20
Electronic Supplementary Information Synthesis of the Fluorohydridoborate Anions [BHF 3 ] and [1-HF 2 B-9,12-X 2 -closo-1,2-C 2 B 10 H 9 ] (X = H, I): Deboronation of 1,2- and 1,7-dicarba-closo-dodecaboranes with anhydrous [Me 4 N]F Katharina Duda, a Alexander Himmelspach, a Johannes Landmann, a Florian Kraus b and Maik Finze a,* a Institut für Anorganische Chemie, Institut für nachhaltige Chemie & Katalyse mit Bor (ICB), Julius- Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. E-Mail: [email protected]. Homepage: http://www-anorganik.chemie.uni-wuerzburg.de/forschungsgruppen/prof_dr_m_finze/ b Anorganische Chemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany. Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

Electronic Supplementary Information

Synthesis of the Fluorohydridoborate Anions [BHF3]ndash and

[1-HF2B-912-X2-closo-12-C2B10H9]ndash (X = H I)

Deboronation of 12- and 17-dicarba-closo-dodecaboranes with

anhydrous [Me4N]F

Katharina Dudaa Alexander Himmelspacha Johannes Landmanna Florian Krausb and Maik Finzea

a Institut fuumlr Anorganische Chemie Institut fuumlr nachhaltige Chemie amp Katalyse mit Bor (ICB) Julius-

Maximilians-Universitaumlt Wuumlrzburg Am Hubland 97074 Wuumlrzburg Germany

E-Mail maikfinzeuni-wuerzburgde

Homepage httpwww-anorganikchemieuni-wuerzburgdeforschungsgruppenprof_dr_m_finze

b Anorganische Chemie Fachbereich Chemie Philipps-Universitaumlt Marburg Hans-Meerwein-Straszlige

4 35032 Marburg Germany

Electronic Supplementary Material (ESI) for ChemCommThis journal is copy The Royal Society of Chemistry 2016

2

Experimental Section

Reactions involving air-sensitive compounds were performed either in 100 or 250 mL round bottom

flasks or in 20 or 60 mL glass tubes equipped with valves with PTFE stems (Young London) under

argon using standard Schlenk line techniques 1H 11B 19F and 13C NMR spectra were recorded at 25 degC

either in CD3CN on a Bruker Avance HD III 300 a Bruker Avance DPX 400 or a Bruker Avance

500 spectrometer The NMR signals were referenced against TMS (1H and 13C) BF3OEt2 in CDCl3

with X(11B) = 32083974 MHz and CFCl3 with X(19F) = 94094011 as external standards1 1H and 13C

chemical shifts were calibrated against the residual solvent signal and the solvent signal respectively

(δ(1H) CD2HCN 194 ppm δ(13C) CD3CN 11826 and 132 ppm2 The assignment of the 11B and 1H

signals is aided by 11B1H-1H11B 2D3 11B1H-1H11B COSY4 and 1H11Bselective experiments 1H-13C HMBC and HSQC as well as 13C11B1H triple resonance experiments were performed to support

the interpretation of the 13C NMR spectroscopic data The NMR spectroscopic data of the [Me4N]+

cations are omitted for clarity where applicable IR spectra were measured in the attenuated total

reflection (ATR) mode in the region of 4000ndash530 cm-1 with an apodized resolution of 1 cmndash1 with a

Bruker Alpha spectrometer equipped with a Bruker diamond single reflection ATR system Raman

spectra were measured using the 1064 nm excitation line of a NdYAG laser on crystalline samples

contained in melting point capillaries in the region of 3500ndash80 cmndash1 at room temperature on a Bruker

IFS-120 spectrometer with an apodized resolution of 1 cmndash1 ESI mass spectra were acquired on a

microTOF (Bruker Daltonics) Elemental analysis (C H N) were performed either with a Euro EA3000

instrument (HEKA-Tech Germany)

Chemicals

All standard chemicals were obtained from commercial sources und used without further purification

Solvents were dried according to standard protocols5 and stored in flasks equipped with valves with

PTFE stems (Young London) under an argon atmosphere 12- and 17-dicarba-closo-dodecaborane and

decaborane(14) were purchased from Katchem spol s r o (Praha Czech Republic) 1-R-closo-12-

C2B10H11 (R = Ph6 Me7) 912-I2-closo-C2B10H108 and [Me4N]F9 were synthesized according to known

procedures

Quantum Chemical Calculations

Density functional calculations (DFT)10 were carried out using Beckersquos three-parameter hybrid

functional and the Lee-Yang-Parr correlation functional (B3LYP)11 using the Gaussian09 program suite

(Table S1)12 Geometries were optimized and energies were calculated with the 6-311++G(dp) (SDD

for iodine) basis sets Diffuse functions were incorporated because improved energies are obtained for

anions13 Structures represent true minima with no imaginary frequency on the respective hypersurface

3

DFT-GIAO14 NMR shielding constants s(11B) s(13C) s(15N) and s(1H) were calculated at the

B3LYP6-311++G(2dp) level of theory using the geometries computed as described The 11B 19F and 1H NMR shielding constants were calibrated to the respective chemical shift scale d(11B) d(19F) and

d(1H) using predictions on diborane(6) CFCl3 and Me4Si with chemical shifts of 166 ppm for B2H615

and 0 ppm for Me4Si and CFCl316 Spin-spin coupling constants were calculated at the same level as the

NMR shielding constants Calculations of all NMR parameters were performed with the Gaussian09

program suite12

Table S1 Thermochemical data calculated at the B3LYP6-311++G(dp) level of theory

Anion Symmetry H (gas phase) [au] G (gas phase) [au] H (CH3CN) [au] G (CH3CN) [au]

[BH4]ndash Td -27238209 -27259706 -27336957 -27358429 [BH3F]ndash (1) C3v -126577557 -126603216 -126674204 -126699868 [BH2F2]ndash C2v -225932952 -225961465 -226027959 -226056487 [BHF3]ndash C3v -325297875 -325328113 -325391410 -325422686 [BF4]ndash Td -424660619 -424691356 -424752170 -424782901 [1-HF2B-closo-12-C2B10H11]ndash (2) C1 -556792145 -556840213 -556859609 -556907949 [1-H3B-closo-12-C2B10H11]ndash C1 -358098289 -358142211 -358165365 -358209761 [1-F3B-closo-12-C2B10H11]ndash C1 -656149833 -656199704 -656218082 -656267901

[b] The geometries were reoptimized using the C-PCM solvation model MeCN e = 35688

Scheme S1 Calculated thermodynamic data for the dismutation reactions of [BH2F2]ndash and [BHF3]ndash giving [BH4]ndash and [BF4]ndash

Crystal Structure Determination of [Me4N]1 [Me4N]2 and [Me4N]3

Colourless crystals of [Me4N][BHF3] ([Me4N]1) [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2) and

[Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3) were obtained from solutions in acetone by slow

uptake of pentane vapour Crystals were investigated with a Bruker X8-Apex II diffractometer using

Mo-Kα radiation (l = 071073 Aring) in all cases All structures were solved either by direct (SHELXS)17

or by intrinsic phasing methods (SHELXT)17a18 Refinements are based on full-matrix least-squares

calculations on F217a19 [Me4N]1 and [Me4N]2 were refined as twins ([Me4N]1 ndash1 0 0 0 0 1 0 ndash1 0

BASF 044 [Me4N]3 ndash1 0 0 0 1 0 0 0 1 BASF 042) The anion [BHF3]ndash in the crystal of [Me4N]1 is

05 [BF4]ndash + 05 [BH4]ndash

ΔH(gas phase) = ndash432 kJ molndash1

ΔG(gas phase) = ndash369 kJ molndash1

ΔH(CH3CN) = ndash436 kJ molndash1

ΔG(CH3CN) = ndash372 kJ molndash1

ΔH(gas phase) = ndash426 kJ molndash1

ΔG(gas phase) = ndash378 kJ molndash1

ΔH(CH3CN) = ndash435 kJ molndash1

ΔG(CH3CN) = ndash385 kJ molndash1

[BH2F2]ndash

[BH3F]ndash 025 [BF4]ndash + 075 [BH4]ndash

4

located on a mirror plane In the crystals of [Me4N]2 and [Me4N]3 two independent formula units are

present All non-hydrogen atoms were refined anisotropically The positions of all hydrogen atoms were

located from electron density difference maps In the final steps of the refinement idealized bond lengths

and angles were introduced Both crystallographically independent anions in the crystal of [Me4N]2 and

one of the independent anions in the crystal of [Me4N]3 reveal partially disordered BHF2 groups The H

atom of the [BHF3]ndash anion in [Me4N]1 and the H atom of the non-disordered crystallographically

independent anion [1-HF2B-912-I2-closo-12-C2B10H9]ndash in [Me4N]3 were refined without any restraints

Calculations were performed with the ShelXle graphical interface20 Molecular structure diagrams were

drawn with the program Diamond 42221 Experimental details crystal data and the CCDC numbers

are collected in Table S2 These data can be obtained free of charge from The Cambridge

Crystallographic Data Centre via wwwccdccamacukdata_requestcif

Table S2 Selected Crystal Data and Details of the Refinement of the Crystal Structures of [Me4N][BHF3] ([Me4N]1) [Me4N][1-HF2B-closo-

12-C2B10H11] ([Me4N]2) and [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Me4N]1 [Me4N]2 [Me4N]3

Formula C4H13BF3N C6H24B11F2N C6H22B11F2I2N MW 14296 26717 51895 T (K) 100 100 100 Crystal system orthorhombic monoclinic triclinic Space group Pbcm P21 P-1 a (Aring) 55770(13) 10452(3) 124538(7) b (Aring) 11436(3) 13828(3) 135015(8) c (Aring) 11447(3) 10773(2) 135440(8) a 607590(10) b 90102(7) 72300(2) g 86331(2) volume (Aring3) 7301(3) 15571(6) 188328(19) Z 4 4 4 d(calcd) (Mg mndash3) 1301 1140 1830 micro (mmndash1) 0129 0072 3343 F(000) 304 560 976 No of collected reflections 5381 36594 19760 No of unique reflections 883 6631 7950 R(int) 01394 00477 00202 No of parameters restraints 48 0 384 1 419 0 R1 (I gt 2s(I)) 00365 00688 00246 wR2 (all) 00954 01965 00555 GOF on F2 1074 1097 1058 Largest diff peak hole e Aringndash3 0256 ndash0211 0551 ndash0310 1054 ndash0759 CCDC no 1505729 1505730 1505731

Syntheses

Deboronation of closo-17-C2B10H12 using [Me4N]F [Me4N][BHF3] ([Me4N]1) and [Et4N][nido-79-

C2B9H12] A 100 mL glass tube equipped with a magnetic stirring bar was charged with 17-dicarba-

closo-dodecaborane (0430 g 298 mmol) 4 equivalents of anhydrous [Me4N]F (111 g 1193 mmol)

and dry THF (50 mL) under argon The suspension was stirred at 70 degC overnight The reaction was

complete when no 17-dicarba-closo-dodecaborane was detected by 11B NMR spectroscopy in the

reaction mixture [Me4N]1 and [Me4N]2[nido-79-C2B9H11] are both insoluble in THF The colorless

solid materials were isolated by filtration through a fine glass frit under argon and dried in a vacuum

The [Me4N]1 was extracted from the solid material with CH3CN (3 x 50 mL) and the [Me4N]2[nido-79-

C2B9H11] remained as a solid This solid was taken up into ice cold water and the residual CH3CN was

removed using a rotary evaporator In some cases a solid separated during removal of the CH3CN that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N][nido-79-

C2B9H12] during the next step An aqueous solution of [Et4N]Cl (66 g 238 mmol) was added and a

colourless precipitate formed that was isolated by filtration and subsequently dried in a vacuum Yield

of [Et4N][nido-79-C2B9H12] 0472 g (179 mmol 61) The volume of the solution of [Me4N][BHF3]

in acetonitrile was reduced to 75 mL and hexane (200 mL) was added Colorless [Me4N]1 precipitated

The product was collected by filtration and dried in a vacuum overnight and contained 3

[Me4N][BH2F2] as side product as assessed by NMR spectroscopy Yield of [Me4N]1 0090 g

(063 mmol 21)

[Me4N]1 1H NMR (50013 MHz CD3CN) δ = 311 (t 12-H 2J(14N1H) = 06 Hz [N(CH3)4]+) 294 (qq 1-H 1J(11B1H) = 1365 Hz 2J(19F1H) = 927 Hz) ppm 1H11B NMR (50013 MHz CD3CN) δ = 311 (t 12-H 2J(14N1H) = 059 Hz [N(CH3)4]+ 294 (q 1-

H 2J(19F1H) = 927 Hz) ppm 1H19F NMR (40013 MHz CD3CN) δ = 311 (t 12-H 2J(14N1H) = 059 Hz [N(CH3)4]+ 294 (q 1-

H 1J(11B1H) = 1365 Hz) ppm 11B NMR (16046 MHz CD3CN) δ = 12 (dq 1-B 1J(11B1H) = 1365 Hz 1J(19F11B) = 693 Hz) ppm 11B1H NMR (16046 MHz CD3CN) δ = 12 (q 1-B 1J(19F11B) = 699 Hz) ppm 19F NMR (37649 MHz CD3CN) δ = ndash13689 (qd 3-F 1J(19F11B) = 699 Hz 2J(19F1H) = 927 Hz) ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash13689 (q 3-F 1J(19F11B) = 699 Hz) ppm 19F11B NMR (47059 MHz CD3CN) δ = ndash13689 (d 3-F 2J(19F1H) = 927 Hz) ppm

6

Figure S1 1H 1H11B and 1H19F NMR spectra of [Me4N]1

IR (ATR) 120584 = 2375 (w BminusH) 2208 (w BminusH) cmminus1

Raman 120584 = 2375 (w BminusH) 2213 (w BminusH) 950 (m sh BminusF) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 1 (HBF3)minus 68 (25) 69 (100) found 68 (25) 69 (100)

Elemental analysis calcd () for C4H13BF3N (14296) C 3361 H 917 N 980 found C 3404 H

987 N 1012

7

Figure S2 IR and Raman spectrum of [Me4N]1

[Me4N][BH2F2] 1H NMR (50013 MHz CD3CN) δ = 317 (qt 2-H 1J(11B1H) = 1089 Hz 2J(19F1H) = 553 Hz) 311

(t 12-H 2J(14N1H) = 059 Hz [N(CH3)4]+) ppm 1H11B NMR (50013 MHz CD3CN) δ = 317 (t 2-H 2J(19F1H) = 553 Hz) 311 (t 1-H 2J(14N1H) = 059 Hz [N(CH3)4]+) ppm 11B NMR (16046 MHz CD3CN) δ = 51 (tt 1-B 1J(11B1H) = 1089 Hz 1J(19F11B) = 916 Hz) ppm 11B1H NMR (16046 MHz CD3CN) δ = 51 (t 1-B 1J(19F11B) = 916 Hz) ppm 19F NMR (37649 MHz CD3CN) δ = ndash16443 (qt 2-F 1J(19F11B) = 916 Hz 2J(19F1H) = 553 Hz) ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash16443 (q 2-F 1J(19F11B) = 1089 Hz) ppm 19F11B NMR (47059 MHz CD3CN) δ = ndash16443 (t 2-F 2J(19F1H) = 553 Hz) ppm

8

Figure S3 11B and 11B1H NMR spectra of [Me4N]1 with the side product [Me4N][BH2F2]

[Et4N][nido-79-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 220 (s 2-H

B2+5H) 201 (s 1-H B8H) 142 (dd 2-H 2J(1H1Hmicro) = 122 Hz 3J(1H1H) = 35 Hz B10+11H) 121

(tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 117 (s 2-H C7+9H) 108 (s 2-H

B3+4H) 065 (s 1-H B1) 008 (s 1-H B6) ndash233 (t 1-H 2J(1H1Hmicro) = 122 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) ndash47 (d 2-B 1J(11B1H) = 1477 Hz B2+5) ndash59 (d 1-B 1J(11B1H)

= 1344 Hz B8) ndash216 (d 2-B 1J(11B1H) = 1575 Hz B3+4) ndash229 (dd 2-B 1J(11B1H) = 1283 Hz 1J(11B1Hmicro) = 496 Hz B10+11) ndash344 (d 1-B 1J(11B1H) = overlapped B1) ndash355 (d 1-B 1J(11B1H) = overlapped B6) ppm 11B1H NMR (16046 MHz CD3CN) δ = ndash47 (s 2-B B2+5) ndash59 (s 1-B B8) ndash216 (s 2-B

B3+4) ndash229 (s 2-B B10+11) ndash344 (s 1-B B1) ndash355 (s 1-B B6) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5308 (t 4-C 1J(14N 13C) = 31 Hz [Et4N]+) 3269 (brs 2-

C C7+9) 768 (s 4-C [Et4N]+) ppm

9

[Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2) A 250 mL glass tube was charged with 12-dicarba-

closo-dodecaborane (1 g 69 mmol) 4 equivalents of anhydrous [Me4N]F (518 g 276 mmol) and dry

THF (50 mL) The suspension was stirred at room temperature for 24 h The resulting suspension was

transferred by cannula onto a fine glass frit under argon The filtrate contained the [Me4N]2 whereas

[Me4N]1 and [Me4N]2[nido-78-C2B9H11] are insoluble in THF The solid material was worked up as

described for the synthesis of [Me4N]1 and [Et4N][nido-79-C2B9H12] from 17-dicarba-closo-

dodecaborane Yield [Me4N]1 0193 g (135 mmol 20) [Et4N][nido-78-C2B9H12] 106 g (402

mmol 58) The solution of [Me4N]2 in THF was concentrated to approximately 10 mL using a rotary

evaporator Hexane (300 mL) was added to the solution During the addition a colourless precipitate

formed that was isolated by filtration through a glass frit in air Yield [Me4N]2 0203 g (077 mmol

22)

[Me4N]2 1H NMR (50013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (qt 1-H 1J(11B1H) = 1252 Hz 2J(19F1H) = 632 Hz) 213 (s 2-H B3+6H or

