy to fuel the instability. This happens when

the field lines are bent towards the plasma. The field line in this case is said to have an

unfavorable curvature. On the other hand, if the field line curvature is bent away from

the plasma (r. and Vp are in opposite directions), the system will be stabilized (i.e.,

have favorable field line curvature). The concept of favorable curvature is expressed

mathematically in the pressure-driven term of the potential energy integral, namely

-2(� Vp)(r. If r. and Vp are in opposite directions, the term is positive and

stabilizing.

In a tokamak, magnetic curvature is stabilizing on the inner (good curvature)

side of the torus and destabilizing on the outer (bad curvature) side of the torus

(Fig. 43). At low plasma pressures the average effect is stabilizing, provided that

the Mercier [58] criterion, O > 1, is met. However, if the pressure gradient is too

high (as in a high beta plasma), the perturbation can be concentrated in the region of

bad curvature (Fig. 44). This "ballooning" nature of the perturbation increases thepressure-driven destabilizing contribution to WF. If this increase is not compensated

for by the inherent line bending of the perturbation, the mode will be unstable.

The ballooning instability is very complex, but the conditions for ballooning can

be intuitively understood from the following simple picture 56]. The destabilizing

Page 103: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

4.4. MHD STABILITY 103

Figure 4-4: Ballooning mode displacement concentrated in the bad curvature region.

energy available from the pressure gradient is

6WPg 1 62 (4.32)R

The energy required for line bending is

WM - k 2(Bt2 /go) 62 (4.33)11 I )

where 2,xlkll characterizes the length parallel to the field over which 61, varies (i.e.,

its parallel wavelength). From the definition of q, k1l is on the order 27r/(27rRq) =

11qR. The ballooning modes become important when the pressure gradient dp/dr is

sufficiently large so that 6Wpg - WA, or

dp B 2/po- - I-, - 0 (4-34)

dr q2R

2This corresponds to an ordering of Elq , where 6 _= o1RO is the inverse aspect

ratio.The analysis of stability against ballooning modes is normally conducted in the

limit of large toroidal mode number n. The terms in 6WF are expanded in terms of n

and arranged in increasing orders of I/n. The stabilizing terms in 6W corresponding

to the compressional Alfv6n waves and the sound waves, and the destabilizing current

driven term can be shown to be of higher orders of 1/n [21]. The low-order terms

are the shear Alfv6n wave (line bending) and pressure-driven terms discussed above.

Minimization of 6W in the limit of large n (i.e., most unstable ballooning modes)

Page 104: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

104 CHAPTER 4 IDEAL MHD STABILITY

leads to an integrodifferential equation 59], which can be solved at each flux surface

to determine the instability boundary for ballooning modes. This solution is usually

obtained by numerical computations. A simple model which allows analytical in-

sight and brings out important results about the behavior of ballooning modes is the

large aspect ratio tokamak with circular flux surfaces. For this model, the stability

boundary equation can be written as 56]

d 11 + s - asinO)2] dX a cosO + sinO(s - asinO)] X = , (4-35)dO dO

where X RB`p�l and

S = r dq (4-36)q dr'

a 2poRq 2 dp (4.37)

B2 dr'

The s is magnetic shear and a is a measure of the pressure gradient responsible for

the instability (see Eqn 434).Eqn 435 has been solved to determine the stability boundary in (s, a) space. The

results are given in the ballooning stability diagram (also called the (s, a) diagram)

shown in Fig. 45. At a fixed value of shear, the system is stable for small pressure

gradients. As the pressure gradient (i.e., a) increases, the perturbation becomes more

ballooning in nature and eventually, at sufficiently high a, the destabilizing contri-

bution from the bad curvature region overcomes the shear and the system becomes

unstable. As expected, the maximum stable value of the pressure gradient increases

as the shear is raised.

Each point in the , a) diagram corresponds to a particular flux surface in the

plasma. Therefore, a complete plasma configuration is represented by a line in this

diagram.

A surprising feature of the (s, a) diagram is the existence of a second region of

stability which occurs at high a or pressure gradient. This is a result of the toroidal

modification of the equilibrium at high 56]. Achieving the high beta region of

second stability, if possible, would be a major step towards improving the confinement

of tokamak plasmas. It has been shown that the low-beta first stability region becomes

contiguous with the high-beta second stability region in a tokamak with bean-shaped

flux surfaces (like PBX-M), and with values of O) above unity 60, 61] (see Fig. 46).

It has been shown that a stable path to second stability can be achieved by adjusting

Page 105: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

4.4. MHD STABILITY 105

2.0

S

1.0

n

0 0.5 1.0

0C

Figure 45: Ballooning mode stability diagram for circular flux surfaces.

the pressure and current (i.e., q) profiles in an indented plasma 9].

4.4.3 Beta Limit

As mentioned before, for a detailed analysis of the restrictions that ideal MHD insta-

bilities impose o tokamak confinement, the MHD stability equations must be solved

numerically A number of independent results of numerical ballooning stability anal-

yses were unified and expanded in an optimization study by Sykes et al. 62]. In this

work, an attempt was made to calculate the tokamak configuration with the maxi-

mum stable Ot. The result is a remarkably simple limit for the maximum achievable

,3t called the Sykes limitOt = 0044 Io (4-38)

aBo

where Io is in MAmps, a is in meters, and Bo in Tesla. An alternate form of this limit

can be written as

,3t = 022 (4.39)q*

An interesting point about this limit is that it varies linearly with elongation

n, suggesting that higher can be achieved in elongated plasmas. The limit also

Page 106: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

106 CHAPTER 4 IDEAL MHD STABILITY

zu -

I'll-,ZRI-, 10 Qc�-

0 +0.0

First StabilityI

0.11

0.21

0.3 0.4

Indentation

Figure 46: Regions of first and second stability for indented plasmas with q(a = 42.Note that at sufficiently high indentations, the plasma pressure is not limited by theballooning instability.

Page 107: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

4.4. MHD STABILITY 107

varies linearly with 11BO, predicting higher achievable beta in high current, low field

plasmas. However, these regimes of operation can be limited by stability criteria (e.g.

the Mercier criterion) set by modes other than ballooning modes.

A full numerical optimization study of stability against all predicted ideal MHD

modes was carried out by Troyon, et al. 63]. Of the predicted instabilities studied,

they found that the n=1 external (i.e., resident on a rational surface outside of the

plasma) current-driven kink mode introduced the most restrictive limit on . The

Troyon beta limit is given by

ot = 0028 Io (4.40)aB0

or alternatively

ot = 0. 14 (4.41)q*

This limit is identical in form but more stringent than the ballooning criteria given

by the Sykes limit.

A large part of the experimental emphases in both JET and PBX-M tokamaks

has been dedicated to the study of high beta regimes of plasma operation. This

interest has been inspired by the inherent economic advantage of high beta tokamaks

in providing better confinement for less of the expensive magnetic field strength.

An inevitable consequence of operation in high beta regimes is the occurrence of

the instabilities which we have reviewed in this chapter. The development of the

diagnostic technique described in this thesis was motivated by the need to detect and

study these predicted instabilities in the JET and PBX-M tokamaks.

Page 108: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

108 CHAPTER 4 IDEAL MHD STABILITY

Page 109: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Chapter

Data and Interpretation

5.1 Introduction

This chapter summarizes the results of the ECE fluctuation measurements on JET

and PBX-M. First, the measurements of MHD mode activity in different types of

high-beta JET discharges are investigated. The observed MHD activity is compared

with the theoretical predictions of stability for these discharges. Next, the PBX

experimental conditions and discharges of interest are described, and the observed

MHD activity is investigated.

5.2 Data from JET Experiments

JET is able to investigate a large variety of plasma operating conditions and param-

eters. During the 1991-92 operational period, ECE measurements were taken from

plasma discharges in all of the experimental conditions on JET as part of this the-

sis research. The main emphasis of the measurements was the study of MHD mode

activity in high-beta plasmas. High-beta plasma experiments on JET can be divided

into two categories: high-Ot and high-Op discharges.

High Ot studies on JET were carried out in low toroidal field (Bo < 14 Tesla), H-

mode plasmas heated with high neutral beam injection (NBI) power > 10 Mq). High

Op in JET was achieved in two different regimes: one by operating H-mode discharges

with low current (i.e., low Bp) and high ICRF power in the range 410 MW; and the

other in pellet-fueled H-mode discharges with Bo =2.8 Tesla and combined neutral

beam and ICRF heating. In the following sections, the ECE fluctuation measurements

in each of these high-beta experimental regimes are presented in detail.

109

Page 110: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

110 CHAPTER 5. DATA AND INTERPRETATION

5.2.1 High-ot, Low-Field Discharges

For a given plasma dimension, the power required to reach a beta limit is minimized

by working at low toroidal field and with high energy confinement (i.e., high stored

energy'). This dictates the regimes for the JET high-ot study. ECE fluctuation

measurements were taken on high-,3t, low toroidal field H-mode (igh confinement

mode) discharges in order to investigate the limiting MHD activity near the Troyon

beta limit. Most of these discharges have reached beta values near the Troyon limit.

Those with the highest performance exceeded the Troyon limit before a beta collapse

occurred 64]. In particular, discharge 26236 reached a maximum beta of 6%, which

exceeded the Troyon limit by 20% before the beta collapse. Fast ECE measurements

were made during this shot on channels of the radiometer in the time interval

t = 15.4 sec to t = 16. 1 sec. The fast channels of the radiometer were selected (based

on the vacuum field value) to record X-mode ECE from the third harmonic at the low-

field side of the plasma cross-section (bad curvature region). The second harmonic

was expected to be cut off (by the right hand cutoff) due to the low toroidal field.

The channels acquiring fast data covered the frequency range of 73 to 82.5 GHz.

5.2.1.1 Observation and Analysis

Fig. 5-1 shows some of the parameters for shot 26236 along with the ECE signal from

R = 262 ml. The discharge is heated with 16 MW of NBI. The Ot starts to decline

after reaching its peak value of 6 at t = 15.6 sec and is followed by a sudden beta

collapse through which the plasma loses -_ 10% (0.5 MJ) of its stored energy. The

collapse is recorded by the radiometer channel a a large drop in the ECE intensity.

The beta collapse is coincident with a giant edge-localized mode (ELM) as shown on

the D,, signal in Fig. 52. The confinement enhancement factor H = El -rGwit h rG

the Goldston L-mode scaling) of this H-mode discharge reached 21 before the beta

collapse 641.

The equilibrium flux surfaces (computed by the JET IDENTI) equilibrium code)

immediately before the beta collapse are shown in Fig. 5-3. The paramagnetic effect

of the plasma can be seen in Fig. 54 showing both the equilibrium toroidal magnetic

field, and its vacuum value.

As can be seen in Fig. 53, the magnetic axis has experienced a large Shafranov

shift as a consequence of the high value of the plasma beta. The bunching of the

'In JET, Ro = 296 m and a = 12 m.

