64
Electronic Raman scattering in high Tc cuprate superconductors Toward an understanding of the phase diagram Courtesy: M. Le Tacon, Squap, MPQ Alain Sacuto Laboratoire Matériaux et Phénomènes Quantiques Université Paris Diderot-Paris 7

Electronic Raman scattering in high Tc cuprate ...€¦ · Electronic Raman scattering in high Tc cuprate superconductors Toward an understanding of the phase diagram Courtesy: M

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

  • Electronic Raman scatteringin high Tc cuprate superconductors

    Toward an understanding of the phase diagram

    Courtesy: M. Le Tacon, Squap, MPQ

    Alain SacutoLaboratoire Matériaux et Phénomènes Quantiques

    Université Paris Diderot-Paris 7

  • • Density of Cooper pairs and fraction of coherent Fermi Surface: - Do we really need to invoke 2 gaps to explain the 2 energy scales? - How to reconcile transport and spectroscopy measurements: thermal

    conductivity, heat capacity

    • Exploration of the normal state of cuprates : - electronic Raman response function in the normal state- observation of the pseudo gap state in cuprates

    OutlinePart 3

    • Exploration of the superconducting state of cuprates- the symmetry of a superconducting gap - the emergence of 2 energy scales in the SC state- the question of one or two gaps ? - the controversy on photo-emission data

  • • Differences and analogies between cuprates and pnictides superconductors (Yann Gallais)

    - introduction to iron pnictides superconductors- superconducting gap symmetry- superconductivty and spin density wave order

    • An attempt to give a global view of the cuprate phase diagram

    Outline

    Part 4

  • s – wave gap versus d-wave gap

    s - wave gap: full gap d- wave gap: nodes

    T = 0

    ..

    ..... .....

    ........T ≠ 0below Tcd - wave more excited electrons

    only around nodes

    Nodes

    s-wave few excited electrons

  • Thermal conductivityNote the exponential drop at low temp

    ~Tnormal state

    Kes 1974

    Nb

    Yu, PRL 1992

    YBC0

    Fmv vlTCT )()( ∝κ Fmv vTlTCT )()()( ∝κS-wave d-wave

  • Tunneling in Al/AlO/Al

    From Nobel Prize lecture in 1973

    Ivar Giaever 1973

  • Tunneling experiments Nb vs Cuprates

    Pan et al. 1998Renner and Fisher 1998Maggio Aprile 1995

    For a review ; See RMP 79, 2007,O. Fischer

  • Photon in

    Photon out

    Electron-hole pair created

    energy of the excited electron,

    Momentum area

    Electronic Raman scattering process

  • Photo-emission (ARPES)

    Extraction of one electronenergy of the excited electron

    momentum e-

    Photon in

    Ecxited electronic states from the Fermi sea

  • Photo emission Spectroscopy

    Temperature-dependent photoemission spectra fromoptimally doped Bi-2212 (Tc=91 K), angle integratedover a narrow cut at (π,0). Inset: superconducting-peak intensity vs temperature. After Fedorov et al., 1999.

    Coherent peakBogoliubov quasiparticles

    Δ

    B-i2212

  • ARPES measurements on Bi-2212

    Ding, Norman, et al., 1996 13 K Bi2212

    Tc = 87 K

    Pt

  • What is Electronic Raman response?

  • Mercurate familyTetragonal structure

    D. Colson, CEA

    Hg-1212Tc=120 K

    Hg-1201Tc = 95 K

    Hg-1223Tc=135 K

    Tc=165 K (30 GPa)

    Hg

    Ba

    Ca

    CuO2plane

    oxygen

    Hg-1201

    -108 °C

  • diamond past polishing (one tenth microns)

  • Electronic Raman scattering

    Polarizations Ei et Es Momentum probe

    kx, kx=±ky

    Raman shift ωR = ωi -ωs Energy proberesolution < 1 meV

    ωi , Ei

    Incident

    ωs , Es

    Scattered

    ωRamanLattice

    OrElectronic

    ExcitationsFermi level

    e- holepair

    ωR

  • Raman momentum probe in cuprate structure

    γB2gxy

    γA1gx2+y2

    γA2g→ 0

    γB1gx2-y2

    Cu

    O

    x

    y

    Cu

    O

    x

    y

    C

    O

    x

    y

    Real space k space

    Probe allFermi surface

    Probe (π,π)« cold spots »