B7+11H) 200 (s 8-H B4+58+109123+6 or 7+11H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (t 1-H 2J(19F1H) = 632 Hz) 213 (s 2-H B3+6H or B7+11H) 200 (s 8-H

B4+58+109123+6 or 7+11H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (q 1-H 1J(11B1H) = 1252 Hz) 213 (s 2-H B3+6H or B7+11H) 200 (s 8-H

B4+58+109123+6 or 7+11H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 30 [15] (dt 1-B 1J(19F11B) = 772 Hz 1J(11B1H) = 1262 Hz HBF2-Cluster) ndash36 [ndash58] (d 1-B 1J(11B1H) = 1486 Hz B9) ndash50 [ndash74] (d

1-B 1J(11B1H) = 1439 Hz B12) -92 [ndash111] (d 2-B 1J(11B1H) = 1454 Hz B8+10) ndash116 [ndash132]

(d 2-B 1J(11B1H) = 1586 Hz B4+5) ndash134 [ndash158 ndash168] (d 4-B 1J(11B1H) = 1486 Hz

B3+67+11) ppm 11B1H NMR (16046 MHz CD3CN) [DFT calculations] δ = 30 [15] (t 1-B 1J(19F11B) = 772 Hz

HBF2-Cluster) ndash36 [ndash58] (s 1-B B9) ndash50 [ndash74] (s 1-B B12) ndash92 [ndash111] (s 2-B B8+10) ndash116

[ndash132] (s 2-B B4+5) ndash134 [ndash158 ndash168] (s 4-B B3+67+11) ppm 11B19F NMR (16046 MHz CD3CN) 30 (d 1-B 1J(11B1H) = 1262 Hz HBF2-Cluster) ndash36 (d 1-

B 1J(11B1H) = 1486 Hz B9) ndash50 (d 1-B 1J(11B1H) = 1439 Hz B12) ndash92 (d 2-B 1J(11B1H) =

1454 Hz B8+10) ndash116 (d 2-B 1J(11B1H) = 1586 Hz B4+5) ndash134 (d 4-B 1J(11B1H) = 1486 Hz

B3+67+11) ppm 13C1H NMR (12576 MHz CD3CN) δ = 814 (q 1-C 1J(13C11B) = 528 Hz C1BHF2) 6048 (s 1-

C C2) 5618 (t 4-C 2J(14N13C) = 42 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 8140 (t 1-C 2J(19F13C) = 371 Hz C1BHF2) 605 (t

1-C 3J(19F13C) = 277 Hz C2) 5618 (t 4-C 2J(14N13C) = 42 Hz [Me4N]+) ppm

10

19F NMR (37649 MHz CD3CN) δ = ndash15487 (qd 2-F 1J(19F11B) = 767 Hz 2J(19F1H) = 633 Hz) ppm 19F1H NMR (7548 MHz CD3CN) δ = ndash15487 (q 2-F 1J(19F11B) = 767 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15487 (d 2-F 2J(19F1H) = 633 Hz) ppm

Figure S4 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

the signal of the BHF2 unit is marked with asterisks

11

Figure S5 11B and 11B1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

Figure S6 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

12

Figure S7 19F and 19F11B NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

IR (ATR) 120584 = 3081 (w CClusterminusH) 2633-2516 (m BminusH) 2341 (w BminusH) 2185 (w BminusH) cmminus1

Raman 120584 = 2683-2527 (s BminusH) 2342 (w BminusH) 2158 (w BminusH) 956 (m sh BminusF) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 2 (C2H12B11F2)minus 190 (13) 191 (37) 192 (74) 193

(100) 194 (81) 195 (31) found 190 (13) 191 (37) 192 (73) 193 (100) 194 (83) 195 (31)

Elemental analysis calcd () for C6H24B11F2N (26718) C 2697 H 905 N 524 found C 2780 H

926 N 622

13

Figure S8 IR and Raman spectrum of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

[Et4N][nido-78-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 186 (s 2-H

B9+11H) 169 (s 1-H B3H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 114

(s 4-H B5+62+4H) 045 (s 1-H B1H) -001 (s 1-H B10H) ndash296 (m 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash111 (d 2-B 1J(11B1H) = 1351 Hz B9+11) ndash171 (d 2-B 1J(11B 1H) = overlapped B5+6) ndash177 (d 1-B 1J(11B1H) = overlapped B3) ndash223 (d 2-B 1J(11B 1H) = 1492 Hz B2+4) ndash335 (dd 1-B 1J(11B 1H) = 1329 Hz 1J(11B1Hmicro) = 353 Hz B10) ndash381 (d

1-B 1J(11B1H) = 1365 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5307 (t 4-C 1J(14N13C) = 31 Hz [Et4N]+) 4310 (brq 2-

C 1J(13C11B) = 350 Hz C7+8) 768 (s 4-C [Et4N]+) ppm

[Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3) The reaction was performed as outlined for the

preparation of [Me4N]2 912-diiodo-12-dicarba-closo-dodecaborane (042 g 106 mmol) [Me4N]F

(0396 g 424 mmol) and THF (20 mL) were employed as starting materials Yield of [Me4N]3

0066 g (013 mmol 24) [Me4N]1 0030 g (021 mmol 20) and [Et4N][56-I2-nido-78-C2B9H10]

0306 g (0594 mmol 56)

14

[Me4N]3 1H NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (qt 1-H 1J(11B1H) = 1288 Hz 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250

(s 4-H B4+57+11H ) 226 (s 2-H B3+6H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (t 1-H 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (q 1-H 1J(11B1H) = 1288 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 31 [ndash04] (dt 1-B 1J(19F11B) = 769 Hz 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 [ndash82] (d 2-B 1J(11B1H) = 1537 Hz B8+10) ndash111

[ndash164] (d 2-B 1J(11B1H) = 1682Hz B7+11) ndash127 [ndash128] (d 2-B 1J(11B1H) = overlapped B4+5)

ndash134 [ndash176] (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s

1-B B9) ppm 11B1H NMR (16046 MHz CD3CN) δ = 31 [ndash04] (t 1-B 1J(19F11B) = 769 Hz HBF2-Cluster)

ndash60 [ndash82] (s 2-B B8+10) ndash111 [ndash 164] (s 2-B B7+11) ndash127 [ndash128] (s 2-B B4+5) ndash134

[ndash176] (s 2-B B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s 1-B B9) ppm 11B19F NMR (16046 MHz CD3CN) δ = 31 (d 1-B 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 (d

2-B 1J(11B1H) = 1537 Hz B8+10) ndash111 (d 2-B 1J(11B1H) = 1682 Hz B7+11) ndash127 (d 2-B 1J(11B1H) = overlapped B4+5) ndash134 (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 (s 1-B B12)

ndash167 (s 1-B B9) ppm 13C1H NMR (12576 MHz CD3CN) δ = 7697 (q 1-C 1J(13C11B) = 505 Hz C1BHF2) 579 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 7710 (t 1-C 2J(19F13C) = 379 Hz C1BHF2) 5795 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 19F NMR (37649 MHz CD3CN) δ = ndash15483 (qd 2-F 1J(19F11B) = 769 Hz 2J(19F1H) = 631 Hz)

ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash15483 (q 2-F 1J(19F11B) = 769 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15483 (d 2-F 2J(19F1H) = 631 Hz) ppm

15

Figure S9 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3) the signal of the BHF2 unit is marked with asterisks

Figure S10 11B and 11B1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

16

Figure S11 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3)

Figure S12 19F and 19F1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

17

IR (ATR) 120584 = 3077 (w CClusterminusH) 3072 (vw CClusterminusH) 2644-2505 (m BminusH) 2340 (w BminusH) 2187

(w BminusH) cmminus1

Raman 120584 = 2675-2552 (s BminusH) 2350 (w BminusH) 2191 (w BminusH) 951 (m sh BminusF) 220 (m sh

BminusI) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 3 (C2H10B11F2I2)minus 442 (13) 443 (37) 444 (74) 445

(100) 446 (74) 447 (31) found 442 (13) 443 (38) 444 (73) 445 (100) 446 (80) 447 (29)

Elemental analysis calcd () for C6H22B11F2I2N (51897) C 1389 H 427 N 270 found C 1404 H

435 N 323

Figure S13 IR and Raman spectrum of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Et4N][56-I2-nido-78-C2B9H10] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 237 (s 2-H

B9+11H) 218 (s 2-H C7+8H) 180 (s 2-H B2+4H) 176 (s 1-H B3H) 122 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 096 (s 1-H B1H) 094 (d 1-H 3J(1H1H) = 74 Hz

B2H) 071 (s 1 H B10H) ndash213 (t 1 H 2J(1H1Hmicro) = 99 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash94 (d 2-B 1J(11B 1H) = 1419 Hz B9+11) ndash169 (d 1-B 1J(11B 1H) = 1673 Hz) ndash210 (d 2-B 1J(11B1H) = 1571 Hz B2+4) ndash243 (s 2-B B5+6) ndash279 (dd

18

1-B 1J(11B1H) = 1324 Hz 1J(11B1Hmicro) = 393 Hz B10) ndash337 (d 1-B 1J(11B1H) = 1471 Hz

B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 531 (t 4-C 1J(14N13C) = 3 Hz [NEt4]+) 427 (brq 2-C 1J(13C11B) = 346 Hz C7+8 ) 76 (s 4-C [NEt4]+) ppm

[Et4N][7-Me-nido-78-C2B9H11] A 100 mL glass tube equipped with a magnetic stirring bar was

charged with 1-Me-12-dicarba-closo-dodecaborane (0250 g 158 mmol) 4 equivalents of anhydrous

[Me4N]F (0590 g 632 mmol) and dry THF (15 mL) under an argon atmosphere The suspension was

stirred at room temperature for 24 h The reaction mixture was taken up into ice-cold water and the

residual THF was removed using a rotary evaporator A solid separated during removal of the THF that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N]+ salts during

the next step An aqueous solution of [Et4N]Cl (261 g 1580 mmol) was added to the clear solution and

then a colourless precipitate was formed The solid was isolated by filtration through a fine glass frit

and dried in a vacuum overnight Yield of 0259 g [Et4N][7-Me-nido-78-C2B9H11] (093 mmol 591)

[Et4N][7-Me-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 166 (s 1-H

C8H) 188 (s 1-H B9H) 179 (s 1-H B11H) 161 (s 1-H B3H) 136 (s 3-H C7CH3) 133 (s 1-

H B2H or B6H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 111 (s 2-H

B4H+B2H or B6H) 103 (s 1-H B5H) 043 (s 1-H B1H) -004 (s 1-H B10H) ndash272 (m 1-H

BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash102 (d 1-B 1J(11B1H) = overlapped B11) ndash111 (d 1-B 1J(11B1H) = overlapped B9) ndash135 (d 1-B 1J(11B1H) = 1561 Hz B3) ndash180 (d 2-B 1J(11B1H) =

overlapped B2+B6) ndash189 (d 1-B 1J(11B1H) = overlapped B5) ndash225 (d 1-B 1J(11B1H) = 1475

Hz) ndash338 (dd 1-B 1J(11B1H) = 1284 Hz 1J(11B1Hmicro) = 397 Hz B10) ndash371 (d 1-B 1J(11B1H) =

1377 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5497 (brq 1-C 1J(13C11B) = 348 Hz C7CH3) 5308 (t 4-

C 1J(14N13C) = 31 Hz [Et4N]+) 4955 (brq 1-C 1J(13C11B) = 348 Hz C8H) 2548 (s 1-C C7CH3)

769 (s 4-C [Et4N]+) ppm

[Et4N][7-Ph-nido-78-C2B9H11] The reaction was performed as outlined for the preparation of [Et4N]4

1-Ph-12-dicarba-closo-dodecaborane (0300 g 136 mmol) [Me4N]F (0509 g 545 mmol) [Et4N]Cl

(225 g 1360 mmol) and THF (20 mL) were employed as starting materials Yield of 0254 g [Et4N][1-

Ph-nido-78-C2B9H11] (075 mmol 550)

[Et4N][1-Ph-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 721 (m 2-H PhH) 713 (m 2-H PhH) 704 (m 1-H

PhH) 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 228 (s 1-H C8H) 207 (s 2-H B9+11H) 177 (s

19

1-H B3H) 172 (s 1-H B2H) 123 (s 3-H B4+5+6H) 119 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 065 (s 1-H B1H) 015 (s 1-H B10H) ndash246 (s 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash88 (d 1-B 1J(11B1H) = 1386 Hz B11) ndash104 (d 1-B 1J(11B1H) = 1367 Hz B9) ndash137 (d 1-B 1J(11B1H) = 1594 Hz B3) ndash169 (d 1-B 1J(11B1H) =

overlapped B5) ndash181 (d 1-B 1J(11B1H) = overlapped B6) ndash198 (d 1-B 1J(11B1H) = 1489 Hz

B2) ndash227 (d 1-B 1J(11B1H) = 1507 Hz B4) ndash329 (dd 1-B 1J(11B1H) = 1334 Hz 1J(11B1Hmicro) =

394 Hz B10) ndash361 (d 1-B 1J(11B1H) = 1422 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 1467 (s 1-C CPh) 12845 (s 2-C CPh) 12757 (s 2-C CPh)

12565 (s 1-C CPh) 6317 (brq 1 C 1J(13C11B) = 342 Hz C7Ph) 5307 (t 4-C 1J(14N13C) = 31 Hz

[Et4N]+) 4632 (brq 1-C 1J(13C11B) = 342 Hz C8H) 768 (s 4-C [Et4N]+) ppm

References

1 R K Harris E D Becker S M Cabral de Menezes R Goodfellow P Granger Pure Appl Chem 2001 73 1795ndash1818

2 G R Fulmer A J M Miller N H Sherden H E Gottlieb A Nudelman B M Stoltz J E Bercaw K I Goldberg Organometallics 2010 29 2176ndash2179

3 (a) D C Finster W C Hutton R N Grimes J Am Chem Soc 1980 102 400ndash401 (b) I J Colquhoun W McFarlane J Chem Soc Dalton Trans 1981 2014ndash2016

4 (a) T L Venable W C Hutton R N Grimes J Am Chem Soc 1982 104 4716ndash4717 (b) T L Venable W C Hutton R N Grimes J Am Chem Soc 1984 106 29ndash37

5 W L F Armarego C L L Chai Purification of Laboratory Chemicals 5 ed Butterworth-Heinemann (Elsevier) 2003

6 D S Wilbur M-K Chyan D K Hamlin B B Kegley R Risler P M Pathare J Quinn R L Vessella C Foulon M Zalutsky T J Wedge M F Hawthorne Bioconjugate Chem 2004 15 203ndash223

7 M F Hawthorne T D Andrews P M Garrett F P Olsen M Reintjes F N Tebbe L F Warren P A Wegner D C Young Inorg Synth 1967 10 91ndash118

8 A S Batsanov M A Fox J A K Howard A K Hughes A L Johnson S J Martindale Acta Crystallogr 2003 C59 o74ndasho76

9 K O Christe W W Wilson R D Wilson R Bau J A Feng J Am Chem Soc 1990 112 7619ndash7625

10 W Kohn L J Sham Phys Rev A 1965 140 1133ndash1138 11 (a) A D Becke Phys Rev A 1988 38 3098ndash3100 (b) A D Becke J Chem Phys 1993 98

5648ndash5652 (c) C Lee W Yang R G Parr Phys Rev B 1988 37 785ndash789 12 M J Frisch G W Trucks H B Schlegel G E Scuseria M A Robb J R Cheeseman V

Barone B Mennucci G A Petersson H Nakatsuji M Caricato X Xi H P Hratchian A F Izmaylov J Bloino G Zheng J L Sonnenberg M Hada M Ehara K Toyota R Fukuda J Hasegawa M Ishida T Nakajima Y Honda O Kitao H Nakai T Vreven J J A Montgomery J E Peralta M B F Ogliaro J J Heyd E Brothers K N Kudin V N Staroverov R Kobayashi J Normand K Raghavachari A Rendell J C Burant S S Iyengar J Tomasi M Cossi N Rega J M Millam M Klene J E Knox J B Cross V Bakken C

20

Adamo J Jaramillo R Gomperts R E Stratmann O Yazyev A J Austin R Cammi C Pomelli J W Ochterski R L Martin K Morokuma V G Zakrzewski G A Voth P Salvador J J Dannenberg S Dapprich A D Daniels Ouml Farkas J B Foresman J V Ortiz J Cioslowski D J Fox Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA 2009

13 J C Rienstra-Kiracofe G S Tschumper H F Schaefer III S Nandi G B Ellison Chem Rev 2002 102 231ndash282

14 K Wolinski J F Hinton P Pulay J Am Chem Soc 1990 112 8251ndash8260 15 J D Kennedy in Multinuclear NMR (Ed J Mason) Plenum Press New York 1987 p 221 16 S Berger S Braun H-O Kalinowski NMR Spectroscopy of the Non-Metallic Elements John

Wiley amp Sons Ltd Chichester England 1997 17 (a) G M Sheldrick Acta Crystallogr 2008 A64 112ndash122 (b) G M Sheldrick SHELXS-97

Program for Crystal Structure Solution Universitaumlt Goumlttingen 1997 18 G M Sheldrick SHELXT Program for Crystal Structure Solution Universitaumlt Goumlttingen

2014 19 G M Sheldrick SHELXL-97 Program for Crystal Structure Refinement Universitaumlt

Goumlttingen 1997 20 C B Huumlbschle G M Sheldrick B Dittrich J Appl Crystallogr 2011 44 1281ndash1284 21 K Brandenburg Diamond 422 Crystal Impact GbR Bonn Germany 1997-2016

Page 2: Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

2

Experimental Section

Reactions involving air-sensitive compounds were performed either in 100 or 250 mL round bottom

flasks or in 20 or 60 mL glass tubes equipped with valves with PTFE stems (Young London) under

argon using standard Schlenk line techniques 1H 11B 19F and 13C NMR spectra were recorded at 25 degC

either in CD3CN on a Bruker Avance HD III 300 a Bruker Avance DPX 400 or a Bruker Avance