Page 111: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Ill5.2. DATA FROM JET EXPERIMENTS

shot 26236

IC

V

0

C

bR

C

E

=34C6-z

E:icd4

2

=i2Cd

C

0. f

-� . �cd 0 4

0.

1&013.0 14.0 15.0 16.0 17.0

TIME (sec)

Overview of JET discharge #26236. The dashed vertical line marks theFigure 5-1:0 collapse.

Page 112: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Da

112 CHAPTER 5. DATA AND INTERPRETATION

8

: 6c 4

2

3

- 2(6

1

2

j1

- IECE(R=2.62 m)

IECE (R=3.62 m)

I I I i I I I I I I I-- I I I15.4 15.5 15.6 15.7 15.8 15.9 16.0 16.1

TIME (sec)

Figure 52: The D (divertor) signal along with signals from two ECE, showing thebeta collapse is coincident with a giant EM.

magnetic field lines on the low-field side, which is a combined effect of the toroidal

force balance and the Shafranov shifting of the magnetic axis, causes on the low-

field side to be substantially different from its vacuum value. In order to determine

the exact radial location of each ECE channel in the plasma the total equilibrium

magnetic field jBt + Bpj profile must be taken into account. Fig. 5-5 shows the third

harmonic ECE frequencies computed with the total equilibrium magnetic field profile.

The peak electron density at t = 15.4 sec was 2 x 10" cm-', not high enough to

cut off the second harmonic ECE. This is shown in Fig. 56. This figure also shows

that the lower frequency channels view the edge of the plasma (on the 3rd harmonic),

where the optical depth is very low. Table 5.1 lists the corresponding radial locations

of the channels in 2nd and 3rd harmonic, and their 3rd harmonic optical depths .

The optically thick 2nd harmonic frequencies which are ot cut-off (corresponding to

channels 16) are viewed together with the 3rd harmonic signals. The low frequency

channels 14 measure only second harmonic emission because their 3rd harmonic

optical depths are very low, and hence do not contribute to the signal. The optical

depths are small due to low T, and n, at the edge of the H-mode plasma. The black-

Page 113: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

5.2. DATA FROM JET EXPERIMENTS 113

2.

2. 0

1. 5

1. 0

0.

0. 0

-O.

I

- 1. 5

-2. 0

-2. 5

2

Figure 53: Poloidal flux contours in the plasma of discharge 26236 at t = 15.83 sec.

Page 114: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

..................... .... ............

.......................................

. . . . . . . . . . . . . I . - . . . - I . . . . . . . . .

CHAPTER 5. DATA AND INTERPRETATION114

2.0

ia B,

im B,-ew9'O.TLL.916-92

1.5

1.0

n , - - - - -100 200 300 400

Major Radius [cm]500

Figure 54:sec.

Vacuum and plasma toroidal magnetic fields in shot 26236 at t=15.83

150

100

P,

a>10a4):3Cra-,U-S2C0Eco

1-0C13

a total

im Bt

50

100 200 300 400Major Radius [cm]

500

Figure 5-5: Thirdvacuum field.

harmonic ECE frequencies for total equilibrium field and toroidal

Page 115: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

5.2. DATA FROM JET EXPERIMENTS 115

150

Nra 100>10C0ZCrTU_

2f.

............

50fCs - - - -

0200 400

Major Radius [cm]

Figure 56: The first three ECE harmonics and the right-hand cutoff for shot 26236.The horizontal dotted lines show the lowermost and uppermost channel of the fastradiometer. Electron density is not high enough to cut off the second ECE harmonic.

Page 116: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Channel No. Frequency 2nd Harmonic 3rd Harmonic T3(GHz) Radius (cm) Radius (cm)

I 73.12 266 v 416 02 73.94 262 v/ 412 0

3 74.76 259 408 04 75.58 257 405 0.0025 76.41 254 402 0.2086 77.23 252 398 0.2837 81.5 239 368 2.3218 82.5 236 362 V 3.460

116 CHAPTER 5. DATA AND INTERPRETATION

Table 5.1: Radial locations, in 2nd and d harmonics, of the fast radiometer chan-nels in shot 26236, and their third harmonic optical depths. The channels andcorresponding radii marked by \/ are used in the data analysis.

body emission on the edge is also negligible due to the low electron temperature (e.g.,

T, for channel 4 is < 100 eV). Channels and 6 view both 2nd and 3rd harmonics

and cannot be used for analysis. The plasma at the 3rd harmonic radii of channels

7 and (see table 5.1) is optically thick for 3rd harmonic ECE, and absorbs the 2nd2harmonic radiation incident on it from the high-field side. The locations viewed by

these channels are therefore the third harmonic radii shown in table 5.1.

The radial resolution of the channels viewing the optically thick 2nd harmonic

from the low-field side (i.e., channels 14) is -_ 30 cm.' The radial resolutions of

the the channels 7 and are larger because their optical depths are not very high,

and therefore the entire emission line is viewed by the channels giving them radial

resolutions of _- 6 cm.

The magnetic coil signals in Fig. 5-1 show an increase in n = 2 and 3 mode

MHD activity before the beta collapse. Fig 57 shows both the DC coupled signal

and the AC fluctuations > 500 Hz) on the ECE channel from R = 262 cm before and

after the beta collapse. The noise which is visible on the lower trace is dominantly

due to statistical fluctuations in the ECE radiation. Its level is proportional to thesignal intensity and therefore falls at the beta collapse. However, note that beginning

approximately 100 msec before the beta collapse, the level of fluctuations on the ECE

2The absorptions are 90% and 97% respectively.3This value takes into account the IF filter bandwidth 250 MHz), Doppler broadening due to

the small antenna pattern divergence angle, and the high optical depth of the second harmonic 651.

Page 117: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

0.8

- 0 6:i,� 0 4

0 2

3 - AECE .. I

--- 2:i

I

fI I I I I I - - - It I I I I I I I I I

15.4 15.6 15.7 15.8 1 5.9 16.0 16.1

TIME (sec)

Figure 57: DC coupled signal and the AC fluctuations on the ECE channel viewingthe plasma at R = 262 cm

signal rises despite the decrease in the signal level. This rise in the fluctuation level is

due to the perturbations caused by the increase in the MHD activity. Fig. 5-8 shows

the power spectrum (up to 10 kHz) of the ECE fluctuation signal at R = 262 cm for

two 20 msec periods, one immediately before the beta collapse and the other long

before 200 msec) the beta collapse. The power spectrum immediately before the

beta collapse shows peaks at 1 kHz, 20 kHz and 30 kHz. These peaks correspond

to toroidal number n = 2 and 3 mode activity. The peaks appear at multiples of

1 kHz because the toroidal rotation frequency of the plasma (measured by charge

exchange spectroscopy) is -- 1 kHz. A perturbation with toroidal mode number n,

therefore, appears as a peak at n x 1 kHz as the plasma rotates toroidally in front of4the antenna. The appearance of of n = 1 2 and 3 MHD modes agrees with the result

'This method of determining the toroidal mode number of a MHD perturbation is not a directmethod and loses its accuracy for high mode number perturbations, or in plasmas that have lowtoroidal rotation velocity such as plasmas that are not heated with neutral beams. The direct way ofmeasuring the n-number of a mode is to make simultaneous measurements on at least two differenttoroidal locations and determine n from the phase difference of the two signals. As we will see later,this method has been applied in the magnetic diagnostics on PBX-M by placing Mirnov coils aroundthe torus on the edge of the plasma.

5.2. DATA FROM JET EXPERIMENTS 117

Page 118: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

118 CHAPTER 5. DATA AND INTERPRETATION

F9

M

00.

9M

0A.

FREQUENCY (kHz)

0 10 20 30 40 50 60

FREQUENCY (kHz)

70 80 90 100

Figure 5-8: The power spectra ofperiods before the beta collapse.

the ECE fluctuations (R = 262 cm) for two 20 msec

Page 119: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

5.2. DATA FROM JET EXPERIMENTS 119

0 10 20 30 40 50 60 70 80 90 100

FREQUENCY (kHz)

Figure 59: The power spectrum of the ECE fluctuations (R =362 cm) before the betacollapse.

from the mgnetics signals in Fig. 5-1. The power spectrum shows another peak at

_- 23 kHz, which was also observed on the soft X-ray signals 66]. This mode will be

discussed later in this section. The spectrum in Fig. 5-8 from 200 msec before the

beta collapse does not show any strong MHD mode activity.

In order to study the spatial extent of these modes, we performed spectral analysis

on the data from all active channels in the time period before the beta collapse.

The n=1 and the 23 kHz mode showed significant coherence between all channels

in the region probed. This can be seen in Fig. 59 showing the power spectrum of

ECE fluctuations from R=362 cm (100 cm away from the location of the channel in

Fig. 5-8).

A better overview of the time evolution and the spatial extent of these modes in the

plasma is obtained by presenting the coherence y (see Eqn 294) of the fluctuations

in two channels as contour plots in frequency-time space. This is illustrated in Fig. -

10 which is the contour plot of coherence between ECE fluctuations at R=26 cm

and R=362 cm. The high degree of coherence of the n=1 and the 23 kHz modes

across this wide spatial range is apparent from the contour plot. Moreover, the time

Page 120: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

------

120 CHAPTER 5. DATA AND INTERPRETATION

Coherence Countour Plot- ff%

90

80

70

60

50

40

30

20

10

15.7

Time (sec)

15.815.5 15.6 15.9

Figure 5-10: Contour plot of coherence (,y) between channels at R=266 and channel8 at R=362 cm. The values of -y larger than 0 7 are plotted. The background noisecoherence is _-0.3

evolution of the modes indicates that the n=1 mode is present both before and after

the collapse, whereas the 23 kHz mode begins at about 180 msec before the beta

collapse, grows in amplitude and disappears completely after the beta collapse. This

interesting behavior seems to suggest that this mode may be related to the cause of

the beta collapse.The high value of beta in this discharge (highest achieved in JET) and the de-

clining behavior of the confinement before the beta collapse suggests that the plasma

may have experienced an instability to MHD ballooning modes. A stability analysis

using a high-n ballooning code based on the method of Greene and Chance 67] was

performed on the data from shot 26236 [64]. Some results are shown in Fig. 5-11.

It can be seen that the plasma profile at t = 15.6 sec (at the peak,3t) has a trajectory

in the (s, a) plane which is close to the ideal MHD ballooning stability limit around

the magnetic surface at r/a = 045 (where a is the plasma minor radius),5. The data

at t = 15.8 sec shows that the central pressure is lost corresponding to the decline of

------ --,5Ballooning stability is a local criterion and, in a finite aspect ratio and non-circular cross-sectiontokamak plasma, has to be determined at each flux surface.