    Probe (π,0)« hot spots »

    symmetry

    Anti-Nodes

    Nodes

  • T. P. Devereaux, D. Einzel (95)M. V. Klein, S. B. Dierker (84)

    0,0 0,5 1,0 1,5 2,00,0

    0,5

    1,0

    1,5

    2,0

    ω

    χ''(ω

    ) ar

    b.un

    its

    ω/2Δ0

    Anti-Nodal Nodal

    ΔΑΝ

    /ΔΝ =1.2

    ω3

    Electronic Raman Responsed - wave superconducting gapky

    kx

    0 200 400 600 8000

    1

    2

    3

    χ"(ω

    ) (ar

    b. u

    nits

    )

    Raman Shift (cm-1)0 200 400 600 800

    0

    1

    2

    3

    Raman Shift (cm-1)0 200 400 600 800

    0

    1

    2

    3

    Raman Shift (cm-1)0 200 400 600 800

    0

    1

    2

    3

    Raman Shift (cm-1)0 200 400 600 800

    0

    1

    2

    3

    Raman Shift (cm-1)0 200 400 600 800

    0

    1

    2

    3

    Raman Shift (cm-1)

    2Δ0

    Hg-1201Tc=95KT=12K

    AN

    N

    E

  • Probing the Superconducting statevs doping, p

    0doping level

    Tem

    pera

    ture

    Pseudo gapFermi liquid ?

    Strangemetal

    SC state

    AFstate

    UD OD

    TcM = 95 K

    10 K

  • Probing the Superconducting statevs doping, p

    0doping level

    Tem

    pera

    ture

    Pseudo gap Fermi liquid ?

    Strangemetal

    SC state

    AFstate

    UD OD

    TcM = 95 K

    10 K

  • Raman response in a superconductor

    -Δk

    +Δk

    superconductor

    EF

    γ

    χ’’(ω)

    ω0

    2Δk

    gap

    M. V. Klein, S.B. Dierker PRB 29(84)

    ( )SF

    k

    kNAN

    kkFNAN

    ZN2122

    22

    4

    20 /

    ,''

    ,

    )(Re),(

    Δ−

    ΔΛ∝

    ω

    γ

    ωπωχ

  • Mercurate familyTetragonal structure

    D. Colson, CEA

    Hg-1212Tc=120 K

    Hg-1201Tc = 95 K

    Hg-1223Tc=135 K

    Tc=165 K (30 GPa)

    Hg

    Ba

    Ca

    CuO2plane

    oxygen

    Hg-1201

    -108 °C

  • Anti-Nodal ResponseIn the superconducting state

    Γ

    (π,0) (π,π)

    B1g

    doping decrease

    doping decrease

    0 200 400 600 800 0 200 400 600 800

    407 cm-1

    95K 10K

    Ov.92 K

    90K 10K

    Und.89 K

    750 cm-1

    90K 10K

    Und.86 K

    513 cm-1

    100K 10 K

    Opt.95 K

    290 cm-1

    10K 80K

    Ov.70 K

    177 cm-1Ov.42 K

    10K 45K

    χ"(ω

    ) (a.

    u)

    10K 80K

    Und.78 K

    Raman shift (cm -1)

    612 cm-1

    100K 10K

    Und.92 K

    670 cm-1

    M. Le Tacon Nature Physics

    2, 537, 2006

    10 K 10 K

  • M. V. Klein, S. B. Dierker (84)T. P. Devereaux, D. Einzel (95)

    0.0 0.5 1.0 1.5 2.00.0

    0.5

    1.0

    1.5

    2.0

    ω

    χ''(ω

    ) ar

    b.un

    its

    ω/2Δ0

    Anti-Nodal Nodal

    ΔΑΝ

    /ΔΝ =1.2

    ω3

    Electronic Raman Responsed - wave superconducting gap

    ky

    kx

    AN

    N

  • Γ

    (π,0) (π,π)

    B2g

    0 2 0 0 4 0 0 6 0 0 8 0 0

    7 0 K 1 0 K

    R a m a n s h if t ( c m -1 )