500 spectrometer The NMR signals were referenced against TMS (1H and 13C) BF3OEt2 in CDCl3

with X(11B) = 32083974 MHz and CFCl3 with X(19F) = 94094011 as external standards1 1H and 13C

chemical shifts were calibrated against the residual solvent signal and the solvent signal respectively

(δ(1H) CD2HCN 194 ppm δ(13C) CD3CN 11826 and 132 ppm2 The assignment of the 11B and 1H

signals is aided by 11B1H-1H11B 2D3 11B1H-1H11B COSY4 and 1H11Bselective experiments 1H-13C HMBC and HSQC as well as 13C11B1H triple resonance experiments were performed to support

the interpretation of the 13C NMR spectroscopic data The NMR spectroscopic data of the [Me4N]+

cations are omitted for clarity where applicable IR spectra were measured in the attenuated total

reflection (ATR) mode in the region of 4000ndash530 cm-1 with an apodized resolution of 1 cmndash1 with a

Bruker Alpha spectrometer equipped with a Bruker diamond single reflection ATR system Raman

spectra were measured using the 1064 nm excitation line of a NdYAG laser on crystalline samples

contained in melting point capillaries in the region of 3500ndash80 cmndash1 at room temperature on a Bruker

IFS-120 spectrometer with an apodized resolution of 1 cmndash1 ESI mass spectra were acquired on a

microTOF (Bruker Daltonics) Elemental analysis (C H N) were performed either with a Euro EA3000

instrument (HEKA-Tech Germany)

Chemicals

All standard chemicals were obtained from commercial sources und used without further purification

Solvents were dried according to standard protocols5 and stored in flasks equipped with valves with

PTFE stems (Young London) under an argon atmosphere 12- and 17-dicarba-closo-dodecaborane and

decaborane(14) were purchased from Katchem spol s r o (Praha Czech Republic) 1-R-closo-12-

C2B10H11 (R = Ph6 Me7) 912-I2-closo-C2B10H108 and [Me4N]F9 were synthesized according to known

procedures

Quantum Chemical Calculations

Density functional calculations (DFT)10 were carried out using Beckersquos three-parameter hybrid

functional and the Lee-Yang-Parr correlation functional (B3LYP)11 using the Gaussian09 program suite

(Table S1)12 Geometries were optimized and energies were calculated with the 6-311++G(dp) (SDD

for iodine) basis sets Diffuse functions were incorporated because improved energies are obtained for

anions13 Structures represent true minima with no imaginary frequency on the respective hypersurface

3

DFT-GIAO14 NMR shielding constants s(11B) s(13C) s(15N) and s(1H) were calculated at the

B3LYP6-311++G(2dp) level of theory using the geometries computed as described The 11B 19F and 1H NMR shielding constants were calibrated to the respective chemical shift scale d(11B) d(19F) and

d(1H) using predictions on diborane(6) CFCl3 and Me4Si with chemical shifts of 166 ppm for B2H615

and 0 ppm for Me4Si and CFCl316 Spin-spin coupling constants were calculated at the same level as the

NMR shielding constants Calculations of all NMR parameters were performed with the Gaussian09

program suite12

Table S1 Thermochemical data calculated at the B3LYP6-311++G(dp) level of theory

Anion Symmetry H (gas phase) [au] G (gas phase) [au] H (CH3CN) [au] G (CH3CN) [au]

[BH4]ndash Td -27238209 -27259706 -27336957 -27358429 [BH3F]ndash (1) C3v -126577557 -126603216 -126674204 -126699868 [BH2F2]ndash C2v -225932952 -225961465 -226027959 -226056487 [BHF3]ndash C3v -325297875 -325328113 -325391410 -325422686 [BF4]ndash Td -424660619 -424691356 -424752170 -424782901 [1-HF2B-closo-12-C2B10H11]ndash (2) C1 -556792145 -556840213 -556859609 -556907949 [1-H3B-closo-12-C2B10H11]ndash C1 -358098289 -358142211 -358165365 -358209761 [1-F3B-closo-12-C2B10H11]ndash C1 -656149833 -656199704 -656218082 -656267901

[b] The geometries were reoptimized using the C-PCM solvation model MeCN e = 35688

Scheme S1 Calculated thermodynamic data for the dismutation reactions of [BH2F2]ndash and [BHF3]ndash giving [BH4]ndash and [BF4]ndash

Crystal Structure Determination of [Me4N]1 [Me4N]2 and [Me4N]3

Colourless crystals of [Me4N][BHF3] ([Me4N]1) [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2) and

[Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3) were obtained from solutions in acetone by slow

uptake of pentane vapour Crystals were investigated with a Bruker X8-Apex II diffractometer using

Mo-Kα radiation (l = 071073 Aring) in all cases All structures were solved either by direct (SHELXS)17

or by intrinsic phasing methods (SHELXT)17a18 Refinements are based on full-matrix least-squares

calculations on F217a19 [Me4N]1 and [Me4N]2 were refined as twins ([Me4N]1 ndash1 0 0 0 0 1 0 ndash1 0

BASF 044 [Me4N]3 ndash1 0 0 0 1 0 0 0 1 BASF 042) The anion [BHF3]ndash in the crystal of [Me4N]1 is

05 [BF4]ndash + 05 [BH4]ndash

ΔH(gas phase) = ndash432 kJ molndash1

ΔG(gas phase) = ndash369 kJ molndash1

ΔH(CH3CN) = ndash436 kJ molndash1

ΔG(CH3CN) = ndash372 kJ molndash1

ΔH(gas phase) = ndash426 kJ molndash1

ΔG(gas phase) = ndash378 kJ molndash1

ΔH(CH3CN) = ndash435 kJ molndash1

ΔG(CH3CN) = ndash385 kJ molndash1

[BH2F2]ndash

[BH3F]ndash 025 [BF4]ndash + 075 [BH4]ndash

4

located on a mirror plane In the crystals of [Me4N]2 and [Me4N]3 two independent formula units are

present All non-hydrogen atoms were refined anisotropically The positions of all hydrogen atoms were

located from electron density difference maps In the final steps of the refinement idealized bond lengths

and angles were introduced Both crystallographically independent anions in the crystal of [Me4N]2 and

one of the independent anions in the crystal of [Me4N]3 reveal partially disordered BHF2 groups The H

atom of the [BHF3]ndash anion in [Me4N]1 and the H atom of the non-disordered crystallographically

independent anion [1-HF2B-912-I2-closo-12-C2B10H9]ndash in [Me4N]3 were refined without any restraints

Calculations were performed with the ShelXle graphical interface20 Molecular structure diagrams were

drawn with the program Diamond 42221 Experimental details crystal data and the CCDC numbers

are collected in Table S2 These data can be obtained free of charge from The Cambridge

Crystallographic Data Centre via wwwccdccamacukdata_requestcif

Table S2 Selected Crystal Data and Details of the Refinement of the Crystal Structures of [Me4N][BHF3] ([Me4N]1) [Me4N][1-HF2B-closo-

12-C2B10H11] ([Me4N]2) and [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Me4N]1 [Me4N]2 [Me4N]3

Formula C4H13BF3N C6H24B11F2N C6H22B11F2I2N MW 14296 26717 51895 T (K) 100 100 100 Crystal system orthorhombic monoclinic triclinic Space group Pbcm P21 P-1 a (Aring) 55770(13) 10452(3) 124538(7) b (Aring) 11436(3) 13828(3) 135015(8) c (Aring) 11447(3) 10773(2) 135440(8) a 607590(10) b 90102(7) 72300(2) g 86331(2) volume (Aring3) 7301(3) 15571(6) 188328(19) Z 4 4 4 d(calcd) (Mg mndash3) 1301 1140 1830 micro (mmndash1) 0129 0072 3343 F(000) 304 560 976 No of collected reflections 5381 36594 19760 No of unique reflections 883 6631 7950 R(int) 01394 00477 00202 No of parameters restraints 48 0 384 1 419 0 R1 (I gt 2s(I)) 00365 00688 00246 wR2 (all) 00954 01965 00555 GOF on F2 1074 1097 1058 Largest diff peak hole e Aringndash3 0256 ndash0211 0551 ndash0310 1054 ndash0759 CCDC no 1505729 1505730 1505731

Syntheses

Deboronation of closo-17-C2B10H12 using [Me4N]F [Me4N][BHF3] ([Me4N]1) and [Et4N][nido-79-

C2B9H12] A 100 mL glass tube equipped with a magnetic stirring bar was charged with 17-dicarba-

closo-dodecaborane (0430 g 298 mmol) 4 equivalents of anhydrous [Me4N]F (111 g 1193 mmol)

and dry THF (50 mL) under argon The suspension was stirred at 70 degC overnight The reaction was

complete when no 17-dicarba-closo-dodecaborane was detected by 11B NMR spectroscopy in the

reaction mixture [Me4N]1 and [Me4N]2[nido-79-C2B9H11] are both insoluble in THF The colorless

solid materials were isolated by filtration through a fine glass frit under argon and dried in a vacuum

The [Me4N]1 was extracted from the solid material with CH3CN (3 x 50 mL) and the [Me4N]2[nido-79-

C2B9H11] remained as a solid This solid was taken up into ice cold water and the residual CH3CN was

removed using a rotary evaporator In some cases a solid separated during removal of the CH3CN that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N][nido-79-

C2B9H12] during the next step An aqueous solution of [Et4N]Cl (66 g 238 mmol) was added and a

colourless precipitate formed that was isolated by filtration and subsequently dried in a vacuum Yield

of [Et4N][nido-79-C2B9H12] 0472 g (179 mmol 61) The volume of the solution of [Me4N][BHF3]

in acetonitrile was reduced to 75 mL and hexane (200 mL) was added Colorless [Me4N]1 precipitated

The product was collected by filtration and dried in a vacuum overnight and contained 3

[Me4N][BH2F2] as side product as assessed by NMR spectroscopy Yield of [Me4N]1 0090 g

(063 mmol 21)

[Me4N]1 1H NMR (50013 MHz CD3CN) δ = 311 (t 12-H 2J(14N1H) = 06 Hz [N(CH3)4]+) 294 (qq 1-H 1J(11B1H) = 1365 Hz 2J(19F1H) = 927 Hz) ppm 1H11B NMR (50013 MHz CD3CN) δ = 311 (t 12-H 2J(14N1H) = 059 Hz [N(CH3)4]+ 294 (q 1-

H 2J(19F1H) = 927 Hz) ppm 1H19F NMR (40013 MHz CD3CN) δ = 311 (t 12-H 2J(14N1H) = 059 Hz [N(CH3)4]+ 294 (q 1-

H 1J(11B1H) = 1365 Hz) ppm 11B NMR (16046 MHz CD3CN) δ = 12 (dq 1-B 1J(11B1H) = 1365 Hz 1J(19F11B) = 693 Hz) ppm 11B1H NMR (16046 MHz CD3CN) δ = 12 (q 1-B 1J(19F11B) = 699 Hz) ppm 19F NMR (37649 MHz CD3CN) δ = ndash13689 (qd 3-F 1J(19F11B) = 699 Hz 2J(19F1H) = 927 Hz) ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash13689 (q 3-F 1J(19F11B) = 699 Hz) ppm 19F11B NMR (47059 MHz CD3CN) δ = ndash13689 (d 3-F 2J(19F1H) = 927 Hz) ppm

6

Figure S1 1H 1H11B and 1H19F NMR spectra of [Me4N]1

IR (ATR) 120584 = 2375 (w BminusH) 2208 (w BminusH) cmminus1

Raman 120584 = 2375 (w BminusH) 2213 (w BminusH) 950 (m sh BminusF) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 1 (HBF3)minus 68 (25) 69 (100) found 68 (25) 69 (100)

Elemental analysis calcd () for C4H13BF3N (14296) C 3361 H 917 N 980 found C 3404 H

987 N 1012

7

Figure S2 IR and Raman spectrum of [Me4N]1

[Me4N][BH2F2] 1H NMR (50013 MHz CD3CN) δ = 317 (qt 2-H 1J(11B1H) = 1089 Hz 2J(19F1H) = 553 Hz) 311

(t 12-H 2J(14N1H) = 059 Hz [N(CH3)4]+) ppm 1H11B NMR (50013 MHz CD3CN) δ = 317 (t 2-H 2J(19F1H) = 553 Hz) 311 (t 1-H 2J(14N1H) = 059 Hz [N(CH3)4]+) ppm 11B NMR (16046 MHz CD3CN) δ = 51 (tt 1-B 1J(11B1H) = 1089 Hz 1J(19F11B) = 916 Hz) ppm 11B1H NMR (16046 MHz CD3CN) δ = 51 (t 1-B 1J(19F11B) = 916 Hz) ppm 19F NMR (37649 MHz CD3CN) δ = ndash16443 (qt 2-F 1J(19F11B) = 916 Hz 2J(19F1H) = 553 Hz) ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash16443 (q 2-F 1J(19F11B) = 1089 Hz) ppm 19F11B NMR (47059 MHz CD3CN) δ = ndash16443 (t 2-F 2J(19F1H) = 553 Hz) ppm

8

Figure S3 11B and 11B1H NMR spectra of [Me4N]1 with the side product [Me4N][BH2F2]

[Et4N][nido-79-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 220 (s 2-H

B2+5H) 201 (s 1-H B8H) 142 (dd 2-H 2J(1H1Hmicro) = 122 Hz 3J(1H1H) = 35 Hz B10+11H) 121

(tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 117 (s 2-H C7+9H) 108 (s 2-H

B3+4H) 065 (s 1-H B1) 008 (s 1-H B6) ndash233 (t 1-H 2J(1H1Hmicro) = 122 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) ndash47 (d 2-B 1J(11B1H) = 1477 Hz B2+5) ndash59 (d 1-B 1J(11B1H)

= 1344 Hz B8) ndash216 (d 2-B 1J(11B1H) = 1575 Hz B3+4) ndash229 (dd 2-B 1J(11B1H) = 1283 Hz 1J(11B1Hmicro) = 496 Hz B10+11) ndash344 (d 1-B 1J(11B1H) = overlapped B1) ndash355 (d 1-B 1J(11B1H) = overlapped B6) ppm 11B1H NMR (16046 MHz CD3CN) δ = ndash47 (s 2-B B2+5) ndash59 (s 1-B B8) ndash216 (s 2-B

B3+4) ndash229 (s 2-B B10+11) ndash344 (s 1-B B1) ndash355 (s 1-B B6) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5308 (t 4-C 1J(14N 13C) = 31 Hz [Et4N]+) 3269 (brs 2-

C C7+9) 768 (s 4-C [Et4N]+) ppm

9

[Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2) A 250 mL glass tube was charged with 12-dicarba-

closo-dodecaborane (1 g 69 mmol) 4 equivalents of anhydrous [Me4N]F (518 g 276 mmol) and dry

THF (50 mL) The suspension was stirred at room temperature for 24 h The resulting suspension was

transferred by cannula onto a fine glass frit under argon The filtrate contained the [Me4N]2 whereas

[Me4N]1 and [Me4N]2[nido-78-C2B9H11] are insoluble in THF The solid material was worked up as

described for the synthesis of [Me4N]1 and [Et4N][nido-79-C2B9H12] from 17-dicarba-closo-

dodecaborane Yield [Me4N]1 0193 g (135 mmol 20) [Et4N][nido-78-C2B9H12] 106 g (402

mmol 58) The solution of [Me4N]2 in THF was concentrated to approximately 10 mL using a rotary

evaporator Hexane (300 mL) was added to the solution During the addition a colourless precipitate

formed that was isolated by filtration through a glass frit in air Yield [Me4N]2 0203 g (077 mmol

22)

[Me4N]2 1H NMR (50013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (qt 1-H 1J(11B1H) = 1252 Hz 2J(19F1H) = 632 Hz) 213 (s 2-H B3+6H or

B7+11H) 200 (s 8-H B4+58+109123+6 or 7+11H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (t 1-H 2J(19F1H) = 632 Hz) 213 (s 2-H B3+6H or B7+11H) 200 (s 8-H

B4+58+109123+6 or 7+11H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (q 1-H 1J(11B1H) = 1252 Hz) 213 (s 2-H B3+6H or B7+11H) 200 (s 8-H

B4+58+109123+6 or 7+11H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 30 [15] (dt 1-B 1J(19F11B) = 772 Hz 1J(11B1H) = 1262 Hz HBF2-Cluster) ndash36 [ndash58] (d 1-B 1J(11B1H) = 1486 Hz B9) ndash50 [ndash74] (d

1-B 1J(11B1H) = 1439 Hz B12) -92 [ndash111] (d 2-B 1J(11B1H) = 1454 Hz B8+10) ndash116 [ndash132]

(d 2-B 1J(11B1H) = 1586 Hz B4+5) ndash134 [ndash158 ndash168] (d 4-B 1J(11B1H) = 1486 Hz

B3+67+11) ppm 11B1H NMR (16046 MHz CD3CN) [DFT calculations] δ = 30 [15] (t 1-B 1J(19F11B) = 772 Hz

HBF2-Cluster) ndash36 [ndash58] (s 1-B B9) ndash50 [ndash74] (s 1-B B12) ndash92 [ndash111] (s 2-B B8+10) ndash116

[ndash132] (s 2-B B4+5) ndash134 [ndash158 ndash168] (s 4-B B3+67+11) ppm 11B19F NMR (16046 MHz CD3CN) 30 (d 1-B 1J(11B1H) = 1262 Hz HBF2-Cluster) ndash36 (d 1-

B 1J(11B1H) = 1486 Hz B9) ndash50 (d 1-B 1J(11B1H) = 1439 Hz B12) ndash92 (d 2-B 1J(11B1H) =

1454 Hz B8+10) ndash116 (d 2-B 1J(11B1H) = 1586 Hz B4+5) ndash134 (d 4-B 1J(11B1H) = 1486 Hz

B3+67+11) ppm 13C1H NMR (12576 MHz CD3CN) δ = 814 (q 1-C 1J(13C11B) = 528 Hz C1BHF2) 6048 (s 1-

C C2) 5618 (t 4-C 2J(14N13C) = 42 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 8140 (t 1-C 2J(19F13C) = 371 Hz C1BHF2) 605 (t

