61
Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and Filters * Part C: Using Transfer Functions and RLC Circuits * Part D: Equivalent Impedance and DC Sweeps

Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Electronic Instrumentation Experiment 2

* Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and Filters * Part C: Using Transfer Functions and RLC Circuits * Part D: Equivalent Impedance and DC Sweeps

Page 2: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Part A Introduction to Transfer

Functions and Phasors Complex Polar Coordinates Complex Impedance (Z) AC Sweeps

Page 3: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Transfer Functions

The transfer function describes the behavior of a circuit at Vout for all possible Vin.

in

out

VVH ≡

Page 4: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Simple Example 321

32*RRR

RRVV inout +++

=

kkkkkVV inout 321

32*++

+=

65

=≡in

out

VVH

VktVtVthen

VktVtVif

out

in

10)2

2sin(5)(

12)2

2sin(6)(

++=

++=

π

π

Page 5: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

More Complicated Example

What is H now?

H now depends upon the input frequency (ω = 2πf) because the capacitor and inductor make the voltages change with the change in current.

Page 6: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

How do we model H? We want a way to combine the effect of

the components in terms of their influence on the amplitude and the phase.

We can only do this because the signals are sinusoids • cycle in time • derivatives and integrals are just phase

shifts and amplitude changes

Page 7: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

We will define Phasors

A phasor is a function of the amplitude and phase of a sinusoidal signal

Phasors allow us to manipulate sinusoids in terms of amplitude and phase changes.

Phasors are based on complex polar coordinates.

Using phasors and complex numbers we will be able to find transfer functions for circuits.

),( φAfV =

Page 8: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Review of Polar Coordinates

point P is at ( rpcosθp , rpsinθp )

22

1tan

PPP

P

PP

yxr

xy

+=

= −θ

Page 9: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Review of Complex Numbers

zp is a single number represented by two numbers zp has a “real” part (xp) and an “imaginary” part (yp)

jj

jjj

−=

−=⋅−≡

11

1

Page 10: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Complex Polar Coordinates

z = x+jy where x is A cosφ and y is A sinφ ωt cycles once around the origin once for each

cycle of the sinusoidal wave (ω=2πf)

Page 11: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Now we can define Phasors

.),(sincos,

)sin()cos(,)cos()(

droppedisitsotermeachtocommonistjAAVsimplyor

tjAtAVletthentAtVif

ωφφφωφω

φω

+=

+++=

+=

The real part is our signal. The two parts allow us to determine the

influence of the phase and amplitude changes mathematically.

After we manipulate the numbers, we discard the imaginary part.

Page 12: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

The “V=IR” of Phasors

The influence of each component is given by Z, its complex impedance

Once we have Z, we can use phasors to analyze circuits in much the same way that we analyze resistive circuits – except we will be using the complex polar representation.

ZIV

=

Page 13: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Magnitude and Phase

VofphasexyV

VofmagnitudeAyxV

jyxAjAV

φ

φφ

=

=∠

=+≡

+=+≡

−1

22

tan

sincos

Phasors have a magnitude and a phase derived from polar coordinates rules.

Page 14: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Influence of Resistor on Circuit

Resistor modifies the amplitude of the signal by R

Resistor has no effect on the phase

RIV RR =

)sin(*)()sin()(

tARtVthentAtIif

R

R

ωω

==

Page 15: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Influence of Inductor on Circuit

Inductor modifies the amplitude of the signal by ωL

Inductor shifts the phase by +π/2

dtdILV L

L =

)2

sin(*)(

)cos(*)()sin()(

πωω

ωωω

+=

==

tALtVor

tALtVthentAtIif

L

L

L

Note: cosθ=sin(θ+π/2)

Page 16: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Influence of Capacitor on Circuit

Capacitor modifies the amplitude of the signal by 1/ωC

Capacitor shifts the phase by -π/2

∫= dtIC

V CC1

)2

sin(*1)2

sin(*1)(

)cos(*1)cos(*1)(

)sin()(

πωω

ππωω

πωω

ωω

ω

−=−+=

−=−

=

=

tAC

tAC

tVor

tAC

tAC

tVthen

tAtIif

C

C

C

Page 17: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Understanding the influence of Phase

=∠ −

xyV 1tan

180

)(0tan

00:

9020

tan

00:

9020

tan

00:

00tan

00:

1

1

1

1

±=

−=

=∠

<=−

−=−=

=∠

<=−

==

=∠

>=+

=

=∠

>=+

−−

−−

+−

+−

ππ

π

π

orx

Vthen

xandyifreal

yVthen

yandxifj

yVthen

yandxifjx

Vthen

xandyifreal

Page 18: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Complex Impedance

Z defines the influence of a component on the amplitude and phase of a circuit • Resistors: ZR = R

• change the amplitude by R

• Capacitors: ZC=1/jωC • change the amplitude by 1/ωC • shift the phase -90 (1/j=-j)

• Inductors: ZL=jωL • change the amplitude by ωL • shift the phase +90 (j)

ZIV

=

Page 19: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

AC Sweeps AC Source sweeps from 1Hz to 10K Hz

Transient at 10 Hz Transient at 100 Hz Transient at 1k Hz

Page 20: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Notes on Logarithmic Scales

Page 21: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Capture/PSpice Notes Showing the real and imaginary part of the signal

• in Capture: PSpice->Markers->Advanced • ->Real Part of Voltage • ->Imaginary Part of Voltage

• in PSpice: Add Trace • real part: R( ) • imaginary part: IMG( )

Showing the phase of the signal • in Capture:

• PSpice->Markers->Advanced->Phase of Voltage

• in PSPice: Add Trace • phase: P( )

Page 22: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Part B Phasors Complex Transfer Functions Filters

Page 23: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Definition of a Phasor

φφφω

sincos,)cos()(

jAAVletthentAtVif

+=

+=

The real part is our signal. The two parts allow us to determine the

influence of the phase and amplitude changes mathematically.

After we manipulate the numbers, we discard the imaginary part.

Page 27: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Magnitude and Phase

VofphasexyV

VofmagnitudeAyxV

jyxAjAV

φ

φφ

=

=∠

=+≡

+=+≡

−1

22

tan

sincos

Phasors have a magnitude and a phase derived from polar coordinates rules.

Page 28: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Euler’s Formula

θθθ sincos je j +=

2132

13

)(

2

1

2

1

2

13

,

sincos

21

2

1

θθθ

θθ

θθθ

θ

θ

−==

===

=+=+=

andrrrtherefore

err

erer

zzzthen

rejrrjyxzif

jj

j

j

214214

)(2121214

,

2121

θθθ

θθθθ

+=⋅=⋅=⋅=⋅= +

andrrrthereforeerrererzzzand jjj

Page 29: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Manipulating Phasors (1)

2132

13

)(

2

1

2

1)(

2

)(1

2

13

)(

,

)sin()cos(

21

2

1

2

1

φφ

φωφω

φφφ

φ

ω

ω

φω

φω

φω

−=∠=

====

=+++=

−+

+

+

XandAAXtherefore

eAA

ee

ee

AA

eAeA

VVX

AetjtAV

jj

tj

tj

tj

tj

tj

Note ωt is eliminated by the ratio • This gives the phase change between

signal 1 and signal 2

Page 30: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Manipulating Phasors (2)

22

22

21

2

2

13

1

yx

yx

V

VX

+

+==

333

222111

jyxVjyxVjyxV

+=

+=+=

=∠−∠=∠ −−

2

21

1

11213 tantan

xy

xyVVX

Page 31: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Complex Transfer Functions

If we use phasors, we can define H for all circuits in this way.

If we use complex impedances, we can combine all components the way we combine resistors.

H and V are now functions of j and ω

)()()(

ωωω

jVjVjH

in

out

Page 32: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Complex Impedance

Z defines the influence of a component on the amplitude and phase of a circuit • Resistors: ZR = R • Capacitors: ZC=1/jωC • Inductors: ZL=jωL

We can use the rules for resistors to analyze circuits with capacitors and inductors if we use phasors and complex impedance.