    U n d .6 3 K

    2 3 0 c m -1

    3 8 0 c m -1

    9 0 K 1 0 K

    U n d .8 9 K

    3 6 0 c m -1

    8 0 K 1 0 K

    U n d .7 8 K

    4 0 0 c m -1

    1 0 0 K 1 0 K

    O v .9 2 K

    3 7 0 c m -1

    9 0 K 1 0 K

    U n d .8 6 K

    2 9 7 c m -1

    8 0 K 1 0 K

    O v .7 0 K

    1 7 0 c m -1

    O v .4 2 K

    5 0 K 1 0 K

    0 2 0 0 4 0 0 6 0 0 8 0 0

    5 1 0 c m -1

    1 0 0 K 1 0 K

    O p t.9 5 K

    Nodal ResponseIn the Superconducting state

    doping decrease

    doping decrease

    2 qsp dynamics

    10 K 10 K

  • 0.09 0.12 0.15 0.18 0.21 0.24

    200

    400

    600

    800

    Ene

    rgy

    (cm

    -1)

    Doping level p

    ΔΑΝ

    ΔΝ

    Raman Hg-1201

    TC

    T=10 KT

  • T

    E

    p hole doping

    T*

    Tc

    ΩB1g

    ΩB2g0

    Temperature phase diagramTransport probes

    Energy phase diagramSpectroscopic probes

    p*

    Do not make confusion betweenthe energy and the temperature phase diagram!

  • G. Gu, BNL, USA

    Bi - 2212T maxc= 92 K

    Bi

    BaCa

    Bi-2212 single crystal

  • 0

    1

    2

    0

    1

    2

    0

    1

    2

    0

    1

    0

    1

    0

    1

    0

    1

    2

    3

    0

    1

    0

    1

    2

    0

    1

    0 200 400 600 8000

    1

    2

    200 400 600 800 0

    1

    10K 94K

    10K 100K

    /1 .5

    10K 85K

    0 .19 TC= 84K

    p=0 .21 TC= 75K

    0 .1 TC=68K

    0 .12 TC=75K

    0 .14 TC=87K

    0 .16 TC=91K

    10K 85K

    χ''(ω

    ,T)

    (cts

    .s-1.m

    W -1

    )

    B 2g

    10K 95K

    ω (cm -1) ω (cm -1)

    10K 78K

    B 1g

    0

    0

    0

    0

    0 2 0 0 4 0 0 6 0 0 8 0 0

    0

    2 0 0 4 0 0 6 0 0 8 0 0

    0

    p = 0 . 1 6

    p = 0 . 1 4

    p = 0 . 1 2

    p = 0 . 1 0

    ω ( c m - 1 ) ω ( c m - 1 )

    B 2 g

    p = 0 . 1 9

    B 1 g

    2 energy scales in the SC state of UD cuprates

    Bi -2212

  • 2 energy scales in the SC state of UD cupratesby ERS

    S. Blanc et al. PRB 89 2009W. Guyard et al. PRB 77 2008M. Le Tacon et al. Nat.Phys. 2006

    nodal

    anti-nodal

    0.08 0.12 0.16 0.20 0.240

    20

    40

    60

    80

    100

    T

  • Two energy scales story

    G. Deutscher, Nature 99

    Giaever scale

    E

    Δc eV

    Δ

    exictation gap

    Insulating barriere

    EF

    first excitedstate

    G

    « energy range beyond whichthe pair amplitude return to zero »

    p

    ΔEF

    ASJ scale

    « energy range wheresingle particle states are Missing »

    Δp eV

    G

    N S

    N S

  • Observations of two energy scales by several techniques

    HC: Loram, Tallon , ERS: R.Hackl, Sugai, Le Tacon.. ARPES: Mesot, Tanaka,Kondo/Kaminski, Borisenko, STM: Boyer, Gomes, Hanaguri/Davis…

    0 ,0 0 0 ,0 5 0 ,1 0 0 ,1 5 0 ,2 0 0 ,2 50

    5

    1 0

    R am an B 1 g B 2 g H g-1201 B i-2212

    Y -123

    LS C O A R P E S Tunne l

    ωA

    N, ω

    N /T

    cmax

    T

  • “Two Gaps Make a High Temperature Superconductor?”

    Huefner, Damacelli Rep. Prog. Phys. 08 A. Millis, Science 314, 1888, 06

    1 or 2 gaps ?

  • U. Chatterjee et al. , Nat. Phys. 2010films: Tc = 33K(UD),80K(OPT)crystals: 69K (UD).

    Kondo et. al. Nat. Phys 2009.

    Bi-2201 Bi-2212

    Arpes in Bi-compounds: no consensus…

  • 2 gaps against 1 gap

    La2−xSrxCuO4

    Tc = 36 K

    X = 0.145

    PRL, 101, 2007 M. Shi et al.