1-C 3J(19F13C) = 277 Hz C2) 5618 (t 4-C 2J(14N13C) = 42 Hz [Me4N]+) ppm

10

19F NMR (37649 MHz CD3CN) δ = ndash15487 (qd 2-F 1J(19F11B) = 767 Hz 2J(19F1H) = 633 Hz) ppm 19F1H NMR (7548 MHz CD3CN) δ = ndash15487 (q 2-F 1J(19F11B) = 767 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15487 (d 2-F 2J(19F1H) = 633 Hz) ppm

Figure S4 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

the signal of the BHF2 unit is marked with asterisks

11

Figure S5 11B and 11B1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

Figure S6 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

12

Figure S7 19F and 19F11B NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

IR (ATR) 120584 = 3081 (w CClusterminusH) 2633-2516 (m BminusH) 2341 (w BminusH) 2185 (w BminusH) cmminus1

Raman 120584 = 2683-2527 (s BminusH) 2342 (w BminusH) 2158 (w BminusH) 956 (m sh BminusF) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 2 (C2H12B11F2)minus 190 (13) 191 (37) 192 (74) 193

(100) 194 (81) 195 (31) found 190 (13) 191 (37) 192 (73) 193 (100) 194 (83) 195 (31)

Elemental analysis calcd () for C6H24B11F2N (26718) C 2697 H 905 N 524 found C 2780 H

926 N 622

13

Figure S8 IR and Raman spectrum of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

[Et4N][nido-78-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 186 (s 2-H

B9+11H) 169 (s 1-H B3H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 114

(s 4-H B5+62+4H) 045 (s 1-H B1H) -001 (s 1-H B10H) ndash296 (m 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash111 (d 2-B 1J(11B1H) = 1351 Hz B9+11) ndash171 (d 2-B 1J(11B 1H) = overlapped B5+6) ndash177 (d 1-B 1J(11B1H) = overlapped B3) ndash223 (d 2-B 1J(11B 1H) = 1492 Hz B2+4) ndash335 (dd 1-B 1J(11B 1H) = 1329 Hz 1J(11B1Hmicro) = 353 Hz B10) ndash381 (d

1-B 1J(11B1H) = 1365 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5307 (t 4-C 1J(14N13C) = 31 Hz [Et4N]+) 4310 (brq 2-

C 1J(13C11B) = 350 Hz C7+8) 768 (s 4-C [Et4N]+) ppm

[Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3) The reaction was performed as outlined for the

preparation of [Me4N]2 912-diiodo-12-dicarba-closo-dodecaborane (042 g 106 mmol) [Me4N]F

(0396 g 424 mmol) and THF (20 mL) were employed as starting materials Yield of [Me4N]3

0066 g (013 mmol 24) [Me4N]1 0030 g (021 mmol 20) and [Et4N][56-I2-nido-78-C2B9H10]

0306 g (0594 mmol 56)

14

[Me4N]3 1H NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (qt 1-H 1J(11B1H) = 1288 Hz 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250

(s 4-H B4+57+11H ) 226 (s 2-H B3+6H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (t 1-H 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (q 1-H 1J(11B1H) = 1288 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 31 [ndash04] (dt 1-B 1J(19F11B) = 769 Hz 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 [ndash82] (d 2-B 1J(11B1H) = 1537 Hz B8+10) ndash111

[ndash164] (d 2-B 1J(11B1H) = 1682Hz B7+11) ndash127 [ndash128] (d 2-B 1J(11B1H) = overlapped B4+5)

ndash134 [ndash176] (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s

1-B B9) ppm 11B1H NMR (16046 MHz CD3CN) δ = 31 [ndash04] (t 1-B 1J(19F11B) = 769 Hz HBF2-Cluster)

ndash60 [ndash82] (s 2-B B8+10) ndash111 [ndash 164] (s 2-B B7+11) ndash127 [ndash128] (s 2-B B4+5) ndash134

[ndash176] (s 2-B B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s 1-B B9) ppm 11B19F NMR (16046 MHz CD3CN) δ = 31 (d 1-B 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 (d

2-B 1J(11B1H) = 1537 Hz B8+10) ndash111 (d 2-B 1J(11B1H) = 1682 Hz B7+11) ndash127 (d 2-B 1J(11B1H) = overlapped B4+5) ndash134 (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 (s 1-B B12)

ndash167 (s 1-B B9) ppm 13C1H NMR (12576 MHz CD3CN) δ = 7697 (q 1-C 1J(13C11B) = 505 Hz C1BHF2) 579 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 7710 (t 1-C 2J(19F13C) = 379 Hz C1BHF2) 5795 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 19F NMR (37649 MHz CD3CN) δ = ndash15483 (qd 2-F 1J(19F11B) = 769 Hz 2J(19F1H) = 631 Hz)

ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash15483 (q 2-F 1J(19F11B) = 769 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15483 (d 2-F 2J(19F1H) = 631 Hz) ppm

15

Figure S9 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3) the signal of the BHF2 unit is marked with asterisks

Figure S10 11B and 11B1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

16

Figure S11 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3)

Figure S12 19F and 19F1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

17

IR (ATR) 120584 = 3077 (w CClusterminusH) 3072 (vw CClusterminusH) 2644-2505 (m BminusH) 2340 (w BminusH) 2187

(w BminusH) cmminus1

Raman 120584 = 2675-2552 (s BminusH) 2350 (w BminusH) 2191 (w BminusH) 951 (m sh BminusF) 220 (m sh

BminusI) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 3 (C2H10B11F2I2)minus 442 (13) 443 (37) 444 (74) 445

(100) 446 (74) 447 (31) found 442 (13) 443 (38) 444 (73) 445 (100) 446 (80) 447 (29)

Elemental analysis calcd () for C6H22B11F2I2N (51897) C 1389 H 427 N 270 found C 1404 H

435 N 323

Figure S13 IR and Raman spectrum of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Et4N][56-I2-nido-78-C2B9H10] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 237 (s 2-H

B9+11H) 218 (s 2-H C7+8H) 180 (s 2-H B2+4H) 176 (s 1-H B3H) 122 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 096 (s 1-H B1H) 094 (d 1-H 3J(1H1H) = 74 Hz

B2H) 071 (s 1 H B10H) ndash213 (t 1 H 2J(1H1Hmicro) = 99 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash94 (d 2-B 1J(11B 1H) = 1419 Hz B9+11) ndash169 (d 1-B 1J(11B 1H) = 1673 Hz) ndash210 (d 2-B 1J(11B1H) = 1571 Hz B2+4) ndash243 (s 2-B B5+6) ndash279 (dd

18

1-B 1J(11B1H) = 1324 Hz 1J(11B1Hmicro) = 393 Hz B10) ndash337 (d 1-B 1J(11B1H) = 1471 Hz

B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 531 (t 4-C 1J(14N13C) = 3 Hz [NEt4]+) 427 (brq 2-C 1J(13C11B) = 346 Hz C7+8 ) 76 (s 4-C [NEt4]+) ppm

[Et4N][7-Me-nido-78-C2B9H11] A 100 mL glass tube equipped with a magnetic stirring bar was

charged with 1-Me-12-dicarba-closo-dodecaborane (0250 g 158 mmol) 4 equivalents of anhydrous

[Me4N]F (0590 g 632 mmol) and dry THF (15 mL) under an argon atmosphere The suspension was

stirred at room temperature for 24 h The reaction mixture was taken up into ice-cold water and the

residual THF was removed using a rotary evaporator A solid separated during removal of the THF that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N]+ salts during

the next step An aqueous solution of [Et4N]Cl (261 g 1580 mmol) was added to the clear solution and

then a colourless precipitate was formed The solid was isolated by filtration through a fine glass frit

and dried in a vacuum overnight Yield of 0259 g [Et4N][7-Me-nido-78-C2B9H11] (093 mmol 591)

[Et4N][7-Me-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 166 (s 1-H

C8H) 188 (s 1-H B9H) 179 (s 1-H B11H) 161 (s 1-H B3H) 136 (s 3-H C7CH3) 133 (s 1-

H B2H or B6H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 111 (s 2-H

B4H+B2H or B6H) 103 (s 1-H B5H) 043 (s 1-H B1H) -004 (s 1-H B10H) ndash272 (m 1-H

BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash102 (d 1-B 1J(11B1H) = overlapped B11) ndash111 (d 1-B 1J(11B1H) = overlapped B9) ndash135 (d 1-B 1J(11B1H) = 1561 Hz B3) ndash180 (d 2-B 1J(11B1H) =

overlapped B2+B6) ndash189 (d 1-B 1J(11B1H) = overlapped B5) ndash225 (d 1-B 1J(11B1H) = 1475

Hz) ndash338 (dd 1-B 1J(11B1H) = 1284 Hz 1J(11B1Hmicro) = 397 Hz B10) ndash371 (d 1-B 1J(11B1H) =

1377 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5497 (brq 1-C 1J(13C11B) = 348 Hz C7CH3) 5308 (t 4-

C 1J(14N13C) = 31 Hz [Et4N]+) 4955 (brq 1-C 1J(13C11B) = 348 Hz C8H) 2548 (s 1-C C7CH3)

769 (s 4-C [Et4N]+) ppm

[Et4N][7-Ph-nido-78-C2B9H11] The reaction was performed as outlined for the preparation of [Et4N]4

1-Ph-12-dicarba-closo-dodecaborane (0300 g 136 mmol) [Me4N]F (0509 g 545 mmol) [Et4N]Cl

(225 g 1360 mmol) and THF (20 mL) were employed as starting materials Yield of 0254 g [Et4N][1-

Ph-nido-78-C2B9H11] (075 mmol 550)

[Et4N][1-Ph-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 721 (m 2-H PhH) 713 (m 2-H PhH) 704 (m 1-H

PhH) 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 228 (s 1-H C8H) 207 (s 2-H B9+11H) 177 (s

19

1-H B3H) 172 (s 1-H B2H) 123 (s 3-H B4+5+6H) 119 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 065 (s 1-H B1H) 015 (s 1-H B10H) ndash246 (s 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash88 (d 1-B 1J(11B1H) = 1386 Hz B11) ndash104 (d 1-B 1J(11B1H) = 1367 Hz B9) ndash137 (d 1-B 1J(11B1H) = 1594 Hz B3) ndash169 (d 1-B 1J(11B1H) =

overlapped B5) ndash181 (d 1-B 1J(11B1H) = overlapped B6) ndash198 (d 1-B 1J(11B1H) = 1489 Hz

B2) ndash227 (d 1-B 1J(11B1H) = 1507 Hz B4) ndash329 (dd 1-B 1J(11B1H) = 1334 Hz 1J(11B1Hmicro) =

394 Hz B10) ndash361 (d 1-B 1J(11B1H) = 1422 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 1467 (s 1-C CPh) 12845 (s 2-C CPh) 12757 (s 2-C CPh)

12565 (s 1-C CPh) 6317 (brq 1 C 1J(13C11B) = 342 Hz C7Ph) 5307 (t 4-C 1J(14N13C) = 31 Hz

[Et4N]+) 4632 (brq 1-C 1J(13C11B) = 342 Hz C8H) 768 (s 4-C [Et4N]+) ppm

References

1 R K Harris E D Becker S M Cabral de Menezes R Goodfellow P Granger Pure Appl Chem 2001 73 1795ndash1818

2 G R Fulmer A J M Miller N H Sherden H E Gottlieb A Nudelman B M Stoltz J E Bercaw K I Goldberg Organometallics 2010 29 2176ndash2179

3 (a) D C Finster W C Hutton R N Grimes J Am Chem Soc 1980 102 400ndash401 (b) I J Colquhoun W McFarlane J Chem Soc Dalton Trans 1981 2014ndash2016

4 (a) T L Venable W C Hutton R N Grimes J Am Chem Soc 1982 104 4716ndash4717 (b) T L Venable W C Hutton R N Grimes J Am Chem Soc 1984 106 29ndash37

5 W L F Armarego C L L Chai Purification of Laboratory Chemicals 5 ed Butterworth-Heinemann (Elsevier) 2003

6 D S Wilbur M-K Chyan D K Hamlin B B Kegley R Risler P M Pathare J Quinn R L Vessella C Foulon M Zalutsky T J Wedge M F Hawthorne Bioconjugate Chem 2004 15 203ndash223

7 M F Hawthorne T D Andrews P M Garrett F P Olsen M Reintjes F N Tebbe L F Warren P A Wegner D C Young Inorg Synth 1967 10 91ndash118

8 A S Batsanov M A Fox J A K Howard A K Hughes A L Johnson S J Martindale Acta Crystallogr 2003 C59 o74ndasho76

9 K O Christe W W Wilson R D Wilson R Bau J A Feng J Am Chem Soc 1990 112 7619ndash7625

10 W Kohn L J Sham Phys Rev A 1965 140 1133ndash1138 11 (a) A D Becke Phys Rev A 1988 38 3098ndash3100 (b) A D Becke J Chem Phys 1993 98

5648ndash5652 (c) C Lee W Yang R G Parr Phys Rev B 1988 37 785ndash789 12 M J Frisch G W Trucks H B Schlegel G E Scuseria M A Robb J R Cheeseman V

Barone B Mennucci G A Petersson H Nakatsuji M Caricato X Xi H P Hratchian A F Izmaylov J Bloino G Zheng J L Sonnenberg M Hada M Ehara K Toyota R Fukuda J Hasegawa M Ishida T Nakajima Y Honda O Kitao H Nakai T Vreven J J A Montgomery J E Peralta M B F Ogliaro J J Heyd E Brothers K N Kudin V N Staroverov R Kobayashi J Normand K Raghavachari A Rendell J C Burant S S Iyengar J Tomasi M Cossi N Rega J M Millam M Klene J E Knox J B Cross V Bakken C

20

Adamo J Jaramillo R Gomperts R E Stratmann O Yazyev A J Austin R Cammi C Pomelli J W Ochterski R L Martin K Morokuma V G Zakrzewski G A Voth P Salvador J J Dannenberg S Dapprich A D Daniels Ouml Farkas J B Foresman J V Ortiz J Cioslowski D J Fox Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA 2009

13 J C Rienstra-Kiracofe G S Tschumper H F Schaefer III S Nandi G B Ellison Chem Rev 2002 102 231ndash282

14 K Wolinski J F Hinton P Pulay J Am Chem Soc 1990 112 8251ndash8260 15 J D Kennedy in Multinuclear NMR (Ed J Mason) Plenum Press New York 1987 p 221 16 S Berger S Braun H-O Kalinowski NMR Spectroscopy of the Non-Metallic Elements John

Wiley amp Sons Ltd Chichester England 1997 17 (a) G M Sheldrick Acta Crystallogr 2008 A64 112ndash122 (b) G M Sheldrick SHELXS-97

Program for Crystal Structure Solution Universitaumlt Goumlttingen 1997 18 G M Sheldrick SHELXT Program for Crystal Structure Solution Universitaumlt Goumlttingen

2014 19 G M Sheldrick SHELXL-97 Program for Crystal Structure Refinement Universitaumlt

Goumlttingen 1997 20 C B Huumlbschle G M Sheldrick B Dittrich J Appl Crystallogr 2011 44 1281ndash1284 21 K Brandenburg Diamond 422 Crystal Impact GbR Bonn Germany 1997-2016

Page 3: Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

3

DFT-GIAO14 NMR shielding constants s(11B) s(13C) s(15N) and s(1H) were calculated at the

B3LYP6-311++G(2dp) level of theory using the geometries computed as described The 11B 19F and 1H NMR shielding constants were calibrated to the respective chemical shift scale d(11B) d(19F) and

d(1H) using predictions on diborane(6) CFCl3 and Me4Si with chemical shifts of 166 ppm for B2H615

and 0 ppm for Me4Si and CFCl316 Spin-spin coupling constants were calculated at the same level as the

NMR shielding constants Calculations of all NMR parameters were performed with the Gaussian09

program suite12

Table S1 Thermochemical data calculated at the B3LYP6-311++G(dp) level of theory

Anion Symmetry H (gas phase) [au] G (gas phase) [au] H (CH3CN) [au] G (CH3CN) [au]

[BH4]ndash Td -27238209 -27259706 -27336957 -27358429 [BH3F]ndash (1) C3v -126577557 -126603216 -126674204 -126699868 [BH2F2]ndash C2v -225932952 -225961465 -226027959 -226056487 [BHF3]ndash C3v -325297875 -325328113 -325391410 -325422686 [BF4]ndash Td -424660619 -424691356 -424752170 -424782901 [1-HF2B-closo-12-C2B10H11]ndash (2) C1 -556792145 -556840213 -556859609 -556907949 [1-H3B-closo-12-C2B10H11]ndash C1 -358098289 -358142211 -358165365 -358209761 [1-F3B-closo-12-C2B10H11]ndash C1 -656149833 -656199704 -656218082 -656267901

[b] The geometries were reoptimized using the C-PCM solvation model MeCN e = 35688

Scheme S1 Calculated thermodynamic data for the dismutation reactions of [BH2F2]ndash and [BHF3]ndash giving [BH4]ndash and [BF4]ndash

Crystal Structure Determination of [Me4N]1 [Me4N]2 and [Me4N]3

Colourless crystals of [Me4N][BHF3] ([Me4N]1) [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2) and

[Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3) were obtained from solutions in acetone by slow

uptake of pentane vapour Crystals were investigated with a Bruker X8-Apex II diffractometer using

Mo-Kα radiation (l = 071073 Aring) in all cases All structures were solved either by direct (SHELXS)17

or by intrinsic phasing methods (SHELXT)17a18 Refinements are based on full-matrix least-squares

calculations on F217a19 [Me4N]1 and [Me4N]2 were refined as twins ([Me4N]1 ndash1 0 0 0 0 1 0 ndash1 0

BASF 044 [Me4N]3 ndash1 0 0 0 1 0 0 0 1 BASF 042) The anion [BHF3]ndash in the crystal of [Me4N]1 is