Page 121: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

5.2. DATA FROM JET EXPERIMENTS 121

* Data atr/a=0.451.4

1.2

1.0 II

IStabilityBoundaryr/a=0.45

0.8

S 15.8 secs 15.6 secs0.6

0.4

0.2

-T

0

-0.20 0.2 0.4 0.6 0.8 1.0

(X

Figure 5-11: Ballooning stability boundary for shot 26236 at (the flux surface at)r/a = 045. The data points (with error bars) are the equilibrium flux surfaces,in (s, a) space, at times t=15.6 sec and t=15.8 sec. The dashed lines around thestability boundary indicate uncertainty due to q profile errors (from Faraday rotationmeasurements and the IDENTD equilibrium code). indicates the data point to becompared to the curve at each time.

II

=--- =-II

Page 122: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

,3t.

Although the stability analysis of Fig. 5-11 seems to indicate that high-n balloon-

ing modes may be unstable at the time of the peak of , high-n fluctuations were

not observed in the spectra of the ECE channels. The spatial structure of the 23

kHz mode which was detected on all ECE channels (in both the good and the bad

curvature regions of the plasma) was investigated for ballooning characteristics. The

values of MHD normal displacement vector �n were calculated for all channels (by

obtaining 1 .. II,,,,) from the peaks in the spectra (see section 23-3) corresponding

to the 23 kHz perturbation. The electron temperature and density (and therefore P)

profiles used in these calculations were obtained from the LIDAR Thomson scattering

diagnostics. The results are shown in fig. 512. As can be seen from the displacement

plot, the 23 kHz mode did not produce larger displacements in the bad curvature

region of the plasma, and thus is not consistent with a MHD ballooning mode.

The identity of the 23 kHz mode is not clear, the mode could be a toroidicity

rThe shape of T, profile can be assumed to be the same as the T, profile measured by LIDARdiagnostic. The profile parameter A in Eqn 275 is therefore equal to + (iITI-).

CHAPTER 5. DATA AND INTERPRETATION122

1.5

1.0E

_(DEOD0coCL0'O

-4

-1. . . I . . . . I . . I I I . ,

0.5

0.0200 250 300

Major Radius (cm)350 400

Figure 512: The calculated MHD normal displacementin the plasma.

vector �,,, of the 23 kHzmode

Page 123: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

5.2. DATA FROM JET EXPERIMENTS 123

Shot 26243

1 0 - NBI

0

2 Pt

0

D(x5-

0J-

_L 10 12 14 16 18

TIME (sec)

Figure 513: Overview of JET discharge 26243.

induced Alfv6n egenmode (TAE). TAE modes which are driven by the energetic

beam ions in plasmas with high pressure gradients have been observed in low-field

7 neutral beam heated discharges in DIII-D 681 and TFTR 691. More observations

will be needed in the future to positively identify this mode.

In the series of high-ot, low-field discharges, shot 26236 was the only discharge

in which the 23 kHz mode was observed. This may be attributed to the exceptionally

high value of t and ion temperature (i.e., Tio -_10 keV, To --5.5 keV) achieved

in this discharge which exceeded the Troyon limit by 20%. Other discharges in this

series did not reach the Troyon limit. In these discharges the only strong fluctuations

observed were the n=1 global MHD modes. Shot 26243 is an example of these

discharges. Fig. 513 shows some of the parameters of shot 26243. The occurrence

of ELMs (as indicated by the D, signal) limited the confinement and the rise of

Ot in this discharge. The toroidal magnetic field in this discharge was 14 Tesla at

the center, and the fast channels recorded 2nd harmonic X-mode ECE in the radial

range of R=305-330 cm. Fig 514 is the power spectrum of the ECE fluctuations from

7Lower field reduces the Alfv6n velocity and provides a better resonance with the beam ionvelocity.

Page 124: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

CHAPTER 5. DATA AND INTERPRETATION124

"I

FREQUENCY (kHz)

0

Figure 514: Autopower spectrum of ECE fluctuations from R=312 cm, in discharge#26243, at t=15.6 sec.

a channel of the radiometer at R = 312 cm, at the time of peak 3t. The spectrum

shows only a n=1 mode. Fig. 15 is the contour plot in the frequency-time space

of the power spectrum of fluctuations on this channel. The contour plot shows a

persistent n=1 mode similar to that of discharge 26236, and no other strong MHD

activity.

5.2.2 High-op, PEP H-mode Discharges

In tokamaks a regime of enhanced performance can be accessed by deep fuel pel-

let injection, leading to strongly peaked density profiles in the core of the plasma.

This regime which has been achieved in JET by injection of deuterium pellets into

discharges heated with ICRF is known as the pellet enhanced performance (PEP)

mode 70]. Compared to similar non-PEP discharges, PEP mode is characterized by

a substantial increase in the neutron rate, a reduction in core transport, and a rela-

tively small increase in the global energy confinement time -rE 71]. The PEP mode

is a transient phenomenon (lasting typically 12 sec) obtained with strongly peaked

Page 125: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

5.2. DATA FROM JET EXPERIMENTS 125

Z:)u

200

i 150U

100

50

I I I

I I I

15.55 15.6 15.65 15.7 15.75

.1 NM (sec)

Figure 515: Contour plot of autopower spectra of ECE fluctuations from 312 cm.

density and kinetic pressure profiles created by central ablation of a fuel pellet and

central heating of the plasma. Build-up of density in the center of the plasma cre-

ates high pressure gradients off-axis and a simultaneous transient low temperature

on-axis. The pressure gradient drives an off-axis bootstrap current which diffuses

rapidly in the cold plasma of the immediate post-pellet period 72]. Also in that

period the electron temperature is hollow. These effects cause the plasma current to

be forced off-axis leading to an inverted q profile (Fig. 516) or negative shear s in the

plasma core 711. The existence of negative shear is thought to lead to the reduction

of transport in the PEP plasma core 731. The steep density gradients maintained by

the improvement of confinement in the plasma core sustains the off-axis bootstrap

current. The termination of the PEP phase is often associated either with gradual

decay of the peaked density profile or with a rapid loss of central pressure due to

MHD activity.

In JET, PEP has been combined with H-mode in discharges heated with high

ICRF and NBI powers. These discharges exhibit high values of thermonuclear neutron

rate and fusion products in plasmas with nearly equal electron and ion temperatures

(T _ T The High-n ballooning mode stability analysis of these PEP H-mode

Page 126: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

126 CHAPTER 5. DATA AND INTERPRETATION

q

2.0 3.o 4.0R (m)

Figure 516: The q profile for a typical ICRF+NBI heated PEP H-mode plasma ob-tained with the EFIT equilibrium code (solid line) and TRANSP code (dashed line).A reasonable agreement Z's obtained in the plasma center showing an inverted q-profile.The measured q values (data points) were obtained from the observation of low-n MHDactivity on q=2 and 3 rational surfaces. Courtesy of P. Smuelders.

Page 127: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

1275.2. DATA FROM JET EXPERIMENTS

discharges has found the negative-shear core to be in the region of second stability 8

or close to marginal stability 721.

ECE fluctuation measurements were taken on a number of PEP H-mode dis-

charges. The PEP plasmas investigated by the ECE fluctuation diagnostic were

created by ijecting pellets of 4 mm diameter at 12 k/sec into discharges heated

by 10-12 MW of NBI and 34 MW of ICRF.

5.2.2.1 Observation and Analysis of PEP Plasmas

Fig. 517 shows some of the parameters for shot 26734 a moderate-power PEP

H-mode discharge, along with the ECE signals from R=304 and R=312 cm (close to

plasma center). A 4 mm pellet is injected into the plasma at t = 40 sec which can

be identified by the sudden rise in the density and drop in the ECE (i.e., T) signals.

Fast ECE measurements were made during this shot on channels of the radiometer

in the time interval t = 45 sec to t = 5.2sec. The fast channels of the radiometer

were selected to record optically thick 0-mode ECE from the center region of the

plasma. The channels covered the frequency range of 73-79 GHz.

Fig. 518 shows the equilibrium flux surfaces (computed by the JET IDENTC

equilibrium code' during the PEP phase at t = 486 sec. Fig. 519 shows the firstand second harmonic ECE frequencies, computed with the total magnetic field profile

from the IDENTC equilibrium code, along with the 0-mode cutoff (i.e., fp). Table 52

lists the radial locations of the fast ECE channels. Fig. 520 shows the fluctuations

in the ECE signal from R = 312 cm during the PEP phase. The ECE level is rising

(sometimes very rapidly) indicating the recovery of central T, (by current diffusion)

in the PEP phase. The contours (in the frequency-time space) of power spectra of the

fluctuations are plotted in Fig. 521 in order to observe the time evolution of the MHD

fluctuations in te ECE signal of Fig. 520. The plot shows coherent fluctuations at

-_ 37 kz and 75 kHz. The plot also shows n = 1 2 and 3 MHD modes10 during the

decline in the signal level (Fig. 520) which starts at t = 4.91 sec.

In the analysis in this section and hereafter, we will refer to modes with n-numbers

higher than the sual n=1 2 and 3 kink modes as "medium" and "high"-n modes.

'In chapter 4 w discussed how a tokamak plasma with high pressure gradient (i.e. high a) andlow shear can be in the region of second stability for high n-number ballooning modes.

1IDENTD results which are more accurate for PEP discharges, were not available for thisdischarge.

"Toroidal rotation velocity of the plasma core at t = 495 sec was 1 kHz.

Page 128: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

128 CHAPTER . DATA AND INTERPRETATION

PULSE 26734

0.4

Op 02

0.010

2aiz

5

0

0.04CV

A U. UQ

C

V 0.00

0.3mCa 0.2

w0 0.1w

0.0

50

m 0w0w-50

0 1 2 3 4 5 6 7 8 9

TIME (sec)

Figure 5-17: Parameters of JET discharge #26734. Pellet is launched at t = 4.0 sec.

Page 129: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

5.2. DATA FROM JET EXPERIMENTS 129

2.5

2. 0

1.5

1.0

0.

0. 0

-C) I

I

I

-2. 0

-2. S

C, 1 2 3

Figure 18: Poloidal flux contours in the PEP phase of discharge #26734.

Page 130: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

2fe

f.e

.......................

fp.

130 CHAPTER 5. DATA AND INTERPRETATION

250

200

P,7:0>10aa):3CrTU-

150

100

50

0200 400

Figure 519: irst and second harmonic ECE frequencies and the 0-mode cutoff fordischarge 26734. The dotted lines indicate the frequency coverage of the fast ECEmeasurements.

Major Radius (cm)

Page 131: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

5.2. DATA FROM JET EXPERIMENTS 131

24

22

20,

18,

16,

2'

21

11,

I I

I

TIME (sec)

Figure 520: DC coupled signal and the AC fluctuations on the ECE signal fromR = 312 cm.

Page 132: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Channel No. requency (GHz) Radius (cm)1 73.12 3292 73.94 3243 74.76 3214 75.58 3185 76.41 3156 77.23 3127 78.05 3088 78.87 304

CHAPTER 5. DATA AND INTERPRETATION132

Table 52: Radial locations of the fast radiometer channels.