    La2−xSrxCuO4

    X = 0.15

    Tc = 37 K

    Slightly UDOpt. Doped

    PRL 99, 2007, Terashima

    Nodes

    Anti-Nodes

  • Probing the Superconducting statevs doping, p

    0doping level

    Tem

    pera

    ture

    Pseudo gap Fermi liquid ?

    Strangemetal

    SC state

    AFstate

    UD OD

    TcMax

    10 K

  • - (ukvk)2 condensation probability of the Cooper Pairs (de Gennes, Super-conductivity of metals and Alloys, 66)

    - Σ (ukvk)2 density of Cooper Pairs around EF as a gap is opening (Legett, k Quantum Liquids in Condensed Matter systems, 2006)

    Electronic Raman scattering in a Superconductor

    vk2

    uk2

    (ukvk)2

    -Δk

    +Δk

    superconductor

    EF

    γ

    +γχ’’(ω)

    ω0

    2Δk

    ∑∝k

    kkvu2)(

  • Raman response function

    ( ) 22

    2

    k

    k

    kk E

    =∫ ∑ μγπωωχ )(''

    ( ) )( tanh)('' kk

    k

    B

    k

    kk EETk

    E 22 2

    22

    −Δ

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛= ∑ ωδγπωχ μ

    22

    2

    4 )( kkk

    k vuE

    TR qtqtie >+∫

  • Area of the peak : density of Cooper pairs

    χ’’(ω)

    ω0

    2Δk

    ∑∝k

    kkvu2)(

  • 0

    1

    2

    0

    1

    2

    0

    1

    2

    0

    1

    0

    1

    0

    1

    0

    1

    2

    3

    0

    1

    0

    1

    2

    0

    1

    0 2 0 0 4 0 0 6 0 0 8 0 00

    1

    2

    2 0 0 4 0 0 6 0 0 8 0 0 0

    1

    1 0 K 4 0 K 7 0 K 8 4 K 9 4 K

    1 0 K 4 0 K 7 0 K 9 1 K 1 0 0 K

    /1 .5

    1 0 K 4 0 K 6 0 K 7 5 K 8 5 K

    p = 0 .1 9 T C = 8 4 K

    p = 0 .2 1 T C = 7 5 K

    p = 0 .1 T C = 6 8 K

    p = 0 .1 2 T C = 7 5 K

    p = 0 .1 4 T C = 8 7 K

    p = 0 .1 6 T C = 9 1 K

    1 0 K 7 5 K 4 0 K 8 5 K 6 0 K

    χ''(ω

    ,T)

    (cts

    .s-1.m

    W -1

    )

    B 2 g

    1 0 K 4 0 K 6 0 K 8 7 K 9 5 K

    ω (c m -1 ) ω (c m -1 )

    1 0 K 4 0 K 5 5 K 6 8 K 7 8 K

    B 1 g

    0.0 0.2 0.4 0.6 0.8 1.00.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    T/Tc

    B2gB1g

    Bi-2212

    0.21 0.21 0.19 0.19 0.16 0.16 0.14 0.14 0.12 0.12 0.10

    Nor

    mal

    ized

    P

    eak

    Are

    a B1g & B2g peaks

    are coherent excitations of the SC state

    Temperature dependence of B1g and B2g peaks

  • Loss of AN coherent superconducting peak

    Over-doped

    Under-doped

    Anti-Nodes

    Nodes

    Bi-2212

    Γ

    B1g

    Γ

    B2g

    0

    1

    2

    0

    1

    2

    0

    1

    2

    0

    1

    0

    1

    0

    1

    0

    1

    2

    3

    0

    1

    0

    1

    2

    0

    1

    0 2 0 0 4 0 0 6 0 0 8 0 00

    1

    2

    2 0 0 4 0 0 6 0 0 8 0 0 0

    1

    1 0 K 4 0 K 7 0 K 8 4 K 9 4 K

    1 0 K 4 0 K 7 0 K 9 1 K 1 0 0 K

    /1 .5

    1 0 K 4 0 K 6 0 K 7 5 K 8 5 K

    p = 0 .1 9 T C = 8 4 K

    p = 0 .2 1 T C = 7 5 K

    p = 0 .1 T C = 6 8 K

    p = 0 .1 2 T C = 7 5 K

    p = 0 .1 4 T C = 8 7 K

    p = 0 .1 6 T C = 9 1 K

    1 0 K 7 5 K 4 0 K 8 5 K 6 0 K

    χ''(ω

    ,T)