05 [BF4]ndash + 05 [BH4]ndash

ΔH(gas phase) = ndash432 kJ molndash1

ΔG(gas phase) = ndash369 kJ molndash1

ΔH(CH3CN) = ndash436 kJ molndash1

ΔG(CH3CN) = ndash372 kJ molndash1

ΔH(gas phase) = ndash426 kJ molndash1

ΔG(gas phase) = ndash378 kJ molndash1

ΔH(CH3CN) = ndash435 kJ molndash1

ΔG(CH3CN) = ndash385 kJ molndash1

[BH2F2]ndash

[BH3F]ndash 025 [BF4]ndash + 075 [BH4]ndash

4

located on a mirror plane In the crystals of [Me4N]2 and [Me4N]3 two independent formula units are

present All non-hydrogen atoms were refined anisotropically The positions of all hydrogen atoms were

located from electron density difference maps In the final steps of the refinement idealized bond lengths

and angles were introduced Both crystallographically independent anions in the crystal of [Me4N]2 and

one of the independent anions in the crystal of [Me4N]3 reveal partially disordered BHF2 groups The H

atom of the [BHF3]ndash anion in [Me4N]1 and the H atom of the non-disordered crystallographically

independent anion [1-HF2B-912-I2-closo-12-C2B10H9]ndash in [Me4N]3 were refined without any restraints

Calculations were performed with the ShelXle graphical interface20 Molecular structure diagrams were

drawn with the program Diamond 42221 Experimental details crystal data and the CCDC numbers

are collected in Table S2 These data can be obtained free of charge from The Cambridge

Crystallographic Data Centre via wwwccdccamacukdata_requestcif

Table S2 Selected Crystal Data and Details of the Refinement of the Crystal Structures of [Me4N][BHF3] ([Me4N]1) [Me4N][1-HF2B-closo-

12-C2B10H11] ([Me4N]2) and [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Me4N]1 [Me4N]2 [Me4N]3

Formula C4H13BF3N C6H24B11F2N C6H22B11F2I2N MW 14296 26717 51895 T (K) 100 100 100 Crystal system orthorhombic monoclinic triclinic Space group Pbcm P21 P-1 a (Aring) 55770(13) 10452(3) 124538(7) b (Aring) 11436(3) 13828(3) 135015(8) c (Aring) 11447(3) 10773(2) 135440(8) a 607590(10) b 90102(7) 72300(2) g 86331(2) volume (Aring3) 7301(3) 15571(6) 188328(19) Z 4 4 4 d(calcd) (Mg mndash3) 1301 1140 1830 micro (mmndash1) 0129 0072 3343 F(000) 304 560 976 No of collected reflections 5381 36594 19760 No of unique reflections 883 6631 7950 R(int) 01394 00477 00202 No of parameters restraints 48 0 384 1 419 0 R1 (I gt 2s(I)) 00365 00688 00246 wR2 (all) 00954 01965 00555 GOF on F2 1074 1097 1058 Largest diff peak hole e Aringndash3 0256 ndash0211 0551 ndash0310 1054 ndash0759 CCDC no 1505729 1505730 1505731

Syntheses

Deboronation of closo-17-C2B10H12 using [Me4N]F [Me4N][BHF3] ([Me4N]1) and [Et4N][nido-79-

C2B9H12] A 100 mL glass tube equipped with a magnetic stirring bar was charged with 17-dicarba-

closo-dodecaborane (0430 g 298 mmol) 4 equivalents of anhydrous [Me4N]F (111 g 1193 mmol)

and dry THF (50 mL) under argon The suspension was stirred at 70 degC overnight The reaction was

complete when no 17-dicarba-closo-dodecaborane was detected by 11B NMR spectroscopy in the

reaction mixture [Me4N]1 and [Me4N]2[nido-79-C2B9H11] are both insoluble in THF The colorless

solid materials were isolated by filtration through a fine glass frit under argon and dried in a vacuum

The [Me4N]1 was extracted from the solid material with CH3CN (3 x 50 mL) and the [Me4N]2[nido-79-

C2B9H11] remained as a solid This solid was taken up into ice cold water and the residual CH3CN was

removed using a rotary evaporator In some cases a solid separated during removal of the CH3CN that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N][nido-79-

C2B9H12] during the next step An aqueous solution of [Et4N]Cl (66 g 238 mmol) was added and a

colourless precipitate formed that was isolated by filtration and subsequently dried in a vacuum Yield

of [Et4N][nido-79-C2B9H12] 0472 g (179 mmol 61) The volume of the solution of [Me4N][BHF3]

in acetonitrile was reduced to 75 mL and hexane (200 mL) was added Colorless [Me4N]1 precipitated

The product was collected by filtration and dried in a vacuum overnight and contained 3

[Me4N][BH2F2] as side product as assessed by NMR spectroscopy Yield of [Me4N]1 0090 g

(063 mmol 21)

[Me4N]1 1H NMR (50013 MHz CD3CN) δ = 311 (t 12-H 2J(14N1H) = 06 Hz [N(CH3)4]+) 294 (qq 1-H 1J(11B1H) = 1365 Hz 2J(19F1H) = 927 Hz) ppm 1H11B NMR (50013 MHz CD3CN) δ = 311 (t 12-H 2J(14N1H) = 059 Hz [N(CH3)4]+ 294 (q 1-

H 2J(19F1H) = 927 Hz) ppm 1H19F NMR (40013 MHz CD3CN) δ = 311 (t 12-H 2J(14N1H) = 059 Hz [N(CH3)4]+ 294 (q 1-

H 1J(11B1H) = 1365 Hz) ppm 11B NMR (16046 MHz CD3CN) δ = 12 (dq 1-B 1J(11B1H) = 1365 Hz 1J(19F11B) = 693 Hz) ppm 11B1H NMR (16046 MHz CD3CN) δ = 12 (q 1-B 1J(19F11B) = 699 Hz) ppm 19F NMR (37649 MHz CD3CN) δ = ndash13689 (qd 3-F 1J(19F11B) = 699 Hz 2J(19F1H) = 927 Hz) ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash13689 (q 3-F 1J(19F11B) = 699 Hz) ppm 19F11B NMR (47059 MHz CD3CN) δ = ndash13689 (d 3-F 2J(19F1H) = 927 Hz) ppm

6

Figure S1 1H 1H11B and 1H19F NMR spectra of [Me4N]1

IR (ATR) 120584 = 2375 (w BminusH) 2208 (w BminusH) cmminus1

Raman 120584 = 2375 (w BminusH) 2213 (w BminusH) 950 (m sh BminusF) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 1 (HBF3)minus 68 (25) 69 (100) found 68 (25) 69 (100)

Elemental analysis calcd () for C4H13BF3N (14296) C 3361 H 917 N 980 found C 3404 H

987 N 1012

7

Figure S2 IR and Raman spectrum of [Me4N]1

[Me4N][BH2F2] 1H NMR (50013 MHz CD3CN) δ = 317 (qt 2-H 1J(11B1H) = 1089 Hz 2J(19F1H) = 553 Hz) 311

(t 12-H 2J(14N1H) = 059 Hz [N(CH3)4]+) ppm 1H11B NMR (50013 MHz CD3CN) δ = 317 (t 2-H 2J(19F1H) = 553 Hz) 311 (t 1-H 2J(14N1H) = 059 Hz [N(CH3)4]+) ppm 11B NMR (16046 MHz CD3CN) δ = 51 (tt 1-B 1J(11B1H) = 1089 Hz 1J(19F11B) = 916 Hz) ppm 11B1H NMR (16046 MHz CD3CN) δ = 51 (t 1-B 1J(19F11B) = 916 Hz) ppm 19F NMR (37649 MHz CD3CN) δ = ndash16443 (qt 2-F 1J(19F11B) = 916 Hz 2J(19F1H) = 553 Hz) ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash16443 (q 2-F 1J(19F11B) = 1089 Hz) ppm 19F11B NMR (47059 MHz CD3CN) δ = ndash16443 (t 2-F 2J(19F1H) = 553 Hz) ppm

8

Figure S3 11B and 11B1H NMR spectra of [Me4N]1 with the side product [Me4N][BH2F2]

[Et4N][nido-79-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 220 (s 2-H

B2+5H) 201 (s 1-H B8H) 142 (dd 2-H 2J(1H1Hmicro) = 122 Hz 3J(1H1H) = 35 Hz B10+11H) 121

(tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 117 (s 2-H C7+9H) 108 (s 2-H

B3+4H) 065 (s 1-H B1) 008 (s 1-H B6) ndash233 (t 1-H 2J(1H1Hmicro) = 122 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) ndash47 (d 2-B 1J(11B1H) = 1477 Hz B2+5) ndash59 (d 1-B 1J(11B1H)

= 1344 Hz B8) ndash216 (d 2-B 1J(11B1H) = 1575 Hz B3+4) ndash229 (dd 2-B 1J(11B1H) = 1283 Hz 1J(11B1Hmicro) = 496 Hz B10+11) ndash344 (d 1-B 1J(11B1H) = overlapped B1) ndash355 (d 1-B 1J(11B1H) = overlapped B6) ppm 11B1H NMR (16046 MHz CD3CN) δ = ndash47 (s 2-B B2+5) ndash59 (s 1-B B8) ndash216 (s 2-B

B3+4) ndash229 (s 2-B B10+11) ndash344 (s 1-B B1) ndash355 (s 1-B B6) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5308 (t 4-C 1J(14N 13C) = 31 Hz [Et4N]+) 3269 (brs 2-

C C7+9) 768 (s 4-C [Et4N]+) ppm

9

[Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2) A 250 mL glass tube was charged with 12-dicarba-

closo-dodecaborane (1 g 69 mmol) 4 equivalents of anhydrous [Me4N]F (518 g 276 mmol) and dry

THF (50 mL) The suspension was stirred at room temperature for 24 h The resulting suspension was

transferred by cannula onto a fine glass frit under argon The filtrate contained the [Me4N]2 whereas

[Me4N]1 and [Me4N]2[nido-78-C2B9H11] are insoluble in THF The solid material was worked up as

described for the synthesis of [Me4N]1 and [Et4N][nido-79-C2B9H12] from 17-dicarba-closo-

dodecaborane Yield [Me4N]1 0193 g (135 mmol 20) [Et4N][nido-78-C2B9H12] 106 g (402

mmol 58) The solution of [Me4N]2 in THF was concentrated to approximately 10 mL using a rotary

evaporator Hexane (300 mL) was added to the solution During the addition a colourless precipitate

formed that was isolated by filtration through a glass frit in air Yield [Me4N]2 0203 g (077 mmol

22)

[Me4N]2 1H NMR (50013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (qt 1-H 1J(11B1H) = 1252 Hz 2J(19F1H) = 632 Hz) 213 (s 2-H B3+6H or

B7+11H) 200 (s 8-H B4+58+109123+6 or 7+11H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (t 1-H 2J(19F1H) = 632 Hz) 213 (s 2-H B3+6H or B7+11H) 200 (s 8-H

B4+58+109123+6 or 7+11H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (q 1-H 1J(11B1H) = 1252 Hz) 213 (s 2-H B3+6H or B7+11H) 200 (s 8-H

B4+58+109123+6 or 7+11H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 30 [15] (dt 1-B 1J(19F11B) = 772 Hz 1J(11B1H) = 1262 Hz HBF2-Cluster) ndash36 [ndash58] (d 1-B 1J(11B1H) = 1486 Hz B9) ndash50 [ndash74] (d

1-B 1J(11B1H) = 1439 Hz B12) -92 [ndash111] (d 2-B 1J(11B1H) = 1454 Hz B8+10) ndash116 [ndash132]

(d 2-B 1J(11B1H) = 1586 Hz B4+5) ndash134 [ndash158 ndash168] (d 4-B 1J(11B1H) = 1486 Hz

B3+67+11) ppm 11B1H NMR (16046 MHz CD3CN) [DFT calculations] δ = 30 [15] (t 1-B 1J(19F11B) = 772 Hz

HBF2-Cluster) ndash36 [ndash58] (s 1-B B9) ndash50 [ndash74] (s 1-B B12) ndash92 [ndash111] (s 2-B B8+10) ndash116

[ndash132] (s 2-B B4+5) ndash134 [ndash158 ndash168] (s 4-B B3+67+11) ppm 11B19F NMR (16046 MHz CD3CN) 30 (d 1-B 1J(11B1H) = 1262 Hz HBF2-Cluster) ndash36 (d 1-

B 1J(11B1H) = 1486 Hz B9) ndash50 (d 1-B 1J(11B1H) = 1439 Hz B12) ndash92 (d 2-B 1J(11B1H) =

1454 Hz B8+10) ndash116 (d 2-B 1J(11B1H) = 1586 Hz B4+5) ndash134 (d 4-B 1J(11B1H) = 1486 Hz

B3+67+11) ppm 13C1H NMR (12576 MHz CD3CN) δ = 814 (q 1-C 1J(13C11B) = 528 Hz C1BHF2) 6048 (s 1-

C C2) 5618 (t 4-C 2J(14N13C) = 42 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 8140 (t 1-C 2J(19F13C) = 371 Hz C1BHF2) 605 (t

1-C 3J(19F13C) = 277 Hz C2) 5618 (t 4-C 2J(14N13C) = 42 Hz [Me4N]+) ppm

10

19F NMR (37649 MHz CD3CN) δ = ndash15487 (qd 2-F 1J(19F11B) = 767 Hz 2J(19F1H) = 633 Hz) ppm 19F1H NMR (7548 MHz CD3CN) δ = ndash15487 (q 2-F 1J(19F11B) = 767 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15487 (d 2-F 2J(19F1H) = 633 Hz) ppm

Figure S4 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

the signal of the BHF2 unit is marked with asterisks

11

Figure S5 11B and 11B1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

Figure S6 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

12

Figure S7 19F and 19F11B NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

IR (ATR) 120584 = 3081 (w CClusterminusH) 2633-2516 (m BminusH) 2341 (w BminusH) 2185 (w BminusH) cmminus1

Raman 120584 = 2683-2527 (s BminusH) 2342 (w BminusH) 2158 (w BminusH) 956 (m sh BminusF) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 2 (C2H12B11F2)minus 190 (13) 191 (37) 192 (74) 193

(100) 194 (81) 195 (31) found 190 (13) 191 (37) 192 (73) 193 (100) 194 (83) 195 (31)

Elemental analysis calcd () for C6H24B11F2N (26718) C 2697 H 905 N 524 found C 2780 H

926 N 622

13

Figure S8 IR and Raman spectrum of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

[Et4N][nido-78-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 186 (s 2-H

B9+11H) 169 (s 1-H B3H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 114

(s 4-H B5+62+4H) 045 (s 1-H B1H) -001 (s 1-H B10H) ndash296 (m 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash111 (d 2-B 1J(11B1H) = 1351 Hz B9+11) ndash171 (d 2-B 1J(11B 1H) = overlapped B5+6) ndash177 (d 1-B 1J(11B1H) = overlapped B3) ndash223 (d 2-B 1J(11B 1H) = 1492 Hz B2+4) ndash335 (dd 1-B 1J(11B 1H) = 1329 Hz 1J(11B1Hmicro) = 353 Hz B10) ndash381 (d

1-B 1J(11B1H) = 1365 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5307 (t 4-C 1J(14N13C) = 31 Hz [Et4N]+) 4310 (brq 2-

C 1J(13C11B) = 350 Hz C7+8) 768 (s 4-C [Et4N]+) ppm

[Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3) The reaction was performed as outlined for the

preparation of [Me4N]2 912-diiodo-12-dicarba-closo-dodecaborane (042 g 106 mmol) [Me4N]F

(0396 g 424 mmol) and THF (20 mL) were employed as starting materials Yield of [Me4N]3

0066 g (013 mmol 24) [Me4N]1 0030 g (021 mmol 20) and [Et4N][56-I2-nido-78-C2B9H10]

0306 g (0594 mmol 56)

14

[Me4N]3 1H NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (qt 1-H 1J(11B1H) = 1288 Hz 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250

(s 4-H B4+57+11H ) 226 (s 2-H B3+6H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (t 1-H 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (q 1-H 1J(11B1H) = 1288 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 31 [ndash04] (dt 1-B 1J(19F11B) = 769 Hz 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 [ndash82] (d 2-B 1J(11B1H) = 1537 Hz B8+10) ndash111

[ndash164] (d 2-B 1J(11B1H) = 1682Hz B7+11) ndash127 [ndash128] (d 2-B 1J(11B1H) = overlapped B4+5)

ndash134 [ndash176] (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s

1-B B9) ppm 11B1H NMR (16046 MHz CD3CN) δ = 31 [ndash04] (t 1-B 1J(19F11B) = 769 Hz HBF2-Cluster)

ndash60 [ndash82] (s 2-B B8+10) ndash111 [ndash 164] (s 2-B B7+11) ndash127 [ndash128] (s 2-B B4+5) ndash134

[ndash176] (s 2-B B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s 1-B B9) ppm 11B19F NMR (16046 MHz CD3CN) δ = 31 (d 1-B 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 (d

2-B 1J(11B1H) = 1537 Hz B8+10) ndash111 (d 2-B 1J(11B1H) = 1682 Hz B7+11) ndash127 (d 2-B 1J(11B1H) = overlapped B4+5) ndash134 (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 (s 1-B B12)

ndash167 (s 1-B B9) ppm 13C1H NMR (12576 MHz CD3CN) δ = 7697 (q 1-C 1J(13C11B) = 505 Hz C1BHF2) 579 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 7710 (t 1-C 2J(19F13C) = 379 Hz C1BHF2) 5795 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 19F NMR (37649 MHz CD3CN) δ = ndash15483 (qd 2-F 1J(19F11B) = 769 Hz 2J(19F1H) = 631 Hz)

ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash15483 (q 2-F 1J(19F11B) = 769 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15483 (d 2-F 2J(19F1H) = 631 Hz) ppm

15

Figure S9 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3) the signal of the BHF2 unit is marked with asterisks

Figure S10 11B and 11B1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

16

Figure S11 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3)

Figure S12 19F and 19F1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

17

IR (ATR) 120584 = 3077 (w CClusterminusH) 3072 (vw CClusterminusH) 2644-2505 (m BminusH) 2340 (w BminusH) 2187

(w BminusH) cmminus1

Raman 120584 = 2675-2552 (s BminusH) 2350 (w BminusH) 2191 (w BminusH) 951 (m sh BminusF) 220 (m sh