The n=4-6 will (in our terminology) be referred to as medium-n, and n > 6 will be

referred to as high-n.

In our analysis of the modes observed in the PEP discharge 26734, we will

concentrate on the high-n (i.e., n=7 or 8) mode at 75 kHz. This mode appears,

with varied strength, on all the ECE channels. Fig. 522 shows the power spectra of

fluctuations on four ECE channels from t = 4.84 to t = 4.87 sec. The ECE fluctuations

6III produced by the high n-number mode at each radius is plotted in Fig. 523. The

normal displacement �n of the high n-number mode was calculated for each radius

using the amplitude of ECE fluctuations. The VT, n, and VP, used in these

calculations were obtained by fitting smooth polynomials to LIDAR profiles shown

in Fig. 524. Te results are plotted in Fig. 525. To interpret the results of this

plot in terms of the ballooning characteristics of the high-n mode, one should note

that the major-radial location of the magnetic axis cannot be accurately obtained

from the IDENTC equilibrium code, and that comparison of the bad and the good

curvature values of �n in the radial range of 25 cm (i.e. 20% of minor radius) around

the magnetic axis is not meaningful. What can, however, be obtained from Fig. -

25 is the characteristic length in the radial direction (A I " over which the �� varies.

Fig. 525 shows that A I _- 12 cm for the high n-number mode. This value is consistent

with the predicted value of A I - a/n for ballooning modes [18].

Unfortunately, a ballooning stability analysis was not performed" for the dis-

"This should not be mistaken with the AR (in chapter 2 of a traveling perturbation in theplasma, as these modes (being MHD modes) are stationary on the plasma and their crossphasebetween neighboring channels is .

12 This analysis is a lengthy and time consuming process (involving many stages, from running

Page 133: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

5.2. DATA FROM JET EXPERIMENTS 133

X %"

90

80

70

4 60'3;�R 50�U

CE)

�4 40P�.

30

20

10

_.W=W=_WWZ1

C:_

- I1Z=F

r_

_zzzzl UJ 0.- ----------- I ----------- . - M-TF- Q�Z; r

4.85 4.9 4.95 5

Time (sec)

Figure 521: Contour plot of autopower spectra of ECE fluctuations from R=312 m.

charges in this series. However, discharges with very similar conditions in the run-

periods before the implementation of the fast-system upgrade of the radiometer have

been shown to be in the second stability or in the margin of stability against high-n

ballooning modes in the core of the plasma 72].

5.2.3 High-& Low-current Discharges

High-/3p, and therefore high bootstrap current, is an attractive operational regime for

a tokamak reactor since it minimizes capital expenditure on external current drive

schemes for steady-state operation. In JET, high-,3p (p 2 was achieved at low

current (1p --1-1.5 MA) and moderate toroidal field (Bo = 28 - 31 Tesla) with ICRFcentral heating 13 in the range 410 MW.

These discharges were predicted to be marginally stable to high n-number balloon-

ing modes in the high pressure gradient edge region of the plasma 74]. Analysis of

the fluctuation signals from the soft X-ray, 0-mode edge reflectometer, and magnetics

the IDENTD equilibrium code to running high-n ballooning stability codes, which require exactmeasurements of q profile and the TRANSP output) that is performed in different parts by a largenumber of research staff and is very rarely done for individual discharges.

"ICRF was used because NBI can not operate at low Ip.

Page 134: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

CHAPTER . DATA AND INTERPRETATION134

aS

RS

I091.

FREQUENCY (kHz)

0 10 2U 30 40 M 6U 70 8U 9U WU

FREQUENCY (kHz)

4I I I

M0 10 20 30 40 50 60

FREQUENCY (kHz)

70 80 90 100

iu

25Rla 20

15

A. 10

-10 10 20 30 40 50 60

FREQUENCY (kHz)

70 80 90 100

Figure 5-22: Power spectra of the fluctuations (in shot #26734)the ECE radiometer showing the high n-number peaks. Anothercan also be seen at -- 95 kHz.

on foursmaller

channels ofhigh-n peak

Page 135: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

5.2. DATA FROM JET EXPERIMENTS 135

2.5

2.0

0I0C0.16

:316

U-

.Z,C.4Cw0Ill

1.5

1.0

0.5

)O

0.03C 310 320 330

Major Radius (cm)340 350

Figure 523: The profile of ECE fluctuations produced bythe core of the PEP discharge #26734.

the high n-number mode in

Page 136: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

CHAPTER 5. DATA AND INTERPRETATION136

6

CV).E 4MC)- 2

0C

0

-,5Ma-'tCDT-

e0

200 300 400

R (cm)

Figure 524: LIDAR electron density and pressure profiles in discharge 26734 att=5-2 sec. otice the peaked profiles in the core region.

Page 137: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

. . . . . . . . . . . . . . . - - . . . . . . . . . . . . . . . . . . . . . . .

5.3. DATA FROM PBX-M EXPERIMENTS 137

10

8

I I .I

1:I

.... I........ 11 ......... 1. ........

'9'E4)Ea)8CLMO0

6

4

2

n I .

300 310 320 330Major Radius (cm)

340 350

Figure 525: The calculated MHD normal displacement vector �� of themode in the core of the PEP discharge 26734.

high n-number

diagnostics did not show coherent MHD perturbations in the edge 741. Incoherent

wideband high frequency activity ( - 10 MHz) was observed on the edge reflectome-

ter signals during some of these discharges 74]. The fast ECE radiometer channels

recorded ECE fluctuations from the edge region of these discharges. No coherent or

incoherent MHD activity was observed on the ECE signals.

5.3 Data from PBX-M Experiments

A primary purpose of PBX-M is to study high-,3p plasmas in order to achieve and

explore the second region of stability to ideal MHD ballooning modes. The principal

method of heating used to raise beta in PBX-M is neutral beam injection. In the

1992-93 operational period, high-op plasmas were investigated in two regimes: high-

Op H-mode discharges with 33.5 MW of NBI, and high-,3p H-mode discharges having

the combined heating of 33.5 MW of NBI and 300-320 kW of ion Bernstein waves

(113W). In the following sections, the ECE fluctuation measurements in each of these

regimes are presented in detail.

Page 138: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

CHAPTER 5. DATA AND INTERPRETATION138

5.3.1 High-op, H-mode Discharges

The high-op plasmas (with NBI only) investigated with the ECE fluctuation diagnos-

tic were created using 33.5 MWof NBI in plasmas at B=1.55 Tesla. The NBI power

required to reach the ballooning stability boundary in a PBX-M H-mode plasma with

Bo--1.5 Tesla is approximately 45 MW 75]. This level of NBI power could not be

achieved due to the availability of only three out of the four neutral beam sources

during the 1992-93 operational period.

Fig. 526 shows some of the parameters for a typical high-,3p discharge (shot

#309712), along with 130 msec of fast (1 MHz) ECE data from R=170 cm. The

density and temperature profiles for this discharge are shown in Fig. 527. Fast ECE

measurements were made during this shot in the time interval t=550-680 msec. The

8 channels of the radiometer recorded ECE at the 3rd harmonic between R170-19114cm

In order to see the evolution of the MHD activity in shot 309712, the coherence

between the two channels at R=178 cm ad R=182 cm is plotted in Fig. 528 as

contours in frequency-time space. The plot shows modes at multiples (n=l 2 and

3) of -_ 20 kHz. The toroidal n-numbers of these modes were obtained from a similar

coherence plot of the Mirnov coil fluctuations. Fig. 529 is a contour plot of the

coherence between two Mirnov coils at toroidal locations separated by 120'. The n-

numbers of the modes have been obtained from a separate analysis of the crossphase

between the fluctuation signals on the Mirnov coils, and they are written on the

contours in Fig. 529. A comparison of the two coherence contour plots indicates that

the n-numbers for the modes observed with ECE are 1 2 and 3.

Fig. 530 shows the spectra of the ECE fluctuations (between t=665-678 msec)

from two radial ocations in the plasma. The spectrum at R=182 cm (r/a -_ 05)

shows strong n='I 2 and 3 MHD modes, whereas the spectrum at R=170 cm, which

is close to the q=1 surface, only shows a strong n=1 mode and a weak n=2 mode.

As mentioned. earlier, these high-op discharges were predicted to be in the first

stable region, away from the ballooning stability boundary. The ECE data also

confirm this by sowing only lower-n modes which are kink (current-driven) modes,

and these can be stabilized in PBX-M plasmas which fit closely to the conducting

shell.

14 In PBX-M, Ro = 165 cm and a = 35 cm.

Page 139: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

4

2

0

-2- d0 200 400 600 80

200 400 600 80(

pp

3 200 400 600 801

ECE

5.3. DATA FROM PBX-M EXPERIMENTS

300

167

33

-100

139

0 200 400 600 800

10

o.UU

3.33

0.67

-2.00

I?E0

V0

4

2

0

-21

6

4

2

-iCd

00 200 400 600 800

Time (msec)

Figure 526: Overview of PBX-M discharge 309712.

Page 140: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

DATA AND INTERPRETATION140 CHAPTER .

1

X10 11

cm

3

0

0.1130 150 170 190

rad us (cm)

2

kev

1

0130 150 170 190

rad us (cm)

Figure 527: Electron temperature and density profiles for the high-,3p shot #309712.

Page 141: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

I I I I I I I I I I I I I I I I I I I I I I I I I I I' I I I I I I I I I I I I. . . .

.0.

0 <:--:.- -

Z1.

4�

C----z--0 C____z7

-:1�9

r/1 - G�, (L

141

I ( ( -

7-Z�51

Qa 5 0 a)Z)07

2LL

-. 0,

1=

-

��1- --- -- e=

0

Figure 528: Contours of coherence (-f > 06) between fluctuations from two ECEchannels at R=178 cm and R=182 cm. The background noise coherence is -- 03.

5.3. DATA FROM PBX-M EXPERIMENTS

II I I I I I I I I I I I I I I I I .1 I I I I I I I I I I I I I I I I I I I I

0 6 ( 0 1 0 . 6 2 0 6 3 0 6 4 0 6 0 . 6 6 0 6 7

TIME (sec)

Page 142: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

142

I I I I II I I . I I I I I I I I I . I I I I I

I

I

IT7-1::2>

- �11 n=S �O

-CM7

1�97 - YA Z

Y) I

rZ-r0

IL)C(1)DUT

LL

0

0 6

TIME (sec)

Figure 529: Contours of coherence -y > 07) between fluctuations from two Mimovcoils with 120' toroidal separation. The background noise coherence is -- 035.