    (cts

    .s-1.m

    W -1

    )

    B 2 g

    1 0 K 4 0 K 6 0 K 8 7 K 9 5 K

    ω (c m -1 ) ω (c m -1 )

    1 0 K 4 0 K 5 5 K 6 8 K 7 8 K

    B 1 g

  • Quantitative Raman measurements- Easily cleaved- Large homogeneous surface (mm2)- Optical constants (ellipsometry)

    G. Gu, BNL, USABi-2212

    T maxc=92 K

    0 200 400 600 8000

    2

    4

    6

    8

    10

    Raman shift in (cm-1)

    Ram

    an re

    spon

    se χ

    ''(ω

    ) (c

    ts/s

    .mW

    ) B2g

    293 K 514.52 nm

    Bi -2212 UD 68 K

    10 distinct spots

    Γ

    Bi

    BaCa

    0 200 400 600 8000

    2

    4

    6

    8

    10

    Raman shift in (cm-1)

    OPT 91 K sample A OPT 91 K sample B UD 68 K sample C UD 68 K sample D

    293K514.52nm

    R

    aman

    resp

    onse

    χ''(

    ω)

    (cts

    /s.m

    W)

    Bi-2212

    B2g

    S. Blanc et al., 09

    Change in intensity

    less than 5%for two sampleswith the samedoping level

  • 0.04 0.08 0.12 0.16 0.20 0.240

    1

    2

    3

    4

    5

    doping p

    ΣB1g

    P

    eak

    Are

    a Σ

    0 200 400 600 8000 200 400 600 800

    0

    0

    0

    00

    0

    B2god 70

    od 84

    opt 90

    ud 68

    100K 18K

    χ" (ω

    ) (c

    ts/s

    .mW

    )

    0

    0

    B1g 100K 18K

    ud 68

    opt 90

    od 84

    od 70

    Raman Shift (cm-1 )

    Loss of coherent AN PeakNodalA-Nodal

    0.04 0.08 0.12 0.16 0.20 0.240

    1

    2

    3

    4

    5

    doping p

    ΣB1g ΣB2g

    P

    eak

    Are

    a Σ

    N

    A-N

    Densityof Cooperpairs

    ky

    kx

    ky

    kx

    ky

    kx

    Over-dopedOpt-dopedUnder-doped

    Bi-2212

    SuperconductivtyIs robust

    at the nodes

    S. Blanc et al. PRB 80, 094504 Rapid Com. 2009

  • 0 200 400 600 800

    B1g

    ud 68

    opt 90

    od 84

    od 70

    Raman Shift (cm-1 )

    J.C.Campuzano, PRL 99 D.L.Feng et al. Science 2000Blanc et al. PRB 80 2009

    Loss of coherent Anti-Nodal superconducting peak

    A-Nodal

  • 2 energy scales in the SC state of UD cupratesvarying in opposite manners with U-doping

    Coherent Bogoliubov quasiparticles arereduced In the A-N region with U-doping

    Both are coherent excitations of the SC stateand disapear at Tc

    Summary of our experimental findings:

    Are you able to explain the 2 energy scalesin a one gap schem?

  • Ф=45°

    Fermi surface

    Strongly overdoped

    QPSW decrease

    Loss of coherent quasi-particles in a one gap schem

    0

    1

    2

    3

    0 15 30 45 60 75 900.0

    0.5

    1.0

    ΩB2g

    ΩB1g

    γB2g

    Ζ(φ)

    .Λ(φ

    )2Δ

    (Φ) /Δ

    0

    vΔ ∝ Δmax

    single d-wave gap

    φ in degrees0 1 2 3

    ΩB1g

    B1g

    ΩB2g

    B2g

    ω / Δ0

    AN

    N

    QPSW is preserved( )

    SFk

    kNAN

    kkFNAN

    ZN2122

    22

    4

    20 /

    ,''

    ,

    )(Re),(

    Δ−

    ΔΛ∝

    ω

    γ

    ωπωχ

  • Ф=45°

    Fermi surface

    Strongly overdopedWealky underdoped

    QPSW decrease

    Loss of coherent quasi-particles in a one gap schem

    0

    1

    2

    3

    0 15 30 45 60 75 900.0

    0.5

    1.0

    ΩB2g

    ΩB1g

    γB2g

    Ζ(φ)