BminusI) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 3 (C2H10B11F2I2)minus 442 (13) 443 (37) 444 (74) 445

(100) 446 (74) 447 (31) found 442 (13) 443 (38) 444 (73) 445 (100) 446 (80) 447 (29)

Elemental analysis calcd () for C6H22B11F2I2N (51897) C 1389 H 427 N 270 found C 1404 H

435 N 323

Figure S13 IR and Raman spectrum of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Et4N][56-I2-nido-78-C2B9H10] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 237 (s 2-H

B9+11H) 218 (s 2-H C7+8H) 180 (s 2-H B2+4H) 176 (s 1-H B3H) 122 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 096 (s 1-H B1H) 094 (d 1-H 3J(1H1H) = 74 Hz

B2H) 071 (s 1 H B10H) ndash213 (t 1 H 2J(1H1Hmicro) = 99 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash94 (d 2-B 1J(11B 1H) = 1419 Hz B9+11) ndash169 (d 1-B 1J(11B 1H) = 1673 Hz) ndash210 (d 2-B 1J(11B1H) = 1571 Hz B2+4) ndash243 (s 2-B B5+6) ndash279 (dd

18

1-B 1J(11B1H) = 1324 Hz 1J(11B1Hmicro) = 393 Hz B10) ndash337 (d 1-B 1J(11B1H) = 1471 Hz

B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 531 (t 4-C 1J(14N13C) = 3 Hz [NEt4]+) 427 (brq 2-C 1J(13C11B) = 346 Hz C7+8 ) 76 (s 4-C [NEt4]+) ppm

[Et4N][7-Me-nido-78-C2B9H11] A 100 mL glass tube equipped with a magnetic stirring bar was

charged with 1-Me-12-dicarba-closo-dodecaborane (0250 g 158 mmol) 4 equivalents of anhydrous

[Me4N]F (0590 g 632 mmol) and dry THF (15 mL) under an argon atmosphere The suspension was

stirred at room temperature for 24 h The reaction mixture was taken up into ice-cold water and the

residual THF was removed using a rotary evaporator A solid separated during removal of the THF that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N]+ salts during

the next step An aqueous solution of [Et4N]Cl (261 g 1580 mmol) was added to the clear solution and

then a colourless precipitate was formed The solid was isolated by filtration through a fine glass frit

and dried in a vacuum overnight Yield of 0259 g [Et4N][7-Me-nido-78-C2B9H11] (093 mmol 591)

[Et4N][7-Me-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 166 (s 1-H

C8H) 188 (s 1-H B9H) 179 (s 1-H B11H) 161 (s 1-H B3H) 136 (s 3-H C7CH3) 133 (s 1-

H B2H or B6H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 111 (s 2-H

B4H+B2H or B6H) 103 (s 1-H B5H) 043 (s 1-H B1H) -004 (s 1-H B10H) ndash272 (m 1-H

BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash102 (d 1-B 1J(11B1H) = overlapped B11) ndash111 (d 1-B 1J(11B1H) = overlapped B9) ndash135 (d 1-B 1J(11B1H) = 1561 Hz B3) ndash180 (d 2-B 1J(11B1H) =

overlapped B2+B6) ndash189 (d 1-B 1J(11B1H) = overlapped B5) ndash225 (d 1-B 1J(11B1H) = 1475

Hz) ndash338 (dd 1-B 1J(11B1H) = 1284 Hz 1J(11B1Hmicro) = 397 Hz B10) ndash371 (d 1-B 1J(11B1H) =

1377 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5497 (brq 1-C 1J(13C11B) = 348 Hz C7CH3) 5308 (t 4-

C 1J(14N13C) = 31 Hz [Et4N]+) 4955 (brq 1-C 1J(13C11B) = 348 Hz C8H) 2548 (s 1-C C7CH3)

769 (s 4-C [Et4N]+) ppm

[Et4N][7-Ph-nido-78-C2B9H11] The reaction was performed as outlined for the preparation of [Et4N]4

1-Ph-12-dicarba-closo-dodecaborane (0300 g 136 mmol) [Me4N]F (0509 g 545 mmol) [Et4N]Cl

(225 g 1360 mmol) and THF (20 mL) were employed as starting materials Yield of 0254 g [Et4N][1-

Ph-nido-78-C2B9H11] (075 mmol 550)

[Et4N][1-Ph-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 721 (m 2-H PhH) 713 (m 2-H PhH) 704 (m 1-H

PhH) 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 228 (s 1-H C8H) 207 (s 2-H B9+11H) 177 (s

19

1-H B3H) 172 (s 1-H B2H) 123 (s 3-H B4+5+6H) 119 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 065 (s 1-H B1H) 015 (s 1-H B10H) ndash246 (s 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash88 (d 1-B 1J(11B1H) = 1386 Hz B11) ndash104 (d 1-B 1J(11B1H) = 1367 Hz B9) ndash137 (d 1-B 1J(11B1H) = 1594 Hz B3) ndash169 (d 1-B 1J(11B1H) =

overlapped B5) ndash181 (d 1-B 1J(11B1H) = overlapped B6) ndash198 (d 1-B 1J(11B1H) = 1489 Hz

B2) ndash227 (d 1-B 1J(11B1H) = 1507 Hz B4) ndash329 (dd 1-B 1J(11B1H) = 1334 Hz 1J(11B1Hmicro) =

394 Hz B10) ndash361 (d 1-B 1J(11B1H) = 1422 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 1467 (s 1-C CPh) 12845 (s 2-C CPh) 12757 (s 2-C CPh)

12565 (s 1-C CPh) 6317 (brq 1 C 1J(13C11B) = 342 Hz C7Ph) 5307 (t 4-C 1J(14N13C) = 31 Hz

[Et4N]+) 4632 (brq 1-C 1J(13C11B) = 342 Hz C8H) 768 (s 4-C [Et4N]+) ppm

References

1 R K Harris E D Becker S M Cabral de Menezes R Goodfellow P Granger Pure Appl Chem 2001 73 1795ndash1818

2 G R Fulmer A J M Miller N H Sherden H E Gottlieb A Nudelman B M Stoltz J E Bercaw K I Goldberg Organometallics 2010 29 2176ndash2179

3 (a) D C Finster W C Hutton R N Grimes J Am Chem Soc 1980 102 400ndash401 (b) I J Colquhoun W McFarlane J Chem Soc Dalton Trans 1981 2014ndash2016

4 (a) T L Venable W C Hutton R N Grimes J Am Chem Soc 1982 104 4716ndash4717 (b) T L Venable W C Hutton R N Grimes J Am Chem Soc 1984 106 29ndash37

5 W L F Armarego C L L Chai Purification of Laboratory Chemicals 5 ed Butterworth-Heinemann (Elsevier) 2003

6 D S Wilbur M-K Chyan D K Hamlin B B Kegley R Risler P M Pathare J Quinn R L Vessella C Foulon M Zalutsky T J Wedge M F Hawthorne Bioconjugate Chem 2004 15 203ndash223

7 M F Hawthorne T D Andrews P M Garrett F P Olsen M Reintjes F N Tebbe L F Warren P A Wegner D C Young Inorg Synth 1967 10 91ndash118

8 A S Batsanov M A Fox J A K Howard A K Hughes A L Johnson S J Martindale Acta Crystallogr 2003 C59 o74ndasho76

9 K O Christe W W Wilson R D Wilson R Bau J A Feng J Am Chem Soc 1990 112 7619ndash7625

10 W Kohn L J Sham Phys Rev A 1965 140 1133ndash1138 11 (a) A D Becke Phys Rev A 1988 38 3098ndash3100 (b) A D Becke J Chem Phys 1993 98

5648ndash5652 (c) C Lee W Yang R G Parr Phys Rev B 1988 37 785ndash789 12 M J Frisch G W Trucks H B Schlegel G E Scuseria M A Robb J R Cheeseman V

Barone B Mennucci G A Petersson H Nakatsuji M Caricato X Xi H P Hratchian A F Izmaylov J Bloino G Zheng J L Sonnenberg M Hada M Ehara K Toyota R Fukuda J Hasegawa M Ishida T Nakajima Y Honda O Kitao H Nakai T Vreven J J A Montgomery J E Peralta M B F Ogliaro J J Heyd E Brothers K N Kudin V N Staroverov R Kobayashi J Normand K Raghavachari A Rendell J C Burant S S Iyengar J Tomasi M Cossi N Rega J M Millam M Klene J E Knox J B Cross V Bakken C

20

Adamo J Jaramillo R Gomperts R E Stratmann O Yazyev A J Austin R Cammi C Pomelli J W Ochterski R L Martin K Morokuma V G Zakrzewski G A Voth P Salvador J J Dannenberg S Dapprich A D Daniels Ouml Farkas J B Foresman J V Ortiz J Cioslowski D J Fox Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA 2009

13 J C Rienstra-Kiracofe G S Tschumper H F Schaefer III S Nandi G B Ellison Chem Rev 2002 102 231ndash282

14 K Wolinski J F Hinton P Pulay J Am Chem Soc 1990 112 8251ndash8260 15 J D Kennedy in Multinuclear NMR (Ed J Mason) Plenum Press New York 1987 p 221 16 S Berger S Braun H-O Kalinowski NMR Spectroscopy of the Non-Metallic Elements John

Wiley amp Sons Ltd Chichester England 1997 17 (a) G M Sheldrick Acta Crystallogr 2008 A64 112ndash122 (b) G M Sheldrick SHELXS-97

Program for Crystal Structure Solution Universitaumlt Goumlttingen 1997 18 G M Sheldrick SHELXT Program for Crystal Structure Solution Universitaumlt Goumlttingen

2014 19 G M Sheldrick SHELXL-97 Program for Crystal Structure Refinement Universitaumlt

Goumlttingen 1997 20 C B Huumlbschle G M Sheldrick B Dittrich J Appl Crystallogr 2011 44 1281ndash1284 21 K Brandenburg Diamond 422 Crystal Impact GbR Bonn Germany 1997-2016

Page 4: Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

4

located on a mirror plane In the crystals of [Me4N]2 and [Me4N]3 two independent formula units are

present All non-hydrogen atoms were refined anisotropically The positions of all hydrogen atoms were

located from electron density difference maps In the final steps of the refinement idealized bond lengths

and angles were introduced Both crystallographically independent anions in the crystal of [Me4N]2 and

one of the independent anions in the crystal of [Me4N]3 reveal partially disordered BHF2 groups The H

atom of the [BHF3]ndash anion in [Me4N]1 and the H atom of the non-disordered crystallographically

independent anion [1-HF2B-912-I2-closo-12-C2B10H9]ndash in [Me4N]3 were refined without any restraints

Calculations were performed with the ShelXle graphical interface20 Molecular structure diagrams were

drawn with the program Diamond 42221 Experimental details crystal data and the CCDC numbers

are collected in Table S2 These data can be obtained free of charge from The Cambridge

Crystallographic Data Centre via wwwccdccamacukdata_requestcif

Table S2 Selected Crystal Data and Details of the Refinement of the Crystal Structures of [Me4N][BHF3] ([Me4N]1) [Me4N][1-HF2B-closo-

12-C2B10H11] ([Me4N]2) and [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Me4N]1 [Me4N]2 [Me4N]3

Formula C4H13BF3N C6H24B11F2N C6H22B11F2I2N MW 14296 26717 51895 T (K) 100 100 100 Crystal system orthorhombic monoclinic triclinic Space group Pbcm P21 P-1 a (Aring) 55770(13) 10452(3) 124538(7) b (Aring) 11436(3) 13828(3) 135015(8) c (Aring) 11447(3) 10773(2) 135440(8) a 607590(10) b 90102(7) 72300(2) g 86331(2) volume (Aring3) 7301(3) 15571(6) 188328(19) Z 4 4 4 d(calcd) (Mg mndash3) 1301 1140 1830 micro (mmndash1) 0129 0072 3343 F(000) 304 560 976 No of collected reflections 5381 36594 19760 No of unique reflections 883 6631 7950 R(int) 01394 00477 00202 No of parameters restraints 48 0 384 1 419 0 R1 (I gt 2s(I)) 00365 00688 00246 wR2 (all) 00954 01965 00555 GOF on F2 1074 1097 1058 Largest diff peak hole e Aringndash3 0256 ndash0211 0551 ndash0310 1054 ndash0759 CCDC no 1505729 1505730 1505731

Syntheses

Deboronation of closo-17-C2B10H12 using [Me4N]F [Me4N][BHF3] ([Me4N]1) and [Et4N][nido-79-

C2B9H12] A 100 mL glass tube equipped with a magnetic stirring bar was charged with 17-dicarba-

closo-dodecaborane (0430 g 298 mmol) 4 equivalents of anhydrous [Me4N]F (111 g 1193 mmol)

and dry THF (50 mL) under argon The suspension was stirred at 70 degC overnight The reaction was

complete when no 17-dicarba-closo-dodecaborane was detected by 11B NMR spectroscopy in the

reaction mixture [Me4N]1 and [Me4N]2[nido-79-C2B9H11] are both insoluble in THF The colorless

solid materials were isolated by filtration through a fine glass frit under argon and dried in a vacuum

The [Me4N]1 was extracted from the solid material with CH3CN (3 x 50 mL) and the [Me4N]2[nido-79-

C2B9H11] remained as a solid This solid was taken up into ice cold water and the residual CH3CN was

removed using a rotary evaporator In some cases a solid separated during removal of the CH3CN that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N][nido-79-

C2B9H12] during the next step An aqueous solution of [Et4N]Cl (66 g 238 mmol) was added and a

colourless precipitate formed that was isolated by filtration and subsequently dried in a vacuum Yield

of [Et4N][nido-79-C2B9H12] 0472 g (179 mmol 61) The volume of the solution of [Me4N][BHF3]

in acetonitrile was reduced to 75 mL and hexane (200 mL) was added Colorless [Me4N]1 precipitated

The product was collected by filtration and dried in a vacuum overnight and contained 3

[Me4N][BH2F2] as side product as assessed by NMR spectroscopy Yield of [Me4N]1 0090 g

(063 mmol 21)

[Me4N]1 1H NMR (50013 MHz CD3CN) δ = 311 (t 12-H 2J(14N1H) = 06 Hz [N(CH3)4]+) 294 (qq 1-H 1J(11B1H) = 1365 Hz 2J(19F1H) = 927 Hz) ppm 1H11B NMR (50013 MHz CD3CN) δ = 311 (t 12-H 2J(14N1H) = 059 Hz [N(CH3)4]+ 294 (q 1-

H 2J(19F1H) = 927 Hz) ppm 1H19F NMR (40013 MHz CD3CN) δ = 311 (t 12-H 2J(14N1H) = 059 Hz [N(CH3)4]+ 294 (q 1-

H 1J(11B1H) = 1365 Hz) ppm 11B NMR (16046 MHz CD3CN) δ = 12 (dq 1-B 1J(11B1H) = 1365 Hz 1J(19F11B) = 693 Hz) ppm 11B1H NMR (16046 MHz CD3CN) δ = 12 (q 1-B 1J(19F11B) = 699 Hz) ppm 19F NMR (37649 MHz CD3CN) δ = ndash13689 (qd 3-F 1J(19F11B) = 699 Hz 2J(19F1H) = 927 Hz) ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash13689 (q 3-F 1J(19F11B) = 699 Hz) ppm 19F11B NMR (47059 MHz CD3CN) δ = ndash13689 (d 3-F 2J(19F1H) = 927 Hz) ppm

6

Figure S1 1H 1H11B and 1H19F NMR spectra of [Me4N]1

IR (ATR) 120584 = 2375 (w BminusH) 2208 (w BminusH) cmminus1

Raman 120584 = 2375 (w BminusH) 2213 (w BminusH) 950 (m sh BminusF) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 1 (HBF3)minus 68 (25) 69 (100) found 68 (25) 69 (100)

Elemental analysis calcd () for C4H13BF3N (14296) C 3361 H 917 N 980 found C 3404 H

987 N 1012

7

Figure S2 IR and Raman spectrum of [Me4N]1

[Me4N][BH2F2] 1H NMR (50013 MHz CD3CN) δ = 317 (qt 2-H 1J(11B1H) = 1089 Hz 2J(19F1H) = 553 Hz) 311

(t 12-H 2J(14N1H) = 059 Hz [N(CH3)4]+) ppm 1H11B NMR (50013 MHz CD3CN) δ = 317 (t 2-H 2J(19F1H) = 553 Hz) 311 (t 1-H 2J(14N1H) = 059 Hz [N(CH3)4]+) ppm 11B NMR (16046 MHz CD3CN) δ = 51 (tt 1-B 1J(11B1H) = 1089 Hz 1J(19F11B) = 916 Hz) ppm 11B1H NMR (16046 MHz CD3CN) δ = 51 (t 1-B 1J(19F11B) = 916 Hz) ppm 19F NMR (37649 MHz CD3CN) δ = ndash16443 (qt 2-F 1J(19F11B) = 916 Hz 2J(19F1H) = 553 Hz) ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash16443 (q 2-F 1J(19F11B) = 1089 Hz) ppm 19F11B NMR (47059 MHz CD3CN) δ = ndash16443 (t 2-F 2J(19F1H) = 553 Hz) ppm

8

Figure S3 11B and 11B1H NMR spectra of [Me4N]1 with the side product [Me4N][BH2F2]

[Et4N][nido-79-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 220 (s 2-H

B2+5H) 201 (s 1-H B8H) 142 (dd 2-H 2J(1H1Hmicro) = 122 Hz 3J(1H1H) = 35 Hz B10+11H) 121

(tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 117 (s 2-H C7+9H) 108 (s 2-H

B3+4H) 065 (s 1-H B1) 008 (s 1-H B6) ndash233 (t 1-H 2J(1H1Hmicro) = 122 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) ndash47 (d 2-B 1J(11B1H) = 1477 Hz B2+5) ndash59 (d 1-B 1J(11B1H)

= 1344 Hz B8) ndash216 (d 2-B 1J(11B1H) = 1575 Hz B3+4) ndash229 (dd 2-B 1J(11B1H) = 1283 Hz 1J(11B1Hmicro) = 496 Hz B10+11) ndash344 (d 1-B 1J(11B1H) = overlapped B1) ndash355 (d 1-B 1J(11B1H) = overlapped B6) ppm 11B1H NMR (16046 MHz CD3CN) δ = ndash47 (s 2-B B2+5) ndash59 (s 1-B B8) ndash216 (s 2-B