CHAPTER 5. DATA AND INTERPRETATION

I I I -1 I I I I I I I I I I I I I I I I I I i I

0 1 0 . 6 2 0 . 6 3 0 . 6 4 0 6

Page 143: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

5.3. DATA FROM PBX-M EXPERIMENTS 143

.L!ta-'aE:aCr

012

t.r-�5Cl-'DICla-u)

0

05frequency (Hz)

Ar,,i onnrn - 7A onorns

frequency (Hz)

Figure 530: Autopower spectra of the ECE fluctuations from R=182 cm and R=170CM.

Page 144: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

15 Shot 310724 was chosen for analysis here for its good neutron rate and TVTS timing.

144 CIIAPTER 5. DATA AND INTERPRETATION

5.3.2 High-op, H-mode Discharges with IBW heating

1BW heating was applied to high-op discharges in PBX-M in order to study the effects

of IBW on enhancement of confinement in the core region of the plasma. 300-320 kW

of 1BW power (at 5D--50 MHz) were combined with 33.5 MW of NBI heating in

H-mode plasmas. Off-axis IBW heating is believed to generate an off-axis transport

barrier and thereby provide a region of enhanced confinement in the core. This is

reflected in an in-crease in the neutron rate, and the new regime has been labeled

the CH-mode (core H-mode) 76]. Fig. 531 shows the enhancement in the neutron

rate in a CH-mode plasma relative to an otherwise similar H-mode discharge. The

effect of the enhanced confinement provided by the IBW is the strong peaking of the

density (and thus the pressure) profile. This can be seen in Fig. 532, which shows

the electron density and temperature profiles from the TVTS (Thomson Scattering)diagnostic for shot 310724. 15

Fig. 533 shows some of the parameters for shot 310724 along with the ECE

signal from R = 161 cm. Fast (1 MHz) ECE data were recorded from R = 161 - 182

on channels. The discharge enters the H-mode (as indicated by the drop in the D'

signal) at t -_ 590 msec and Op rises to 2 at the peak of the beam power. A sudden

decrease in the central temperature (i.e., central collapse) occurs at t -_ 675 msec.

This is indicated by the sudden drop in the ECE signaJ and is coincident with a giant

ELM on the D, signal. The central collapse happens even though the neutral beams

are still on at high power. Fig. 534 is a detail of the time period t=670-680 msec.

The rise in the edge density, due to the ELM and the collapse of the plasma core,

causes arcing in the 1BW antennas and the IBW power trips off. 77]

The contours of coherence between ECE fluctuations at R = 168 and R = 171

cm are plotted in Fig. 535 to display the evolution of the MHD activity in the

center before the collapse. The contour plot shows that in addition to the n=1 2,

and 3 modes seen on high-,3p shots without 1BW, two strong coherent modes are

also observed in the frequency ranges 85-100 kHz and 100-115 kHz. Investigation of

all of the high-,6p discharges with 300-320 kW of 1BW power has shown that these

modes (and modes at even higher frequencies) exist only in discharges that reached

a threshold Op value of -_ 1.5.

The toroidal n-number of the higher modes can be determined from the Mirnov coil

signals. The coherence contour plot of the Mirnov coil signals (120'apart toroidally)

Page 145: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

5.3. DATA FROM PBX-M EXPERIMENTS

Neutron Source Strength

145

1.0.1-11

C/)ro-- 4

Cr---i

0 0.5V)

0.0300 350 400 450 500 550 600 650 700

Time (ms)

Figure 531: Neutron source strength in a CH-mode plasma compared with a H-modeplasma with similar NBI heating. NBI is from t=350-660 ms. Neutron rate reversalcan be observed during the IBW-assisted discharge.

Page 146: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

146 CHAPTER . DATA AND INTERPRETATION

I. U

co,E0

1�C)

C) 5

WC

( 030 1 so 170 190

Radius (cm)

2

Q)Z-X,

�-p

1

030 1 50 170 190

Radius (cm)

Figure 532: Electron temperature and density profiles for IB W heated shot 310724.

Page 147: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

NBI -

I200 400 600 8C

0 200 400 600 801

40 - - -

IBW -200 - -

0 -

200 -0 200 400 600 801

0 200 400 600 801

ECE -2 -i -- -d - -

I -

0� -

5.3. DATA FROM PBX-M EXPERIMENTS 147

4

2

0

-21 10

4

op -

-Vl"'�

2:iCd

0

-9

I

D

=iCd

0

0

0 200 400 600 800

Time (msec)

Figure 533: Overview of PBX-M discharge #310724.

Page 148: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

I I I I

z -D(x

II I - I I I L I I

----- T I I

1BW

I I - I I I I I I I

DATA AND INTERPRETATION148 CHAPTER .

3 1 0 7 2 4

0 3

0 2

0. 1

6 7 6 7 6

5

4

3

2

6 7 6 7 6

0 3

0

6 7 6 7

MIliseconds6 8 0

Figure 534: Detail of the plasma evolution in the msec time periodcollapse.

before the core

Page 149: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Figure 535: Contour plot of coherence between ECE fluctuations at R=168 andR=171 cm showing the evolution of the MHD activity in the plasma core.

and the corresponding n-numbers are shown in Fig. 536. Comparing this figure with

Fig. 537, which is the ECE coherence contour plot in the frequency range 0-150

kHz, shows that the n-numbers corresponding to the 85-100 kHz and the 100-115

kHz modes are 4 and 5, respectively. These modes were also observed by the fast

soft x-ray (SXR) signals. The poloidal m-number of the n=4 mode (the stronger of

the two high frequency modes) was determined from the fluctuation spectra of the

horizontally-viewing SXR channels (see Fig. 538) to be m=5. This is demonstrated

in Fig. 539, which shows the SXR fluctuation spectra profiles for the n=4 mode. The

dip in the profile at z = shows that the m-number is odd; the number of the peaks16minus one (nmaxima - 1=6 - 1) determines the m-number of the mode 78].

The autopower spectra fOr the ECE fluctuations at t = 630 - 660 msec from two

different radial locations R = 171 cm and R = 168 cm are shown in Fig. 540. The

ECE fluctuation (611I) profile for the n=4 mode was obtained from the autopower

ASome diodes in the higher (z > 0) channels were not working, so the total number of peaks wasdetermined from the peaks (i.e., 3 in the lower (z < ) channels. This method of determining them-number using the non-inverted SXR signals from a poloidally rotating plasma has been discussed(for lower m-number modes) by von Goeler et al. 791.

5.3. DATA FROM PBX-M EXPERIMENTS 149

Coherence Contour Plot

r�'_rAQC=30

a-(D

L.

600 650 700Time (msec)

Page 150: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

150 CHAPTER 5. DATA AND INTERPRETATION

I I150- I I I I I I I I I

.I IfIZZ3

4wsq 'A? %

N'r_Y_ 100

>10C(D:3CT2) 50-LL -

0- I I I I F__ - I I I II 1

600 650

Time (msec)

Figure 536: Contour plot of coherence between fluctuations on two Mirnov coils with120 separation. The n-numbers of the modes are written on the contours.

spectra of the radially-localized ECE channels. The results are shown in Fig. 541.

The location of the magnetic axis shown in the plot was determined using the FQ

equilibrium code 17 - The equilibrium flux surfaces for shot 310724 at t=630 sec

are shown in Fig. 542. The TVTS profiles of n, and T, were used to calculate the

profile of pressure fluctuations 6PIP) from the n=4 mode. The results are shown

in Fig 543. The lower half of the poloidal flux surfaces are shown on the same plot.

From this plot, the mode can be seen to be ballooning on the bad curvature side of

the magnetic axis. The values of 6PIP in the channels which are on the same flux

surface show pressure fluctuations that are an order of magnitude larger on the bad

curvature side.

A numerical ballooning mode stability analysis using the PEST code'8 was per-

formed on the data from shot 310724. The results are shown in Fig. 544. The

(s, a) diagrams show that the discharge is marginally stable against MHD ballooning

modes at flux surfaces with q values between 106 to 135. The q-profile (obtained

"Ptoud profile used to determine the localization of the channels were also obtained from theFQ code.

18The PEST ballooning stability code is based on the method of Greene and Chance 67].

Page 151: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

5.3. DATA FROM PBX-M EXPERIMENTS 151

N_rV

>10C:a):30-(1)

LL

600 650

Time (msec)

Figure 537: Contour plot of coherence between ECE fluctuations in the 0-150 kHzrange.

using the TRANSP code)19 at t=630 msec is shown in Fig. 5-45. The q value cor-

responding to the peak of the n=4 mode is approximately 1.08, which is within the

range predicted to be marginally stable against ballooning modes. The ideal MHD

rational surface for the n=4/m=5 mode is at q = m/n = 1251 20 and this is also

predicted to be marginally stable against ballooning modes (see Fig. 544).

Shot 310721 is another high-,6p CH-mode discharge which shows high n-number

modes in the IBW phase. This discharge is very similar to shot 310724. An overview

of this discharge is shown in Fig. 546. In this shot as well, a giant ELM is coincident

with the collapse of the plasma core.

The ECE coherence contour plot (between R=170 cm and R=173 cm) is shown in

Fig. 547. It shows the presence of coherent modes before the collapse of the plasma

core that are higher in n-number than in shot 310724. The Mirnov fluctuation

data were not available for this shot. However, from our experience in the analysis of

discharge 310724, we can estimate the n-number for these modes to be 4 < n < 11.

----"The motional Stark effect (MSE) q-profile diagnostic was not working during the IBW shots.2OThis is in reasonable agreement with the TRANSP q considering the uncertainties in the

TRANSP q-profile.

Page 152: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

152 CHAPTER 5. DATA AND INTERPRETATION

0.8

0.6z

[mlO�4

0.2

0.0

-0.2

-0.4

-0.6

_n Q1.0 1.2 1.4 1,6 1.8 2.0

R [m]

Figure 538: The lines-of-sight of the horizontally-v' x-ray diagnostic.

Page 153: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

5.3. DATA FROM PBX-M EXPERIMENTS 153

0.

S[gW]

0.

0.

0.

-40 -20 0 20 40

Z (cm)

Figure 539: The power spectrum profile of the horizontally-viewing SXR signals forthe n=4 mode 82-98 kHz) in discharge 310724. Curve Ph Z's the calculated photonnoise.

Page 154: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

DATA AND INTERPRETATION154 CHAPTER .

4x10

2:1�1"I("I

2x103:0CL

-S

5000 100 200 300 400Frequency (kHz)

I 6xlO-'

-1-;�- 4XIU11C,4

3-0Q--S

< 2x10- 1

0 100 200 300 400Frequency (kHz)

500

Figure 5-40: Autopower spectra of the ECE fluctuations from R =1 71 cm and R =1 68cm.

Page 155: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Magnetic axis

7

7

5.3. DATA FROM PBX-M EXPERIMENTS 155

5

4

3

2

-0IwC016:3t5:3

U-

4.r

C.2C

LUL)w

1

0

140 160Major Radius (cm)

180 200

Figure 541:#310724.