ZIV

=

Page 33: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Simple Example

( ) ( )

11)(1

1

)(

)()()(

+=⋅

+=

+=

+==

RCjjH

CjCj

CjR

CjjH

ZZZ

IZZIZ

jVjVjH

CR

C

CR

C

in

out

ωω

ωω

ω

ωω

ωωω

CjZ

RZ

C

R

ω1

=

=

Page 34: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Simple Example (continued)

11)(

+=

RCjjH

ωω

222

22

)(11

)(101

101

)(RCRCRCj

jjH

ωωωω

+=

+

+=

++

=

)(tan1

tan10tan)(

)1()01()(

111 RCRCjH

RCjjjH

ωωω

ωω

−−− −=

=∠

+∠−+∠=∠

2)(11)(

RCjH

ωω

+= )(tan)( 1 RCjH ωω −−=∠

Page 35: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

High and Low Pass Filters High Pass Filter

H = 0 at ω → 0

H = 1 at ω → ∞

Η = 0.707 at ωc

Low Pass Filter

H = 1 at ω → 0

H = 0 at ω → ∞

Η = 0.707 at ωc

ωc=2πfc

fc

fc

ωc=2πfc

Page 36: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Corner Frequency The corner frequency of an RC or RL circuit

tells us where it transitions from low to high or visa versa.

We define it as the place where

For RC circuits:

For RL circuits:

21)( =cjH ω

LR

c =ω

RCc1

Page 37: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Corner Frequency of our example

( )212 RCω+= ( )2

21 ω=

RC

RCjjH

ωω

+=

11)(

21)( =ωjH

21

)(11

21

)(11)( 22

=+

=+

=RCRC

jHωω

ω

RCc1

Page 38: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

H(jω), ωc, and filters We can use the transfer function, H(jω), and the

corner frequency, ωc, to easily determine the characteristics of a filter.

If we consider the behavior of the transfer function as ω approaches 0 and infinity and look for when H nears 0 and 1, we can identify high and low pass filters.

The corner frequency gives us the point where the filter changes: π

ω2

ccf =

Page 39: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Taking limits

012

2

012

2)(bbbaaajH

++++

=ωωωωω

At low frequencies, (ie. ω=10-3), lowest power of ω dominates

At high frequencies (ie. ω =10+3), highest power of ω dominates

0

00

03

16

2

00

31

62

101010101010)(

ba

bbbaaajH ≈

++++

= −−

−−

ω

2

20

03

16

2

00

31

62

101010101010)(

ba

bbbaaajH ≈

++++

= ++

++

ω

Page 40: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Taking limits -- Example

523159)( 2

2

+++

=ωω

ωωωjH

At low frequencies, (lowest power)

At high frequencies, (highest power)

ωωω 35

15)( ==jH LO

339)( 2

2

==ωωωjH HI

Page 41: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Our example at low frequencies

)(010tan)(

110)(

1 axisxonjH

asjH

LOW

LOW

+=

=∠

==→

−ω

ωω

RCjjH

ωω

+=

11)(

101

1)( =+

=ωjH LOW

Page 42: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Our example at high frequencies

220

0tan

10tan)(

011)(

11 ππωω

ωωω

−=−=

=∠

=∞

==∞→

−− RCjH

RCjasjH

HIGH

HIGH

RCjjH

ωω

+=

11)(

RCjjH HIGH ωω 1)( =

Page 43: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Our example is a low pass filter

RCf c

c ππω

21

2==

01 == HIGHLOW HH

What about the phase?

Page 44: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Our example has a phase shift

0

1

=

=

HIGH

LOW

H

H

90)(

0)(

−=∠

=∠

ω

ω

jHjH

HIGH

LOW

Page 45: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Part C Using Transfer Functions Capacitor Impedance Proof More Filters Transfer Functions of RLC Circuits

Page 46: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Using H to find Vout

in

out

in

out

jin

jout

tjjin

tjjout

in

out

eAeA

eeAeeA

VVjH

φ

φ

ωφ

ωφ

ω ===

)(

inout

inout

jin

jHjjout

jin

jout

eAejHeA

eAjHeAφωφ

φφ

ω

ω)()(

)(∠=

=

inout AjHA )( ω= inout jH φωφ +∠= )(

Page 47: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Simple Example (with numbers)

157.0)2(1

1)(2

2

=+

ωjH 41.11

2tan0)( 1 −=

−=∠ − πωjH

)4

2cos(2)(

11ππ

µ

+=

Ω==

tkVtV

kRFC

in

)41.1785.02cos(2*157.0)( −+= tkVtVout π

121

11121

11)(

+=

+=

+=

jkkjRCjjH

πµπωω

)625.02cos(314.0)( −= tkVtVout π

Page 48: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Capacitor Impedance Proof