B3+4) ndash229 (s 2-B B10+11) ndash344 (s 1-B B1) ndash355 (s 1-B B6) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5308 (t 4-C 1J(14N 13C) = 31 Hz [Et4N]+) 3269 (brs 2-

C C7+9) 768 (s 4-C [Et4N]+) ppm

9

[Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2) A 250 mL glass tube was charged with 12-dicarba-

closo-dodecaborane (1 g 69 mmol) 4 equivalents of anhydrous [Me4N]F (518 g 276 mmol) and dry

THF (50 mL) The suspension was stirred at room temperature for 24 h The resulting suspension was

transferred by cannula onto a fine glass frit under argon The filtrate contained the [Me4N]2 whereas

[Me4N]1 and [Me4N]2[nido-78-C2B9H11] are insoluble in THF The solid material was worked up as

described for the synthesis of [Me4N]1 and [Et4N][nido-79-C2B9H12] from 17-dicarba-closo-

dodecaborane Yield [Me4N]1 0193 g (135 mmol 20) [Et4N][nido-78-C2B9H12] 106 g (402

mmol 58) The solution of [Me4N]2 in THF was concentrated to approximately 10 mL using a rotary

evaporator Hexane (300 mL) was added to the solution During the addition a colourless precipitate

formed that was isolated by filtration through a glass frit in air Yield [Me4N]2 0203 g (077 mmol

22)

[Me4N]2 1H NMR (50013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (qt 1-H 1J(11B1H) = 1252 Hz 2J(19F1H) = 632 Hz) 213 (s 2-H B3+6H or

B7+11H) 200 (s 8-H B4+58+109123+6 or 7+11H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (t 1-H 2J(19F1H) = 632 Hz) 213 (s 2-H B3+6H or B7+11H) 200 (s 8-H

B4+58+109123+6 or 7+11H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (q 1-H 1J(11B1H) = 1252 Hz) 213 (s 2-H B3+6H or B7+11H) 200 (s 8-H

B4+58+109123+6 or 7+11H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 30 [15] (dt 1-B 1J(19F11B) = 772 Hz 1J(11B1H) = 1262 Hz HBF2-Cluster) ndash36 [ndash58] (d 1-B 1J(11B1H) = 1486 Hz B9) ndash50 [ndash74] (d

1-B 1J(11B1H) = 1439 Hz B12) -92 [ndash111] (d 2-B 1J(11B1H) = 1454 Hz B8+10) ndash116 [ndash132]

(d 2-B 1J(11B1H) = 1586 Hz B4+5) ndash134 [ndash158 ndash168] (d 4-B 1J(11B1H) = 1486 Hz

B3+67+11) ppm 11B1H NMR (16046 MHz CD3CN) [DFT calculations] δ = 30 [15] (t 1-B 1J(19F11B) = 772 Hz

HBF2-Cluster) ndash36 [ndash58] (s 1-B B9) ndash50 [ndash74] (s 1-B B12) ndash92 [ndash111] (s 2-B B8+10) ndash116

[ndash132] (s 2-B B4+5) ndash134 [ndash158 ndash168] (s 4-B B3+67+11) ppm 11B19F NMR (16046 MHz CD3CN) 30 (d 1-B 1J(11B1H) = 1262 Hz HBF2-Cluster) ndash36 (d 1-

B 1J(11B1H) = 1486 Hz B9) ndash50 (d 1-B 1J(11B1H) = 1439 Hz B12) ndash92 (d 2-B 1J(11B1H) =

1454 Hz B8+10) ndash116 (d 2-B 1J(11B1H) = 1586 Hz B4+5) ndash134 (d 4-B 1J(11B1H) = 1486 Hz

B3+67+11) ppm 13C1H NMR (12576 MHz CD3CN) δ = 814 (q 1-C 1J(13C11B) = 528 Hz C1BHF2) 6048 (s 1-

C C2) 5618 (t 4-C 2J(14N13C) = 42 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 8140 (t 1-C 2J(19F13C) = 371 Hz C1BHF2) 605 (t

1-C 3J(19F13C) = 277 Hz C2) 5618 (t 4-C 2J(14N13C) = 42 Hz [Me4N]+) ppm

10

19F NMR (37649 MHz CD3CN) δ = ndash15487 (qd 2-F 1J(19F11B) = 767 Hz 2J(19F1H) = 633 Hz) ppm 19F1H NMR (7548 MHz CD3CN) δ = ndash15487 (q 2-F 1J(19F11B) = 767 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15487 (d 2-F 2J(19F1H) = 633 Hz) ppm

Figure S4 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

the signal of the BHF2 unit is marked with asterisks

11

Figure S5 11B and 11B1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

Figure S6 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

12

Figure S7 19F and 19F11B NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

IR (ATR) 120584 = 3081 (w CClusterminusH) 2633-2516 (m BminusH) 2341 (w BminusH) 2185 (w BminusH) cmminus1

Raman 120584 = 2683-2527 (s BminusH) 2342 (w BminusH) 2158 (w BminusH) 956 (m sh BminusF) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 2 (C2H12B11F2)minus 190 (13) 191 (37) 192 (74) 193

(100) 194 (81) 195 (31) found 190 (13) 191 (37) 192 (73) 193 (100) 194 (83) 195 (31)

Elemental analysis calcd () for C6H24B11F2N (26718) C 2697 H 905 N 524 found C 2780 H

926 N 622

13

Figure S8 IR and Raman spectrum of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

[Et4N][nido-78-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 186 (s 2-H

B9+11H) 169 (s 1-H B3H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 114

(s 4-H B5+62+4H) 045 (s 1-H B1H) -001 (s 1-H B10H) ndash296 (m 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash111 (d 2-B 1J(11B1H) = 1351 Hz B9+11) ndash171 (d 2-B 1J(11B 1H) = overlapped B5+6) ndash177 (d 1-B 1J(11B1H) = overlapped B3) ndash223 (d 2-B 1J(11B 1H) = 1492 Hz B2+4) ndash335 (dd 1-B 1J(11B 1H) = 1329 Hz 1J(11B1Hmicro) = 353 Hz B10) ndash381 (d

1-B 1J(11B1H) = 1365 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5307 (t 4-C 1J(14N13C) = 31 Hz [Et4N]+) 4310 (brq 2-

C 1J(13C11B) = 350 Hz C7+8) 768 (s 4-C [Et4N]+) ppm

[Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3) The reaction was performed as outlined for the

preparation of [Me4N]2 912-diiodo-12-dicarba-closo-dodecaborane (042 g 106 mmol) [Me4N]F

(0396 g 424 mmol) and THF (20 mL) were employed as starting materials Yield of [Me4N]3

0066 g (013 mmol 24) [Me4N]1 0030 g (021 mmol 20) and [Et4N][56-I2-nido-78-C2B9H10]

0306 g (0594 mmol 56)

14

[Me4N]3 1H NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (qt 1-H 1J(11B1H) = 1288 Hz 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250

(s 4-H B4+57+11H ) 226 (s 2-H B3+6H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (t 1-H 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (q 1-H 1J(11B1H) = 1288 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 31 [ndash04] (dt 1-B 1J(19F11B) = 769 Hz 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 [ndash82] (d 2-B 1J(11B1H) = 1537 Hz B8+10) ndash111

[ndash164] (d 2-B 1J(11B1H) = 1682Hz B7+11) ndash127 [ndash128] (d 2-B 1J(11B1H) = overlapped B4+5)

ndash134 [ndash176] (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s

1-B B9) ppm 11B1H NMR (16046 MHz CD3CN) δ = 31 [ndash04] (t 1-B 1J(19F11B) = 769 Hz HBF2-Cluster)

ndash60 [ndash82] (s 2-B B8+10) ndash111 [ndash 164] (s 2-B B7+11) ndash127 [ndash128] (s 2-B B4+5) ndash134

[ndash176] (s 2-B B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s 1-B B9) ppm 11B19F NMR (16046 MHz CD3CN) δ = 31 (d 1-B 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 (d

2-B 1J(11B1H) = 1537 Hz B8+10) ndash111 (d 2-B 1J(11B1H) = 1682 Hz B7+11) ndash127 (d 2-B 1J(11B1H) = overlapped B4+5) ndash134 (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 (s 1-B B12)

ndash167 (s 1-B B9) ppm 13C1H NMR (12576 MHz CD3CN) δ = 7697 (q 1-C 1J(13C11B) = 505 Hz C1BHF2) 579 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 7710 (t 1-C 2J(19F13C) = 379 Hz C1BHF2) 5795 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 19F NMR (37649 MHz CD3CN) δ = ndash15483 (qd 2-F 1J(19F11B) = 769 Hz 2J(19F1H) = 631 Hz)

ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash15483 (q 2-F 1J(19F11B) = 769 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15483 (d 2-F 2J(19F1H) = 631 Hz) ppm

15

Figure S9 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3) the signal of the BHF2 unit is marked with asterisks

Figure S10 11B and 11B1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

16

Figure S11 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3)

Figure S12 19F and 19F1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

17

IR (ATR) 120584 = 3077 (w CClusterminusH) 3072 (vw CClusterminusH) 2644-2505 (m BminusH) 2340 (w BminusH) 2187

(w BminusH) cmminus1

Raman 120584 = 2675-2552 (s BminusH) 2350 (w BminusH) 2191 (w BminusH) 951 (m sh BminusF) 220 (m sh

BminusI) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 3 (C2H10B11F2I2)minus 442 (13) 443 (37) 444 (74) 445

(100) 446 (74) 447 (31) found 442 (13) 443 (38) 444 (73) 445 (100) 446 (80) 447 (29)

Elemental analysis calcd () for C6H22B11F2I2N (51897) C 1389 H 427 N 270 found C 1404 H

435 N 323

Figure S13 IR and Raman spectrum of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Et4N][56-I2-nido-78-C2B9H10] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 237 (s 2-H

B9+11H) 218 (s 2-H C7+8H) 180 (s 2-H B2+4H) 176 (s 1-H B3H) 122 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 096 (s 1-H B1H) 094 (d 1-H 3J(1H1H) = 74 Hz

B2H) 071 (s 1 H B10H) ndash213 (t 1 H 2J(1H1Hmicro) = 99 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash94 (d 2-B 1J(11B 1H) = 1419 Hz B9+11) ndash169 (d 1-B 1J(11B 1H) = 1673 Hz) ndash210 (d 2-B 1J(11B1H) = 1571 Hz B2+4) ndash243 (s 2-B B5+6) ndash279 (dd

18

1-B 1J(11B1H) = 1324 Hz 1J(11B1Hmicro) = 393 Hz B10) ndash337 (d 1-B 1J(11B1H) = 1471 Hz

B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 531 (t 4-C 1J(14N13C) = 3 Hz [NEt4]+) 427 (brq 2-C 1J(13C11B) = 346 Hz C7+8 ) 76 (s 4-C [NEt4]+) ppm

[Et4N][7-Me-nido-78-C2B9H11] A 100 mL glass tube equipped with a magnetic stirring bar was

charged with 1-Me-12-dicarba-closo-dodecaborane (0250 g 158 mmol) 4 equivalents of anhydrous

[Me4N]F (0590 g 632 mmol) and dry THF (15 mL) under an argon atmosphere The suspension was

stirred at room temperature for 24 h The reaction mixture was taken up into ice-cold water and the

residual THF was removed using a rotary evaporator A solid separated during removal of the THF that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N]+ salts during

the next step An aqueous solution of [Et4N]Cl (261 g 1580 mmol) was added to the clear solution and

then a colourless precipitate was formed The solid was isolated by filtration through a fine glass frit

and dried in a vacuum overnight Yield of 0259 g [Et4N][7-Me-nido-78-C2B9H11] (093 mmol 591)

[Et4N][7-Me-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 166 (s 1-H

C8H) 188 (s 1-H B9H) 179 (s 1-H B11H) 161 (s 1-H B3H) 136 (s 3-H C7CH3) 133 (s 1-

H B2H or B6H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 111 (s 2-H

B4H+B2H or B6H) 103 (s 1-H B5H) 043 (s 1-H B1H) -004 (s 1-H B10H) ndash272 (m 1-H

BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash102 (d 1-B 1J(11B1H) = overlapped B11) ndash111 (d 1-B 1J(11B1H) = overlapped B9) ndash135 (d 1-B 1J(11B1H) = 1561 Hz B3) ndash180 (d 2-B 1J(11B1H) =

overlapped B2+B6) ndash189 (d 1-B 1J(11B1H) = overlapped B5) ndash225 (d 1-B 1J(11B1H) = 1475

Hz) ndash338 (dd 1-B 1J(11B1H) = 1284 Hz 1J(11B1Hmicro) = 397 Hz B10) ndash371 (d 1-B 1J(11B1H) =

1377 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5497 (brq 1-C 1J(13C11B) = 348 Hz C7CH3) 5308 (t 4-

C 1J(14N13C) = 31 Hz [Et4N]+) 4955 (brq 1-C 1J(13C11B) = 348 Hz C8H) 2548 (s 1-C C7CH3)

769 (s 4-C [Et4N]+) ppm

[Et4N][7-Ph-nido-78-C2B9H11] The reaction was performed as outlined for the preparation of [Et4N]4

1-Ph-12-dicarba-closo-dodecaborane (0300 g 136 mmol) [Me4N]F (0509 g 545 mmol) [Et4N]Cl

(225 g 1360 mmol) and THF (20 mL) were employed as starting materials Yield of 0254 g [Et4N][1-

Ph-nido-78-C2B9H11] (075 mmol 550)

[Et4N][1-Ph-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 721 (m 2-H PhH) 713 (m 2-H PhH) 704 (m 1-H

PhH) 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 228 (s 1-H C8H) 207 (s 2-H B9+11H) 177 (s

19

1-H B3H) 172 (s 1-H B2H) 123 (s 3-H B4+5+6H) 119 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 065 (s 1-H B1H) 015 (s 1-H B10H) ndash246 (s 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash88 (d 1-B 1J(11B1H) = 1386 Hz B11) ndash104 (d 1-B 1J(11B1H) = 1367 Hz B9) ndash137 (d 1-B 1J(11B1H) = 1594 Hz B3) ndash169 (d 1-B 1J(11B1H) =

overlapped B5) ndash181 (d 1-B 1J(11B1H) = overlapped B6) ndash198 (d 1-B 1J(11B1H) = 1489 Hz

B2) ndash227 (d 1-B 1J(11B1H) = 1507 Hz B4) ndash329 (dd 1-B 1J(11B1H) = 1334 Hz 1J(11B1Hmicro) =

394 Hz B10) ndash361 (d 1-B 1J(11B1H) = 1422 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 1467 (s 1-C CPh) 12845 (s 2-C CPh) 12757 (s 2-C CPh)

12565 (s 1-C CPh) 6317 (brq 1 C 1J(13C11B) = 342 Hz C7Ph) 5307 (t 4-C 1J(14N13C) = 31 Hz

[Et4N]+) 4632 (brq 1-C 1J(13C11B) = 342 Hz C8H) 768 (s 4-C [Et4N]+) ppm

References

1 R K Harris E D Becker S M Cabral de Menezes R Goodfellow P Granger Pure Appl Chem 2001 73 1795ndash1818

2 G R Fulmer A J M Miller N H Sherden H E Gottlieb A Nudelman B M Stoltz J E Bercaw K I Goldberg Organometallics 2010 29 2176ndash2179

3 (a) D C Finster W C Hutton R N Grimes J Am Chem Soc 1980 102 400ndash401 (b) I J Colquhoun W McFarlane J Chem Soc Dalton Trans 1981 2014ndash2016

4 (a) T L Venable W C Hutton R N Grimes J Am Chem Soc 1982 104 4716ndash4717 (b) T L Venable W C Hutton R N Grimes J Am Chem Soc 1984 106 29ndash37

5 W L F Armarego C L L Chai Purification of Laboratory Chemicals 5 ed Butterworth-Heinemann (Elsevier) 2003

6 D S Wilbur M-K Chyan D K Hamlin B B Kegley R Risler P M Pathare J Quinn R L Vessella C Foulon M Zalutsky T J Wedge M F Hawthorne Bioconjugate Chem 2004 15 203ndash223

7 M F Hawthorne T D Andrews P M Garrett F P Olsen M Reintjes F N Tebbe L F Warren P A Wegner D C Young Inorg Synth 1967 10 91ndash118

8 A S Batsanov M A Fox J A K Howard A K Hughes A L Johnson S J Martindale Acta Crystallogr 2003 C59 o74ndasho76

9 K O Christe W W Wilson R D Wilson R Bau J A Feng J Am Chem Soc 1990 112 7619ndash7625

10 W Kohn L J Sham Phys Rev A 1965 140 1133ndash1138 11 (a) A D Becke Phys Rev A 1988 38 3098ndash3100 (b) A D Becke J Chem Phys 1993 98

5648ndash5652 (c) C Lee W Yang R G Parr Phys Rev B 1988 37 785ndash789 12 M J Frisch G W Trucks H B Schlegel G E Scuseria M A Robb J R Cheeseman V

Barone B Mennucci G A Petersson H Nakatsuji M Caricato X Xi H P Hratchian A F Izmaylov J Bloino G Zheng J L Sonnenberg M Hada M Ehara K Toyota R Fukuda J Hasegawa M Ishida T Nakajima Y Honda O Kitao H Nakai T Vreven J J A Montgomery J E Peralta M B F Ogliaro J J Heyd E Brothers K N Kudin V N Staroverov R Kobayashi J Normand K Raghavachari A Rendell J C Burant S S Iyengar J Tomasi M Cossi N Rega J M Millam M Klene J E Knox J B Cross V Bakken C

20

Adamo J Jaramillo R Gomperts R E Stratmann O Yazyev A J Austin R Cammi C Pomelli J W Ochterski R L Martin K Morokuma V G Zakrzewski G A Voth P Salvador J J Dannenberg S Dapprich A D Daniels Ouml Farkas J B Foresman J V Ortiz J Cioslowski D J Fox Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA 2009