    .Λ(φ

    )2Δ

    (Φ) /Δ

    0

    vΔ ∝ Δmax

    single d-wave gap

    φ in degrees0 1 2 3

    ΩB1g

    B1g

    ΩB2g

    B2g

    ω / Δ0

    0

    1

    2

    3

    0 15 30 45 60 75 900.0

    0.5

    1.0

    ΩB1g

    ΩB2g

    Ζ(φ)

    .Λ(φ

    )2Δ

    (Φ) /Δ

    0

    γB2g

    φ in degrees0 1 2 3

    ΩB1g

    ω / Δ0

    p=0.16

    B1g

    ΩB2g

    B2g

    AN

    N

    QPSW is preserved( )

    SFk

    kNAN

    kkFNAN

    ZN2122

    22

    4

    20 /

    ,''

    ,

    )(Re),(

    Δ−

    ΔΛ∝

    ω

    γ

    ωπωχ

  • Ф=45°

    Fermi surface

    Strongly overdopedWealky underdoped

    Underdoped

    QPSW decrease

    Loss of coherent quasi-particles in a one gap schem

    0

    1

    2

    3

    0 15 30 45 60 75 900.0

    0.5

    1.0

    ΩB2g

    ΩB1g

    γB2g

    Ζ(φ)

    .Λ(φ

    )2Δ

    (Φ) /Δ

    0

    vΔ ∝ Δmax

    single d-wave gap

    φ in degrees0 1 2 3

    ΩB1g

    B1g

    ΩB2g

    B2g

    ω / Δ0

    0

    1

    2

    3

    0 15 30 45 60 75 900.0

    0.5

    1.0

    ΩB1g

    ΩB2g

    Ζ(φ)

    .Λ(φ

    )2Δ

    (Φ) /Δ

    0

    γB2g

    φ in degrees0 1 2 3

    ΩB1g

    ω / Δ0

    p=0.16

    B1g

    ΩB2g

    B2g

    0

    1

    2

    3

    0 15 30 45 60 75 900.0

    0.5

    1.0

    ΩB1g

    ΩB2g

    Ζ(φ)

    .Λ(φ

    )2Δ

    (Φ) /Δ

    0

    φ in degrees0 1 2 3

    ω / Δ0

    p=0.16 p=0.12

    B1gΩB1g

    ΩB2g

    B2g

    AN

    N

    QPSW is preserved( )

    SFk

    kNAN

    kkFNAN

    ZN2122

    22

    4

    20 /

    ,''

    ,

    )(Re),(

    Δ−

    ΔΛ∝

    ω

    γ

    ωπωχ

  • Ф=45°

    Fermi surface

    Strongly overdopedWealky underdoped

    Underdoped

    QPSW decrease

    Loss of coherent quasi-particles in a one gap schem

    0

    1

    2

    3

    0 15 30 45 60 75 900.0

    0.5

    1.0

    ΩB2g

    ΩB1g

    γB2g

    Ζ(φ)

    .Λ(φ

    )2Δ

    (Φ) /Δ

    0

    vΔ ∝ Δmax

    single d-wave gap

    φ in degrees0 1 2 3

    ΩB1g

    B1g

    ΩB2g

    B2g

    ω / Δ0

    0

    1

    2

    3

    0 15 30 45 60 75 900.0

    0.5

    1.0

    ΩB1g

    ΩB2g

    Ζ(φ)

    .Λ(φ

    )2Δ

    (Φ) /Δ

    0

    γB2g

    φ in degrees0 1 2 3

    ΩB1g

    ω / Δ0

    p=0.16

    B1g

    ΩB2g

    B2g

    0

    1

    2

    3

    0 15 30 45 60 75 900.0

    0.5

    1.0

    ΩB1g

    ΩB2g

    Ζ(φ)

    .Λ(φ

    )2Δ

    (Φ) /Δ

    0

    φ in degrees0 1 2 3

    ω / Δ0

    p=0.16 p=0.12

    B1gΩB1g

    ΩB2g

    B2g

    Strongly underdoped

    0

    1

    2

    3

    0 15 30 45 60 75 900.0

    0.5

    1.0

    ΩB2g

    ΩB1g

    Ζ(φ)