The ECE fluctuation (HII) profile of the n4 mode in discharge

Page 156: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

156

8

6

4

2

in-w

w 0

-. 2

-. 4

-. 6

-. 8Im & (\j -ID m tD

(,\I

X (METERS)

Figure 542: Poloidal flux contours in dscharge 310724 at =630 sec.

CHAPTER 5. DATA AND INTERPRETATION

TOTAL FLUX CONTOURS

Page 157: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

5.3. DATA FROM PBX-M EXPERIMENTS 157

Major Radius (cm)

5

4

WC.03CU-Rlu

LL

a-)2Cn(nS)0-

1

0

)O

Figure 543: The pressure fluctuation (bp1p) profile of the 4 mode in discharge#310724. The lower half of the poloidal flux surfaces are also shown.

Page 158: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

C L I - .i4 -

3

2

1

Ap,q, Lo

I p h a

qO 0 9 953

5

4

3

2

01,

5

4

3 -

2-

0

5 . 0 I- . - .--

I4 - *I

I3

I.0

2

I*1. ...

0:�= - CN , te) -41 LO

CZ-.) -v- W 4 U)

i, -. , -8S

I Jr8 '. I

F .08 10 41 .

I - . - . . - I

158

W

I

W

I

W

CHAPTER . DATA AND INTERPRETATION

coC)C=)

W

11

v,11

Cr

co

t-rl)

11

Ur

toCM

01)

11

a,

4

3co

2

1

0

t"r)--r

. -:

01

14

II

11

v-

S

A

I

I

44

11

01C W " t.0 -lo LO

Figure 544:discharge 1131

The ballooning mode stability diagrams for different flux surfaces in0724/.

Page 159: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Figure 545: The TRANSP q-profile for shot #310724.

A n=4 mode at 100 kHz appears in this shot which has a very similar evolution

to the n = 4 mode observed in shot 310724 21 . The mode at 250 kHz was the

strongest and the most coherent mode among the high n-number modes observed.

From the frequency of the mode, the n-number can be estimated to be in the range

8-10. An analysis of the ECE intensity fluctuations bIll and corresponding pressure

fluctuations was performed for this mode. The results are shown in Figures 548

and 549. This mode is shown to be slightly ballooning, and it is peaked closer to

the magnetic axis (q(O) -- 1.0) than the n=4 mode. The fast SXR data were not

recorded at this time in the discharge. However, from the localization of the mode

close to the magnetic axis (at q -- 1.0), we can estimate the m-number for this mode

to be m -- n.

The numerical ballooning mode stability results using the PEST code on the data

from this shot (at t=640 msec) are shown in Fig. 50. The (s, a) diagrams show

that this discharge is also marginally stable against MHD ballooning modes on flux

2'The pressure fluctuation profile for this mode was identical to the one for the n=4 mode indischarge 310724 shown in Fig. 543.

5.3. DATA FROM PBX-M EXPERIMENTS 159

TRANSP q profile

4

3Cr

2

1

140 160 180Major Radius (cm)

200

Page 160: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

NBI -

3 200 400 600 801

pp -

- rr- 13 200 400 600 801

200 400 600 801

D -a -

d200 400 600 801

ECE -

160 CHAPTER . DATA AND INTERPRETATION

4

2

0

-21

2.00

0.67

-0.67

-2.001

=iCd

400

200

0

-2001

60

40

20

0

2

1-i(d

0

-1

0 200 400 600 800

Time (msec)

Figure 546: Overview of PBX-M discharge 310721.

Page 161: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

161

4

3 0

2 0

10 0

0

FRE

Q

KHz

0.60 0.61 0.62 0.63 0.64 0.65TIME (sec)

Figure 547: Contour plot of coherence between ECE fluctuations at R=170 andR=173 cm in discharge 310721.

5.3. DATA FROM PBX-M EXPERIMENTS

Page 162: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

162 CHAPTER . DATA AND INTERPRETATION

4 I I : ,

Magnetic axis:

J./

f f :

0-0w_0

7�63t5

U->1w_2r-w0w

3

2

IIIIIIIIII

I-

1

0I I

140 160Major Radius (cm)

180 200

Figure 548: The#310721.

ECE fluctuation (6III) pofile of the high-n mode in discharge

Page 163: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

5.3. DATA FROM PBX-M EXPERIMENTS 163

Major Radius (cm)200140 160 180

-0CnC0co.R0LL

T=3(nCnP0-

Figure 5-49: The pressure fluctuation (6p1p) profile of the high-n mode in discharge#310721.

Page 164: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

I),

4-3 .

2-

i ** 0

0 :a -.- " -" , I

CD "V- " Pe) ""' Loa I p h a

qO = 0.99-43

5 -' .. I II1

4. 1

3 IOv2.

I 10

0. - 80"8 :�=- Z�;- in' U")

0

*0

I4*

** I.

CD WI) 11", U-)

C:1 " rn * Ln

5 -'

4 8I 0

3 - 8 * 4*

2 -

I0% . __j

- - - - - - - -

164 CHAPTER . DATA AND INTERPRETATION

5

4

3

2

i

0

coC)C:1C:1

CnPe)coC)

11

Cr

Ile)C=1.4,

11

a-

r-_r1e)

C"

11

Cr

W w

11

a-

4n

to

5

4

3

2

1

ni

r--- I - I - . - - -16 1

I

I

*0

0

, . . I . . . .

5

4

3

2

1

0

11

W-

U11)U0

II

II

II

0

W

11

CrCD w " W n=1 -w- " r#') * LO

Figure 550: The ballooning mode stability diagrams for different flux surfaces indischarge #310721.

Page 165: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

5.3. DATA FROM PBX-M EXPERIMENTS 165

surfaces with q values between 106 to 135. The q-profile for this shot is identical to

the q-profile for shot 310724 shown in Fig. 545.

Page 166: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

166 CHAPTER 5. DATA AND INTERPRETATION

Page 167: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Chapter 6

Conclusions

6.1 Summary

This thesis started by introducing the need for a localized fluctuation diagnostic in

the wavenumber range 0. < k < I cm-'. The merits of ECE heterodyne radiometry

as such a diagnostic were then discussed.

As a basis for understanding MHD fluctuations, the theory of MHD-relevant quan-

tities, such as the normal displacement vector �� and pressure fluctuations 6p/p, and

their connections to ECE fluctuations was developed. We showed that the MHD pres-

sure perturbations 6p, on a surface of constant lBt,,t,,,Il (i.e., pressure perturbations

recorded by a fixed frequency ECE channel), can be approximated (in tokamaks by

the MHD pressure perturbations � - Vp, in a fixed spatial coordinate system. Our

treatment was done for the general case of ECE fluctuations in an optically thin

plasma, allowing us to interpret the optically gray third harmonic measurements on

PBX-M and JET. We also reviewed the spectral and correlation analysis techniques

used to estimate the amplitudes of coherent fluctuations and their corresponding

uncertainties.

A fast data system was constructed for the JET ECE heterodyne radiometer, pre-

viously used for edge temperature measurements. The upgrade realized the potential

of the system as a diagnostic for MHD mode fluctuations. The fast data upgrade also

helped in the investigation of fast edge phenomena such as ELMs 65].

An ECE heterodyne radiometer system with a wide-bandwith 25 GHz) mixer'

was constructed for the PBX-M. We demonstrated the use of a Gaussian-beam tracing

code for proper determination of the vertical resolution of the ECE diagnostic. The

'The mixer bandwidth of the PBX-M radiometer is twice as large as that of the JET subsystems.

167

Page 168: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

168 CHAPTER 6 CONCLUSIONS

PBX-M radiometer proved to be a useful diagnostic for determination of the localiza-

tion of internal MHD modes, and complemented the existing fluctuation diagnostics

(i.e., SXR and Mirnov coils).

Our success in. implementing multichannel ECE radiometry diagnostics and demon-

strating their usefulness on JET and PBX-M has played a part in the decisions of

other tokamaks (such as DIII-D and TPX) to acquire similar systems [80] [81].

High n-number MHD modes were observed using ECE fluctuation measurements

in JET high-,3p PEP plasmas. This was the first observation of high n-number MHD

activity in the cre of a JET PEP plasma 2, and supported the claim that the coreof a high-op PEP plasma is close to the region of second stability (due to low mag-

netic shear). Investigation of a JET high-,3t discharge in which the Troyon limit

was exceeded (and a sudden beta collapse occurred) did not reveal high n-number

MHD activity, despite the theoretical predictions that the equilibrium was close to

the stability boundary. The same results occured for high-op ICRF heated plasmas

where the ECE easurements in the edge and the core regions did not reveal the

theoretically predicted high-n modes.

Medium to high n-number MHD modes were observed using ECE fluctuation

measurements in the core of PBX-M high-op CH-mode plasmas. These modes were

observed before a sudden collapse in the central temperature. Numerical ballooning-

stability analyses showed that these discharges have equilibria that are marginally

stable against high n-number ballooning modes. The following observations support

the identification of these modes as ballooning modes:

1. The identified toroidal n-numbers are higher than the usual kink or tearing

(n=l 2 and 3 modes.

2. The modes are stronger in the low-field side of the plasma (i.e., they exhibit

a strong ballooning characteristic).

3. The modes are pressure driven and appear only in CH-mode discharges

that have high pressure gradients resulting from IBW power application

(and not in otherwise similar discharges without IBW).

4. High nnumber, ideal MHD, ballooning analyses of the discharges show

the equilibria to be marginally stable.

2Subsequent to our observations, similar MHD modes were observed in the core of PEP plasmausing the JET SXR diagnostic 721.

Page 169: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

6.2. FUTURE WORK 169

A major difficulty in equilibrium and stability analysis of these discharges is the

experimental uncertainty in the plasma q-profile. Efforts to obtain detailed mea-

surements of q-profiles will be carried out in future experiments (using the MSE

diagnostic) to improve the comparison between theory and experiment.

The observation in PBX-M of the theoretically-predicted ballooning modes is the

second observation of such modes in high-,3p (large) tokamak plasmas. The first

observation of these modes was made in TFTR 82] where n = 4 - 10 modes were

found to be ballooning. These modes were also observed near the center of the plasma

(at q = 1.5 and where the q-profile was flat) and led to a sudden loss of central pressure

upon instability.

6.2 Future Work

In this section we will make a few recommendations for improvements in the ECE

radiometer apparatus, and investigation of MHD activity in JET and PBX-M toka-

maks.

6.2.1 Future work on JET

The JET heterodyne radiometer has been upgraded further, since the measurements

reported here were made, to resolve the problems that limited its capability for in-

vestigation of MI-ID activity. The following improvements were made:

1. Two additional heterodyne subsystems have been added to the radiometer,

one covering the previous frequency gap (between bands 3 and 4 of 103-

115 GHz and the other extending the frequency coverage from 127 GHz

to 139 GHz.

2. Fast data acquisition (up to 500 kHz) has been added to all channels of

the radiometer.

3. A focusing Gaussian optics system has been implemented to reduce the

spot size of the antenna and thereby improve the vertical resolution of the

diagnostic in the inboard side of the plasma.