)(1)()()()(

)()cos()(Re)(

)()(

)sin()cos()(

)cos()()()(

)()(

)(

tICj

tVtVCjdt

tdVCtI

tVjtAjdt

jVddt

tdV

jVjeAjdt

dAedt

jVdAetjAtAjV

tAtVanddt

tdVCtI

CCCC

C

CCC

Ctj

tjC

tjC

CC

C

ωω

ωφωωω

ωωωω

φωφωω

φω

φωφω

φω

===

=+=

=

===

=+++=

+==

++

+

CjZC ω

1=Prove:

Page 49: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Band Filters

f0

f0

Band Pass Filter

H = 0 at ω → 0

H = 0 at ω → ∞

Η = 1 at ω0=2πf0

Band Reject Filter

H = 1 at ω → 0

H = 1 at ω → ∞

Η = 0 at ω0 =2πf0

Page 50: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Resonant Frequency The resonant frequency of an RLC circuit tells

us where it reaches a maximum or minimum. This can define the center of the band (on a band

filter) or the location of the transition (on a high or low pass filter).

The equation for the resonant frequency of an RLC circuit is:

LC1

0 =ω

Page 51: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Another Example

11

1

1

)( 22 ++=

++=

LCjRCjCj

LjR

CjjHωω

ωω

ωω

CjZ

LjZRZ

C

LR

ω

ω1

=

==

RCjLCjH

ωωω

+−=

)1(1)( 2

Page 52: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

At Very Low Frequencies

0)(10)(

111)(

=∠

=→

==

ω

ωω

ω

jHjH

jH

LOW

LOW

LOW

At Very High Frequencies

ππω

ωω

ωω

−=∠

=∞

=∞→

−=

orjH

jH

LCjH

HIGH

HIGH

HIGH

)(

01)(

1)( 2

Page 53: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

At the Resonant Frequency

LC1

0 =ωRCjLC

jHωω

ω+−

=)1(1)( 2

+−

=

+

=

LCRCjRC

LCjLC

LC

jH)11(

11)11(

1)( 20ω

2)(

)(

)(

0

0

0

πω

ω

ω

−=∠

=

−=

jH

RCLCjH

RCLCjjH

if L=1mH, C=0.1uF and R=100Ω

ω0=100k rad/sec f0=16k Hz

|Η0|=1

LCf

π21

0 =

radiansH2π

−=∠

Page 54: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Our example is a low pass filter Phase

φ = 0 at ω → 0

φ = -180 at ω → ∞

Magnitude

Η = 1 at ω → 0

Η = 0 at ω → ∞

f0=16k Hz

1

−90

Actual circuit resonance is only at the theoretical resonant frequency, f0, when there is no resistance.

Page 55: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Part D

Equivalent Impedance Transfer Functions of More

Complex Circuits

Page 56: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Equivalent Impedance

Even though this filter has parallel components, we can still handle it.

We can combine complex impedances like resistors to find the equivalent impedance of the components combined.

Page 57: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Equivalent Impedance

LCLj

LCjLj

CjLj

CjLj

ZZZZZ

CL

CLCL 222 111

1

ωω

ωω

ωω

ωω

−=

+=

+

⋅=

+⋅

=

Page 58: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Determine H

LCLjZCL 21 ω

ω−

=

LjLCRLjjH

ωωωω

+−=

)1()( 2

LCLCbymultiply

LCLjR

LCLj

jH 2

2

2

2

11

1

1)(ωω

ωω

ωω

ω−−

−+

−=

CL

CL

ZRZjH+

=)( ω

Page 59: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

At Very Low Frequencies

2)(

00)(

)(

πω

ωω

ωω

=∠

=→

=

jH

jHR

LjjH

LOW

LOW

LOW

At Very High Frequencies

2)(

01)(

)( 2

πω

ωω

ωωωω

−=∠

=∞

=∞→

−=

−=

jH

jH

RCj

LRCLjjH

HIGH

HIGH

HIGH

Page 60: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

At the Resonant Frequency

11)11(

1

)( 20 =

+

=

LLC

jLCLC

R

LLC

jjH ω

0)(1)( 00 =∠= ωω jHjH

LC1

0 =ω

Page 61: Electronic Instrumentation · 2017. 12. 19. · Electronic Instrumentation Experiment 2 * Part A: Intro to Transfer Functions and AC Sweeps * Part B: Phasors, Transfer Functions and

Our example is a band pass filter

Phase

φ = 90 at ω → 0

φ = 0 at ω0

φ = -90 at ω → ∞

Magnitude

Η = 0 at ω → 0

H=1 at ω0

Η = 0 at ω → ∞

f0