    .Λ(φ

    )2Δ

    (Φ)/Δ

    0

    φ in degrees0 1 2 3

    ΩB1g

    ω / Δ0

    p=0.16 p=0.12 p=0.09

    B1g

    ΩB2g

    B2g

    AN

    N

    QPSW is preserved( )

    SFk

    kNAN

    kkFNAN

    ZN2122

    22

    4

    20 /

    ,''

    ,

    )(Re),(

    Δ−

    ΔΛ∝

    ω

    γ

    ωπωχ

  • 0 2 0 0 4 0 0 6 0 0 8 0 0

    0 .0 5 0 .1 0 0 .1 5 0 .2 0 0 .2 50 .5

    1 .0

    1 .5

    0

    B 2 g o d 7 0

    o d 8 4

    o p t 9 0

    u d 6 8

    0

    0

    0

    1 0 0 K 1 8 K

    χ"

    (ω)

    (cou

    nts

    s-1 m

    W-1

    )

    2

    4

    6

    8

    a B i-2 2 1 2

    R a m a n s h if t (c m -1)

    d o p in g p

    αp/α

    p-op

    t

    Cstev

    Z N ≈Λ∝Δ

    2)(α

    in the doping Range of p ~0.1 - 0.16

    Doping Evolution of the Slope of the B2g peak

    S. Blanc et al. PRB 80, 094504 Rapid Com. 2009

  • Ф=45°

    Fermi surface

    Strongly overdopedWeakly underdoped

    Underdoped

    decrease QPSW preserved QPSW

    Loss of coherent quasi-particles in a one gap schem

    0

    1

    2

    3

    0 15 30 45 60 75 900.0

    0.5

    1.0

    ΩB2g

    ΩB1g

    γB2g

    Ζ(φ)

    .Λ(φ

    )2Δ

    (Φ) /Δ

    0

    vΔ ∝ Δmax

    single d-wave gap

    φ in degrees0 1 2 3

    ΩB1g

    B1g

    ΩB2g

    B2g

    ω / Δ0

    0

    1

    2

    3

    0 15 30 45 60 75 900.0

    0.5

    1.0

    ΩB1g

    ΩB2g

    Ζ(φ)

    .Λ(φ

    )2Δ

    (Φ)/Δ

    0

    γB2g

    φ in degrees0 1 2 3

    ΩB1g

    ω / Δ0

    p=0.16

    B1g

    ΩB2g

    B2g

    0

    1

    2

    3

    0 15 30 45 60 75 900.0

    0.5

    1.0

    ΩB1g

    ΩB2g

    Ζ(φ)

    .Λ(φ

    )2Δ

    (Φ)/Δ

    0

    φ in degrees0 1 2 3

    ω / Δ0

    p=0.16 p=0.12

    B1gΩB1g

    ΩB2g

    B2g

    Strongly underdoped

    0

    1

    2

    3

    0 15 30 45 60 75 900.0

    0.5

    1.0

    ΩB2g

    ΩB1g

    Ζ(φ)

    .Λ(φ

    )2Δ

    (Φ)/Δ

    0

    φ in degrees0 1 2 3

    ΩB1g

    ω / Δ0

    p=0.16 p=0.12 p=0.09

    B1g

    ΩB2g

    B2g

    ANN

  • 0.04 0.08 0.12 0.160

    20

    40

    60

    fcERS v

    Δ ∝ Δmax (Blanc et al.)

    hole doping p

    f c (in

    %)

    Fractions of coherent Fermi surface

    0.04 0.08 0.12 0.160

    20

    40

    60

    fc vΔ ∝ Δmax (Blanc et al.)

    f Arpesc (Kanigel et al.)

    hole doping p

    f c (in

    %)

    0.04 0.08 0.12 0.160

    20

    40

    60

    f c (in

    %)

    hole doping p

    fc vΔ ∝ Δmax (Blanc et al.)

    f Arpesc (Kanigel et al.)

    f HCc (H.H.Wen et al.)