With these improvements, the JET radiometer is capable of covering the entire

plasma cross-section for all toroidal fields between 17 and 34 Tesla. Fast fluctua-

Page 170: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

170 CHAPTER 6 CONCLUSIONS

tions can now be recorded on all channels of the diagnostic with improved vertical

resolution.

6.2.2 ]Future work on PBX-M

Several improvements can be made to the PBX-M heterodyne radiometer which would

greatly enhance its performance in terms of investigating MHD activity. The following

improvements are recommended:

1. The 18-27 GHz IF sub-band should be developed to include more chan-

nels (with IF filters 2 GHz apart). The frequency coverage of the receiver

will then be extended to 112.5-136.5 GHz, corresponding to a radial cov-

erage f 40 cm in the plasma.

2. To increase the gain and enhance the performance of 13 a higher gain

IF amplifier with a lower noise figure should be used for the 28 GHz IF

band.

3. A separate multichannel receiver could be built, sharing the powerful LO

of the existing receiver. The new receiver could then be used to provide a

second poloidal or toroidal view of the plasma for m-number or n-number

resolution of observed MHD fluctuations.

These improvements would greatly enhance the determination of the localization

of MHD activity and its mode numbers. Higher NBI and IBW power and availability

of the MSE q-profile diagnostic are highly desirable for future investigation of high-,3p

H-mode and CH-mode plasmas.

Page 171: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

�=4+C, (A.1)

where the I and. 11 signs refer to the components parallel and perpendicular to .Therefore,

t x Bo = t,, x BO) + (t , x BO).

The first term of Eqn. A.2 is

(A.2)

�1 x Bo -- 1 (B - � x Bo.B (A-3)

Using B from B = Bo + V x x Bo), in Eqn. A3, we get

1 (Bo � x Bo + [( x �B N %,

0

x Bo)) - � x Bo4 x Bo = (A.4)= 0(fl,

'It is customary to define the components of t with respect to B and not the equilibrium Bo.

171

Appendix A

Appendix

A.1 Introduction

This appendix shows the detailed derivation of Eqn 255 from Eqn 254.

A.2 Derivation

The displacement vector can be written

Page 172: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Bo - x x Bo)]

172 APPENDIX A. APPENDIX

so to the first order in the smal displacement ,

�xBo-� xBo. (A-5)

The term Bo - V x x Bo)] in the numerator of Eqn. 254 can therefore bewritten

Bo [V x x Bo)] = Bo - V x � x Bo)]. (A.6)

Using standard vector identities, this becomes

Bo - V x x Bo)] = Bo [V x � x Bo)] (A.7)

V)Bo� 1.(V - Bo).-Bo(V - 1) + (Bo - V) I - I = Bo

02= -Bo (V-�j+Bo.[(Bo-V)�j-Bo.(� -V)Bo2 1 2= - Bo ( - ) (Bo .'V)(Bo - � 1 - ( I V)BO

2

B02 (V - � I I V(B 2).j + I [(Bo -Bol -20Using the definition of magnetic curvature r = )BO we can write the equationB2

0

above as

2 1 2).-Bo C - r. - 2 I V(BoBo - V x x Bo)] = -B 2(V I 0 (A-8)

Therefore,

- 1 C.VB2 (A.9)V-C C

This is the equation used to derive Eqn 255 from Eqn 254.

B2 -2

Page 173: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

Bibliography

[1] Fusion Energy I Course Notes. MIT Department of Nuclear Engineering,

September 1988.

[21 L. A. Artsimovich. Nucl. Fusion, 12:215, 1972.

[31 B. B. Kadomstev, F. S. Troyon, and M. L. Watkins. Nucl. Fusion, 30:1675, 1990.

[4] N. Hershkowitz, S. Miyoshi, and D. D. Ryutov. Nucl. Fusion, 30:1761,1990.

[5] L. Porte, D. V. Bartlett, D. J. Campbell, and A. E Costley. In 18th EPS

Conference on Controlled Fusion and Plasma Physics, pages IV-357, 1991.

[6] J. S. Machuzak. Millimeter- Wave Electron Cyclotron Emission and Collective

Thomson Scattering Diagnostics in the TARA Tandem Mirror Experiment. PhDthesis, Massachusetts Institute of Technology, May 1990.

[7] D. N. Held and A. R. Keer. Conversion Loss and Noise of Microwave and

Millimeter-Wave Mixers: Part - Theory. IEEE Trans. Microwave Theory Tech.,

MTT-26(2):49-55, February 1978.

[8] P.C. Liewer. Measurement of Microturbulence in Tokamaks and Comparisons

with Theories of Turbulence. Nucl. Fusion, 25:543-621,1985.

[9] M. J. Gerver, J. Kesner, and J. J. Ramos. Access to Second Stability Region in

a High-Shear Low-Aspect-Ratio Tokamak. Phys. Fluids, 32674-2682,1988. and

references therein.

[10] H. Weisen. The Phase Contrast Method as an Imaging Diagnostic for Plasma

Density Fluctuations. Rev. Sci. Instrum., 59:1544-1549, 1988.

[11] A. E. Costley. Recent Developments in Millimeter Wave Diagnostics at JET.

Rev. Sci. Istrum., 59:1644, 1988.

173

Page 174: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

BIBLIOGRAPHY174

[12] G. Taylor, P. C Efthimion, M. P. McCarthy, E. Fred, and R. C. Cutler. Electron

Cyclotron Measurements with the Fast Scanning Heterodyne Radiometer on

TFTR. Rev. Sci. Instrum., 57:1974-1976, 1986.

[13] J. Fischer et. al. Ten-Channel Grating Polychrometer for Electron Cyclotron

Emission Plasma Diagnostics. Rev. Sci. Instrum., 54:1085-1090, 1983.

[141 S. Ishida et. al. 20 Channel Grating Polychrometer Diagnostic System for ECE

Measurements in JT-60. In 8th APS Topical on High Temperature Plasma Di-

agnostics, 1990.

[15] C. E. Thomas et. al. Rev. Sci. Instrum., 16:3570, 1990.

[16] L H. Hutchinson. Pnciples of Plasma Diagnostics. Cambridge University Press,

1987. Chapter .

[17] M. Bornatici. et al. Electron Cyclotron Emission and Absorption in Fusion Plas-

mas. Nucl. Fusion, 23:1153-1257, 1983.

[18] S. Luckhardt, J. Kesner, J. J. Ramos, P. Woskov, and A. Zolfaghari. Theory of

ECE Fluctuations Caused by Ideal MHD Blooning Modes. PFC/JA- 91-16,

Massachusetts Institute of Technology, Plasma Fusion Center, Cambridge, MA,

02139, USAI 1991.

[19] J. P. Freidberg. Ideal Magnetohydrodynamics. Plenum Press, 1987. Chapter .

[20] A. M. M. Todd et al. Phys. Rev. Letters, 38:826, 1977.

[21] R. B. White. Theory of Tokamak Plasmas. North-Holland, Amsterdam, The

Netherlands, 1989.

[22] R. B. Blackman and J. W. Tukey. The Measurement of Power Spectra. Dover,

New York, 1958.

[23] G. D. Bergland A Guided Tour of the Fast Fourier Transform. IEEE Spectrum,

6:41-52, 1969.

[24] R. N. Bracewell. The Fourier Transform and Its Applications. McGraw Hill,

New York, 1978.

Page 175: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

BIBLIOGRAPHY 175

[251 A. V. Oppenheim and R. W. Schafer. Digital Signal Processing. Prentice-Hall,

New Jersey, 1975.

[26] P. D. Welch. The Use of Fast Fourier Transform for the Estimation of Power

Spectra. IESE Trans. Audio Electroaccoustics, AU-15:70-73, 1970.

[27] G. M. Jenkins and D. G. Watts. Spectral Analysis. Holden-Day, San Francisco,

1968.

[28] JET Joint Undertaking Annual Report. CD-NA-13492-EN-C, EUR 13492, JET

Joint Undertaking, Abingdon, Oxon, X14 3EA, U.K., 1990.

[29] N. A. Salmon. PhD thesis, University of London, November 1989.

[301 A. M. Zolfaghari et al. Fast ECE Correlation Radiometry for Fluctuation Mea-

surements in JET and PBX-M. Rev. Sci. Istrum., 63:4619,1992.

[31] D. Meade, V. Arunasalam, C. Barnes, M. Bell, M. Bitter, K. Bol, R. Budny,

J. Cecchi, S. Cohen, C. Daughney, S. Davis, D. Dimock, F. Dylla, P. Efthimion,

H. Eubank, R. Fonck, R. Goldston, B. Grek, R. Hawryluk, E. Hinov, H. Hsuan,

M. Irie, R. Jacobsen, D. Johnson, L. Johnson, H. Kugel, H. Maeda, D. Manos,

D. Mansfield, R. McCann, D. McCune, K. McGuire, D. Mikkelson, S. L. Milora,

D. Mueller, M. Okabayashi, K. Owens, M. Reusch, K. Sato, N. Sauthoff,

G. Schmidt, J. Schmidt, E. Silver, J. Sinnis, J. Strachan, S. Suckewer H Taka-

hashi, and F. Tenney. PDX Experimental Results. In Plasma Physcis and

Controlled Nuclear Fusion Research 1980, (Proc. of the 8 h Int. Conf., Brussels,

1980), Vol. 1, pages 665-677, Vienna, 1981. IAEA.

[32] R. J. Hawryluk, V. Arunasalam, M. Bell, M. Bitter, K. Bol, K. Brau, S. Davis,

F. Dylla, H. Eubank, M. Finkenthal, R. Fonck, R. Goldston, B. Grek, J. Hugill,

D. Johnson, R. Kaita, S. Kaye, H. Kugel, D. Mansfield, D. Manos, K. McGuire,

R. McCann, D. McCune, D. Mueller, M. Okabayashi, K. Owens, M. Reusch,

N. Sauthoff, G. Schilling, G. Schmidt, S. Sesnic, S. Suckewer, G. Tait, H. Taka-

hashi, F. Tenney, and K. Yamazaki. Ion Heating with High-Power Perpendicular

Neutral-Beam Injection in the Poloidal Divertor Experiment (PDX). 49:326-32971982.

[33] D. Johnson, M. Bell, M. Bitter, K. Bol, K. Brau, D. Buchenauer, R. Budny,

T. Crowley, S. Davis, F. Dylla, H. Eubank, H. Fishman, R. Fonck, R. Goldston,

Page 176: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

176 BIBLIOGRAPI-IY

B. Grek, R. Grimm, R. Hawryluk, H. Hsuan, R. Kaita, S. Kaye, H. Kugel,

D. Manos, D. Marty, J. Manickam, D. Mansfield, E. Mazzucato, R. Mc-

Cann, D. McCune, K. McGuire, R. Motley, D. Mueller, K. Oasa, J. Olivain,

M. Okabayashi, K. Owens, J. Ramette, C. Reverdin, M. Reusch, N. Sauthoff,

G. Schilling, G. Schmidt, S. Sesnic, R. Slusher, C. Surko, J. Strachan, S. Suck-

ewer, H. Takahashi, F. Tenney, P. Thomas, H. Towner, and J. Valley. High-Beta

Experiments with Neutral-Beam Injection on PDX. In Plasma Physiscs and

Controlled Nuclear Fusion Research 1982, (Proc. of the 91h Int. Conf., Balti-more, 1982), Vol. 1, pages 926, Vienna, 1983. IAEA.

[341 M. Okabayashi, P. Beiersdorfer, K. Bol, D. Buchenauer, M. S. Chance, P. Cou-

ture, H. Eubank, H. Fishman, R. Fonck, G. Gammel, R. Goldston, B. Grek,

R. C. Grimm, W. Heidbrink, K. Ida, S. Ishida, K. Itami, R. Izzo, K. Jaehnig,

S. C. Jardin, D. Johnson, R. Kaita, S. Kaye, H. Kugel, B. Leblanc, J. Man-

ickam, K. McGuire, D. Mueller, D. Monticello, W. Park, M. Reusch, G. Rewoldt,

G. Schmidt, S. Sesnic, W. Stodiek, H. Takahashi, W. Tang, F. Tenney, and R. B.

White. Studies of Bean-Shaped Tokamaks and Beta Limits for Reactor Design.

In Plasma Physics and Controlled Nuclear Fusion Research 1984, (Proc. of the101h Int. Conf., London, 1984), Vol. 1, pages 229-238, Vienna, 1985. IAEA.

[35] R. E. Bell, N. Asakura, S. Bernabei, M. S. Chance, P.-A. Duperrex, R. J. Fonck,

G. M. Gammel, G. Greene, R. E. Hatcher, A. Holland, S. C. Jardin, T.-W.

Jiang, R. Kaita, S. M. Kaye, C. E. Kessel, H. W. Kugel, B. LeBlanc, F. M.

Levinton, M. Okabayashi, M. Ono, S. F. Paul, E. T. Powell, Y. Qin, D. W.

Roberts, N. R. Sauthoff, S. Sesnic, and H. Takahashi. Control of plasma shape

and performance of the pbx-m tokamak experiment in high-ot / high-op regimes.

B, pages 1271-1279, 1990.

[36] F. Englemann and M. Curatolo. Nucl. Fusion, 13:497,1973.

[37] P. Woskoboinikow, H. C. Praddaude, W. J. Mulligan, D. R. Cohn, B. Lax, and

H. R. Fetterman. In 6th International Conference on Infrared and Millimeter-

Waves, 1981.

[38] P. Woskoboinikow, R. Erickson, and W. J. Mulligan. Submillimeter-Wave Dumps

for Fusion Plasma Diagnostics. Int. J. of Infrared and Millimeter Waves, 4:1045-

1059, 1983.

Page 177: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

BIBLIOGRAPHY 177

[39] V. 0. Altemose and A. R. Kacyon. Vacuum Compatibility of Machinable Glass

Ceramics. Technical report, Corning Glass Works, Corning, NY, USA.

[40] T. C. Luce. Superthermal Electron Distribution Measurements with Electron

Cyclotron Emission. PhD thesis, Princeton University, October 1987.

[41] K. Kato and I. H. Hutchinson. Design and Performance of Compact Vacuum-

Compatible Submillimeter Viewing Dumps. Rev. Sci. Instrum., 57:1242, 1986.

[421 M. N. Afsar and K. J. Button. Precise Millimeter-Wave Measurements of Com-

plex Refractive Index, Comples Dielectric Permittivity and Loss Tangent of

GaAs, Si, SiO2, A1203, BeO, Macor and Glass. IEEE Rans. on Microwave The-

ory and Techniques, MTT-31(2):217-223, 1983.

[43] R. J. Wy1de et al. Precise Millimeter-Wave Gaussian Beam-Mode Optics and

Corrugated 'Feed Horns. IEEE Proceedings, 131(4):258-262, 1984.

[44] John L. Doane. Propagation and Mode Coupling in Corrogated and Smooth-

Wall Circular Waveguides. In Kenneth J. Button, editor, Infared and Millimeter

Waves, volume 13, chapter 5, pages 123-170. Academic Press, 1985.

[45] M. Thumm, V. Erckmann, W. Kasparek, H. Kumic, G. A. Muller, P. G. Schuller,

and R. Wilhelm. Very High Power mm-Wave Components in Oversized Waveg-

uides. Microwave Journal, 29(11):103-121, November 1986.

[46] E. A. J. Marcatili. Miter Elbow for Circular Electric Mode. In Proceedings of the

Symposium on Quasi-Optics, pages 535-543. Polytechnic Institute of Brooklyn,

June 8-10, 1964.

[471 A. E. Siegman. Lasers. University Science Books, Mill Valley, California, 1986.

[481 L. Rebuffi ad J. P. Crenn. Radiation Patterns of the HE,, Mode and Gaussian

Approximations. Int. J. of Infrared and Millimeter Waves, 10(3):291-311, 1989.

[49] Thomas H. Stix. Waves in Plasmas. AIP Press, New York, 1992.

[50] N. Bretz. personal communication.

[51] D. B. Batchelor and R. C. Goldfinger. Nucl. Fusion, 20:404, 1980.

Page 178: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

178 BIBLIOGRAPHY

[52] E. Mazzucato. Propagation of a Gaussian Beam in a Nonehomogeneous Plasma.

Phys. Fluids B, 1 1855-1859, 1989.

[53] G. Bekefi. Radiation Processes in Plasmas. Wiley, 1966.

[54] Samuel Y. iao. Microwave Devices and Circuits. Prentice Hall, Englewood

Cliffs, New ersey, 1990.

[55] P. C. Magnusson, G. C. Alexander, and V. K. Tripathi. Transmission Lines and

Wave Propagation. CRC Press, Boca Raton, Florida, 1992.

[56] John Wesson. Tokamaks. Oxford Science Publications, Clarendon Press, Oxford,

1987.

[571 H. P. Furth, J. Killeen, M. N. Rosenbluth, and B. Coppi. Stabilization by Shear

and Negative V". In Plasma Physics and Controlled Nuclear Fusion Research,(Proc. of the Int. Conf, Culham, 1965), Vol. 1, pages 103-126, Vienna, 1966.IAEA.

[58] C. Mercier. Nucl. Fusion, 147, 1960.

[59] J. W. Connor et al. Shear, Periodicity, and Plasma Ballooning Modes. Phys.

Rev. Letters, 40:396, 1978.

[60] B. Coppi, G. B Crew, and J. J. Ramos. Comments Plasma Physics, 6109-117,

1981.

[61] M. W. Phillips. Phys. Fluids B, 2973, 1990.

[62] A. Sykes, M. F. Turner, and S. Patel. Beta Limits in Tokamaks Due to High-

n Ballooning Modes. In 11th European Conference on Controlled Fusion and

Plasma Physics 1, page 363, Aachen, 1983.

[63] F. T�royon et al. Plasma Physics, 26:209, 1984.

[64] D. Stork, B. Alper, S. Ali-Arshad, H. J. deBlank, H. P. de Esch, A. Edwards,

T. C. Hender, R. konig, G. J. Kramer, F. B. Marcus, M. F. Nave, D. P.

O'Brien, J. O'Rourke, P. Smuelders, M. Stamp, F. Tibone B J. D. Tubbing,

A. Zolfaghari, and W. Zwingmann. High-0 Studies in the H-mode and Hot Ion

H-mode in JET. In 19th European Physical Society Conference on Controlled

Fusion and Plasma Physics, volume 16C, pages 1339, Innsbruck, Austria, 1992.

Page 179: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

BIBLIOGRAPHY 179

[65] D. V. Bartlett, A. E. Costley, S. E. Jones, L. Porte, R. J. Smith, and A.

Zolfaghari. The JET Heterodyne Radiometer and Investigation of Fast Phe-

nomena. In 18th International Workshop on ECE and ECRH (EC-8), 1992.

[66] B. Alper. personal communication.

[67] J. M Greene and M. S. Chance. Nucl. Fusion, 21:453, 198 .

[68] W. W. Heidbrink et al. Nucl. Fusion, 31:1635,1991.

[69] K. L. Wong et al. Phys. Rev. Letters, 66:1874, 1991.

[70] G. L. Schmidt and JET team. In Plasma Physics and Controlled Nuclear Fusion

Research 1984, (Proc. of the 12 1h Int. Conf., Nice, 1988), Vol. 1, page 215, Vienna,

1989. IAEA.

[711 M. Hugon et al. Nucl. Fusion, 32:33, 1992.

[72] P. Smuelders et al. Technical Report JET-P(94)07, JET Joint Undertaking,Abingdon, xon, X14 3EA, U.K., 1994.

[73] P. H. Rebut., P. P. Lallia, and M. L. Watkins. In Plasma Physics and Controlled

Nuclear Fusion Research 1984, (Proc. of the 12 1h Int. Conf., Nice, 1988), Vol. 2,

page 191, Vienna, 1989. IAEA.

[74] T. C. Hender, B. Alper, S. Ali-Arshad, H. J. Deblank, C. D. Challis C Gim-

blett, J. Han, J. Jackinot, G. J. Kramer, W. Kerner, M. F. Nave, D. P.

O'Brien, J. O'Rourke, P. Smuelders, M. Stamp, F. Tibone, B. J. D. Tubbing,

A. Zolfaghari, and W. Zwingmann. High-op MHD Activity in JET. In 19th Eu-

ropean Physical Society Conference on Controlled Fusion and Plasma Physics,volume 16C, pages 1335, Innsbruck, Austria, 1992.

[75] S. Sesnic et al. Nucl. Fusion, 33:1877, 1993.

[76] B. Leblanc et al. Profile and Transport Modifications with Ion Bernstein Waves

in PBX-M. Bulletin of the American Physical Society, 1993. (To be publishedin Nucl. Fusion).

[77] M. Ono. personal communication.

[78] S. Sesnic. personal communication.

Page 180: Electron Cyclotron Emission Fluctuation Diagnostic on JET and … · 2017. 11. 21. · Electron Cyclotron Emission Fluctuation Diagnostic on JET and PBX-M Tokamaks by All M. Zolfaghari

180 BIBLIOGRAPHY

[79] S. von Goeler. In International School of plasma Physics, Varenna, 1978.

[80] R. Snider. personal communication.

[81] S. S. Medley. Tokamak Physics Experiment Diagnostics. Technical Report 62-

930319-PPPL/SMedley-01, Tokamak Physics Experiment, 1993.

[82] Y. Nagayama et al. Observation of Ballooning Modes in High-Temperature

Tokamak Plasmas. Phys. Rev. Letters, 69:2376, 1992.