    maxΔ∝ ccB fTk

    , cBgB Tk∝Ω 2h

    Δ∝Ω vfcgB2h

    0

    1

    2

    ΩB2g

    2Δ(Φ

    )/Δ0

    fc

    maxΔ∝Δv

    S. Blanc et al.Phys. Rev. B 82, 144516 (2010)

  • Antinodal quasi-particles

    H. Ding in PRL 2001

  • « the so called Coherent and Excitation gaps »only one gap in reality

    G. Deutscher, Nature 99

    Giaever scale

    E

    p

    Δc eV

    Δ

    Pair BreakingPeak energy

    Insulating barriere

    EF

    G

    first excitedstate

    ΔEF

    ξ

    Δp eV

    G energy range on whichthe Cooper pairs flow

    energy range wheresingle particle states are missing

    ASJ scale

    B1g

    B2gfc

  • Fractions of FS and a single d-wave gap

    p= 0.09

    ΩB1g

    kY

    kX

    Fermi Surface at T=TC

    ΩB2g

    p= 0.16

    Energy of the SC gap

    -2 -1 0 1 2

    dI/d

    V

    Voltage/Δ0

    p=0.16 p=0.14 p=0.12 p=0.11 p=0.09

    ANN

    FSF

    ieVieVZN

    dVdI

    )()(Re)(

    φφ 22 Δ−Γ−

    Γ−∝

    K. McElroy et al PRL 2005

    T

  • CONCLUSION

    Fraction of coherent Fermi Surface

    - explains the existence of the 2 energy scalesin the SC state

    - controls Tc such as Tc ∝ fc.Δm

    - Consistent with : Raman, « Arpes », Tunnelingand transport measurements

  • AFMott

    insulator

    Hole doping

    Tem

    pera

    ture

    0 p0.05 0.16 0.27

    TN

    PseudoGap

    T*

    strange Metalρ∝T

    p*

    Cuprates phase diagram hole doped

    TC

    2 distinct regimesIn the SC states

  • d-wavesuperconductor

    Cuprates phase diagram hole doped

    AFMott

    insulator

    Hole doping

    Tem

    pera

    ture

    0 p0.05 0.16 0.27

    TNT*

    p*

    Tc

    2scales

    1scale

  • d-wavesuperconductor

    Cuprates phase diagram hole doped

    AFMott

    insulator

    Hole doping

    Tem

    pera

    ture

    0 p0.05 0.16 0.27

    TN

    p*

    Superconductivitydevelopps

    on full Fermi surface

    Tc

    Superconductivitydevelopps

    Partially on the Fermi surface

  • Normal state and Pseudo-gap

  • d-wavesuperconductor

    TC

    Cuprates phase diagram hole doped

    AFMott

    insulator

    Hole doping

    Tem

    pera

    ture

    0 p0.05 0.16 0.27

    TN

    PseudoGap

    T*

    « strange Metal »ρ∝T

    Normal Metalρ∝T2

    p*

  • 0 200 400 600 800 1000

    Hg-1201R

    aman

    suc

    eptib

    ility

    χ"(ω

    ) (u.

    a.)

    Raman shift (cm-1)

    12K

    Raman observation of the Pseudo-Gap

    B1g anti-nodes

    close to optimal

    Tc = 95 K

    A. Sacuto et al. Rep. of French Science Academy 2011

    Pair breakingpeak

    110K

    150K

    Pseudogap

    Lost ofpair breaking peak

  • Comparison between the Raman PG and others technics

    W.Guyard et al. not yet published, 09 T. Kondo et al. Nature 457, 09

    -1000 -500 0 500 10000

    10

    20

    Ram

    an s

    ucep

    tibili

    ty χ

    "(ω

    ) (u.

    a.)

    Hg-1201

    p = 0.16 UD 95 K

    B1g A-Nodal

    Symmetrized Raman shift (cm-1)

    S N RT Bi-2201

    Tc=29K

    Energy (meV)0 20 40

    ARPESERS

  • Analogy between Raman responsefunction and optical conductivity

    Shastry-Shraiman relation (PRL 65, 1997)(from Kubo formula)

    X Ω

    τ Life timeof qsp

  • Raman PG and c- axis optical conductivity

    The out-of-plane hopping which is modulated by the in-plane momentum in such a way that itis strongly governed by qps located along the BZ axes t⊥ (k) = t⊥0 [cos(kx) − cos(ky)]

    0 200 400 600 800 1000

    0.01

    0.02

    0.03

    Ram

    an in

    tens

    ity a

    rb.u

    nits

    Raman shift Ω cm-1

    B1g coskx-cosky

    90 K110 K130 K150 K

    295

    CC Homes 95

    J. Phys. Chem. Sol 56, 1573, 95, O.K.Andersen

    150

    110

    10

    70

    C axis

    W. Guyard et al.