13 J C Rienstra-Kiracofe G S Tschumper H F Schaefer III S Nandi G B Ellison Chem Rev 2002 102 231ndash282

14 K Wolinski J F Hinton P Pulay J Am Chem Soc 1990 112 8251ndash8260 15 J D Kennedy in Multinuclear NMR (Ed J Mason) Plenum Press New York 1987 p 221 16 S Berger S Braun H-O Kalinowski NMR Spectroscopy of the Non-Metallic Elements John

Wiley amp Sons Ltd Chichester England 1997 17 (a) G M Sheldrick Acta Crystallogr 2008 A64 112ndash122 (b) G M Sheldrick SHELXS-97

Program for Crystal Structure Solution Universitaumlt Goumlttingen 1997 18 G M Sheldrick SHELXT Program for Crystal Structure Solution Universitaumlt Goumlttingen

2014 19 G M Sheldrick SHELXL-97 Program for Crystal Structure Refinement Universitaumlt

Goumlttingen 1997 20 C B Huumlbschle G M Sheldrick B Dittrich J Appl Crystallogr 2011 44 1281ndash1284 21 K Brandenburg Diamond 422 Crystal Impact GbR Bonn Germany 1997-2016

Page 5: Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

Syntheses

Deboronation of closo-17-C2B10H12 using [Me4N]F [Me4N][BHF3] ([Me4N]1) and [Et4N][nido-79-

C2B9H12] A 100 mL glass tube equipped with a magnetic stirring bar was charged with 17-dicarba-

closo-dodecaborane (0430 g 298 mmol) 4 equivalents of anhydrous [Me4N]F (111 g 1193 mmol)

and dry THF (50 mL) under argon The suspension was stirred at 70 degC overnight The reaction was

complete when no 17-dicarba-closo-dodecaborane was detected by 11B NMR spectroscopy in the

reaction mixture [Me4N]1 and [Me4N]2[nido-79-C2B9H11] are both insoluble in THF The colorless

solid materials were isolated by filtration through a fine glass frit under argon and dried in a vacuum

The [Me4N]1 was extracted from the solid material with CH3CN (3 x 50 mL) and the [Me4N]2[nido-79-

C2B9H11] remained as a solid This solid was taken up into ice cold water and the residual CH3CN was

removed using a rotary evaporator In some cases a solid separated during removal of the CH3CN that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N][nido-79-

C2B9H12] during the next step An aqueous solution of [Et4N]Cl (66 g 238 mmol) was added and a

colourless precipitate formed that was isolated by filtration and subsequently dried in a vacuum Yield

of [Et4N][nido-79-C2B9H12] 0472 g (179 mmol 61) The volume of the solution of [Me4N][BHF3]

in acetonitrile was reduced to 75 mL and hexane (200 mL) was added Colorless [Me4N]1 precipitated

The product was collected by filtration and dried in a vacuum overnight and contained 3

[Me4N][BH2F2] as side product as assessed by NMR spectroscopy Yield of [Me4N]1 0090 g

(063 mmol 21)

[Me4N]1 1H NMR (50013 MHz CD3CN) δ = 311 (t 12-H 2J(14N1H) = 06 Hz [N(CH3)4]+) 294 (qq 1-H 1J(11B1H) = 1365 Hz 2J(19F1H) = 927 Hz) ppm 1H11B NMR (50013 MHz CD3CN) δ = 311 (t 12-H 2J(14N1H) = 059 Hz [N(CH3)4]+ 294 (q 1-

H 2J(19F1H) = 927 Hz) ppm 1H19F NMR (40013 MHz CD3CN) δ = 311 (t 12-H 2J(14N1H) = 059 Hz [N(CH3)4]+ 294 (q 1-

H 1J(11B1H) = 1365 Hz) ppm 11B NMR (16046 MHz CD3CN) δ = 12 (dq 1-B 1J(11B1H) = 1365 Hz 1J(19F11B) = 693 Hz) ppm 11B1H NMR (16046 MHz CD3CN) δ = 12 (q 1-B 1J(19F11B) = 699 Hz) ppm 19F NMR (37649 MHz CD3CN) δ = ndash13689 (qd 3-F 1J(19F11B) = 699 Hz 2J(19F1H) = 927 Hz) ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash13689 (q 3-F 1J(19F11B) = 699 Hz) ppm 19F11B NMR (47059 MHz CD3CN) δ = ndash13689 (d 3-F 2J(19F1H) = 927 Hz) ppm

6

Figure S1 1H 1H11B and 1H19F NMR spectra of [Me4N]1

IR (ATR) 120584 = 2375 (w BminusH) 2208 (w BminusH) cmminus1

Raman 120584 = 2375 (w BminusH) 2213 (w BminusH) 950 (m sh BminusF) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 1 (HBF3)minus 68 (25) 69 (100) found 68 (25) 69 (100)

Elemental analysis calcd () for C4H13BF3N (14296) C 3361 H 917 N 980 found C 3404 H

987 N 1012

7

Figure S2 IR and Raman spectrum of [Me4N]1

[Me4N][BH2F2] 1H NMR (50013 MHz CD3CN) δ = 317 (qt 2-H 1J(11B1H) = 1089 Hz 2J(19F1H) = 553 Hz) 311

(t 12-H 2J(14N1H) = 059 Hz [N(CH3)4]+) ppm 1H11B NMR (50013 MHz CD3CN) δ = 317 (t 2-H 2J(19F1H) = 553 Hz) 311 (t 1-H 2J(14N1H) = 059 Hz [N(CH3)4]+) ppm 11B NMR (16046 MHz CD3CN) δ = 51 (tt 1-B 1J(11B1H) = 1089 Hz 1J(19F11B) = 916 Hz) ppm 11B1H NMR (16046 MHz CD3CN) δ = 51 (t 1-B 1J(19F11B) = 916 Hz) ppm 19F NMR (37649 MHz CD3CN) δ = ndash16443 (qt 2-F 1J(19F11B) = 916 Hz 2J(19F1H) = 553 Hz) ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash16443 (q 2-F 1J(19F11B) = 1089 Hz) ppm 19F11B NMR (47059 MHz CD3CN) δ = ndash16443 (t 2-F 2J(19F1H) = 553 Hz) ppm

8

Figure S3 11B and 11B1H NMR spectra of [Me4N]1 with the side product [Me4N][BH2F2]

[Et4N][nido-79-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 220 (s 2-H

B2+5H) 201 (s 1-H B8H) 142 (dd 2-H 2J(1H1Hmicro) = 122 Hz 3J(1H1H) = 35 Hz B10+11H) 121

(tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 117 (s 2-H C7+9H) 108 (s 2-H

B3+4H) 065 (s 1-H B1) 008 (s 1-H B6) ndash233 (t 1-H 2J(1H1Hmicro) = 122 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) ndash47 (d 2-B 1J(11B1H) = 1477 Hz B2+5) ndash59 (d 1-B 1J(11B1H)

= 1344 Hz B8) ndash216 (d 2-B 1J(11B1H) = 1575 Hz B3+4) ndash229 (dd 2-B 1J(11B1H) = 1283 Hz 1J(11B1Hmicro) = 496 Hz B10+11) ndash344 (d 1-B 1J(11B1H) = overlapped B1) ndash355 (d 1-B 1J(11B1H) = overlapped B6) ppm 11B1H NMR (16046 MHz CD3CN) δ = ndash47 (s 2-B B2+5) ndash59 (s 1-B B8) ndash216 (s 2-B

B3+4) ndash229 (s 2-B B10+11) ndash344 (s 1-B B1) ndash355 (s 1-B B6) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5308 (t 4-C 1J(14N 13C) = 31 Hz [Et4N]+) 3269 (brs 2-

C C7+9) 768 (s 4-C [Et4N]+) ppm

9

[Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2) A 250 mL glass tube was charged with 12-dicarba-

closo-dodecaborane (1 g 69 mmol) 4 equivalents of anhydrous [Me4N]F (518 g 276 mmol) and dry

THF (50 mL) The suspension was stirred at room temperature for 24 h The resulting suspension was

transferred by cannula onto a fine glass frit under argon The filtrate contained the [Me4N]2 whereas

[Me4N]1 and [Me4N]2[nido-78-C2B9H11] are insoluble in THF The solid material was worked up as

described for the synthesis of [Me4N]1 and [Et4N][nido-79-C2B9H12] from 17-dicarba-closo-

dodecaborane Yield [Me4N]1 0193 g (135 mmol 20) [Et4N][nido-78-C2B9H12] 106 g (402

mmol 58) The solution of [Me4N]2 in THF was concentrated to approximately 10 mL using a rotary

evaporator Hexane (300 mL) was added to the solution During the addition a colourless precipitate

formed that was isolated by filtration through a glass frit in air Yield [Me4N]2 0203 g (077 mmol

22)

[Me4N]2 1H NMR (50013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (qt 1-H 1J(11B1H) = 1252 Hz 2J(19F1H) = 632 Hz) 213 (s 2-H B3+6H or

B7+11H) 200 (s 8-H B4+58+109123+6 or 7+11H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (t 1-H 2J(19F1H) = 632 Hz) 213 (s 2-H B3+6H or B7+11H) 200 (s 8-H

B4+58+109123+6 or 7+11H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (q 1-H 1J(11B1H) = 1252 Hz) 213 (s 2-H B3+6H or B7+11H) 200 (s 8-H

B4+58+109123+6 or 7+11H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 30 [15] (dt 1-B 1J(19F11B) = 772 Hz 1J(11B1H) = 1262 Hz HBF2-Cluster) ndash36 [ndash58] (d 1-B 1J(11B1H) = 1486 Hz B9) ndash50 [ndash74] (d

1-B 1J(11B1H) = 1439 Hz B12) -92 [ndash111] (d 2-B 1J(11B1H) = 1454 Hz B8+10) ndash116 [ndash132]

(d 2-B 1J(11B1H) = 1586 Hz B4+5) ndash134 [ndash158 ndash168] (d 4-B 1J(11B1H) = 1486 Hz

B3+67+11) ppm 11B1H NMR (16046 MHz CD3CN) [DFT calculations] δ = 30 [15] (t 1-B 1J(19F11B) = 772 Hz

HBF2-Cluster) ndash36 [ndash58] (s 1-B B9) ndash50 [ndash74] (s 1-B B12) ndash92 [ndash111] (s 2-B B8+10) ndash116

[ndash132] (s 2-B B4+5) ndash134 [ndash158 ndash168] (s 4-B B3+67+11) ppm 11B19F NMR (16046 MHz CD3CN) 30 (d 1-B 1J(11B1H) = 1262 Hz HBF2-Cluster) ndash36 (d 1-

B 1J(11B1H) = 1486 Hz B9) ndash50 (d 1-B 1J(11B1H) = 1439 Hz B12) ndash92 (d 2-B 1J(11B1H) =

1454 Hz B8+10) ndash116 (d 2-B 1J(11B1H) = 1586 Hz B4+5) ndash134 (d 4-B 1J(11B1H) = 1486 Hz

B3+67+11) ppm 13C1H NMR (12576 MHz CD3CN) δ = 814 (q 1-C 1J(13C11B) = 528 Hz C1BHF2) 6048 (s 1-

C C2) 5618 (t 4-C 2J(14N13C) = 42 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 8140 (t 1-C 2J(19F13C) = 371 Hz C1BHF2) 605 (t

1-C 3J(19F13C) = 277 Hz C2) 5618 (t 4-C 2J(14N13C) = 42 Hz [Me4N]+) ppm

10

19F NMR (37649 MHz CD3CN) δ = ndash15487 (qd 2-F 1J(19F11B) = 767 Hz 2J(19F1H) = 633 Hz) ppm 19F1H NMR (7548 MHz CD3CN) δ = ndash15487 (q 2-F 1J(19F11B) = 767 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15487 (d 2-F 2J(19F1H) = 633 Hz) ppm

Figure S4 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

the signal of the BHF2 unit is marked with asterisks

11

Figure S5 11B and 11B1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

Figure S6 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

12

Figure S7 19F and 19F11B NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

IR (ATR) 120584 = 3081 (w CClusterminusH) 2633-2516 (m BminusH) 2341 (w BminusH) 2185 (w BminusH) cmminus1

Raman 120584 = 2683-2527 (s BminusH) 2342 (w BminusH) 2158 (w BminusH) 956 (m sh BminusF) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 2 (C2H12B11F2)minus 190 (13) 191 (37) 192 (74) 193

(100) 194 (81) 195 (31) found 190 (13) 191 (37) 192 (73) 193 (100) 194 (83) 195 (31)

Elemental analysis calcd () for C6H24B11F2N (26718) C 2697 H 905 N 524 found C 2780 H

926 N 622

13

Figure S8 IR and Raman spectrum of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

[Et4N][nido-78-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 186 (s 2-H

B9+11H) 169 (s 1-H B3H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 114

(s 4-H B5+62+4H) 045 (s 1-H B1H) -001 (s 1-H B10H) ndash296 (m 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash111 (d 2-B 1J(11B1H) = 1351 Hz B9+11) ndash171 (d 2-B 1J(11B 1H) = overlapped B5+6) ndash177 (d 1-B 1J(11B1H) = overlapped B3) ndash223 (d 2-B 1J(11B 1H) = 1492 Hz B2+4) ndash335 (dd 1-B 1J(11B 1H) = 1329 Hz 1J(11B1Hmicro) = 353 Hz B10) ndash381 (d

1-B 1J(11B1H) = 1365 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5307 (t 4-C 1J(14N13C) = 31 Hz [Et4N]+) 4310 (brq 2-

C 1J(13C11B) = 350 Hz C7+8) 768 (s 4-C [Et4N]+) ppm

[Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3) The reaction was performed as outlined for the

preparation of [Me4N]2 912-diiodo-12-dicarba-closo-dodecaborane (042 g 106 mmol) [Me4N]F

(0396 g 424 mmol) and THF (20 mL) were employed as starting materials Yield of [Me4N]3

0066 g (013 mmol 24) [Me4N]1 0030 g (021 mmol 20) and [Et4N][56-I2-nido-78-C2B9H10]

0306 g (0594 mmol 56)

14

[Me4N]3 1H NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (qt 1-H 1J(11B1H) = 1288 Hz 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250

(s 4-H B4+57+11H ) 226 (s 2-H B3+6H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (t 1-H 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (q 1-H 1J(11B1H) = 1288 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 31 [ndash04] (dt 1-B 1J(19F11B) = 769 Hz 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 [ndash82] (d 2-B 1J(11B1H) = 1537 Hz B8+10) ndash111

[ndash164] (d 2-B 1J(11B1H) = 1682Hz B7+11) ndash127 [ndash128] (d 2-B 1J(11B1H) = overlapped B4+5)

ndash134 [ndash176] (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s

1-B B9) ppm 11B1H NMR (16046 MHz CD3CN) δ = 31 [ndash04] (t 1-B 1J(19F11B) = 769 Hz HBF2-Cluster)

ndash60 [ndash82] (s 2-B B8+10) ndash111 [ndash 164] (s 2-B B7+11) ndash127 [ndash128] (s 2-B B4+5) ndash134

[ndash176] (s 2-B B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s 1-B B9) ppm 11B19F NMR (16046 MHz CD3CN) δ = 31 (d 1-B 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 (d

2-B 1J(11B1H) = 1537 Hz B8+10) ndash111 (d 2-B 1J(11B1H) = 1682 Hz B7+11) ndash127 (d 2-B 1J(11B1H) = overlapped B4+5) ndash134 (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 (s 1-B B12)

ndash167 (s 1-B B9) ppm 13C1H NMR (12576 MHz CD3CN) δ = 7697 (q 1-C 1J(13C11B) = 505 Hz C1BHF2) 579 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 7710 (t 1-C 2J(19F13C) = 379 Hz C1BHF2) 5795 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 19F NMR (37649 MHz CD3CN) δ = ndash15483 (qd 2-F 1J(19F11B) = 769 Hz 2J(19F1H) = 631 Hz)

ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash15483 (q 2-F 1J(19F11B) = 769 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15483 (d 2-F 2J(19F1H) = 631 Hz) ppm

15

Figure S9 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3) the signal of the BHF2 unit is marked with asterisks

Figure S10 11B and 11B1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

16

Figure S11 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3)

Figure S12 19F and 19F1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

17

IR (ATR) 120584 = 3077 (w CClusterminusH) 3072 (vw CClusterminusH) 2644-2505 (m BminusH) 2340 (w BminusH) 2187

(w BminusH) cmminus1

Raman 120584 = 2675-2552 (s BminusH) 2350 (w BminusH) 2191 (w BminusH) 951 (m sh BminusF) 220 (m sh

BminusI) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 3 (C2H10B11F2I2)minus 442 (13) 443 (37) 444 (74) 445

(100) 446 (74) 447 (31) found 442 (13) 443 (38) 444 (73) 445 (100) 446 (80) 447 (29)

Elemental analysis calcd () for C6H22B11F2I2N (51897) C 1389 H 427 N 270 found C 1404 H

435 N 323

Figure S13 IR and Raman spectrum of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Et4N][56-I2-nido-78-C2B9H10] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 237 (s 2-H

B9+11H) 218 (s 2-H C7+8H) 180 (s 2-H B2+4H) 176 (s 1-H B3H) 122 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 096 (s 1-H B1H) 094 (d 1-H 3J(1H1H) = 74 Hz

B2H) 071 (s 1 H B10H) ndash213 (t 1 H 2J(1H1Hmicro) = 99 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash94 (d 2-B 1J(11B 1H) = 1419 Hz B9+11) ndash169 (d 1-B 1J(11B 1H) = 1673 Hz) ndash210 (d 2-B 1J(11B1H) = 1571 Hz B2+4) ndash243 (s 2-B B5+6) ndash279 (dd

18

1-B 1J(11B1H) = 1324 Hz 1J(11B1Hmicro) = 393 Hz B10) ndash337 (d 1-B 1J(11B1H) = 1471 Hz

B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 531 (t 4-C 1J(14N13C) = 3 Hz [NEt4]+) 427 (brq 2-C 1J(13C11B) = 346 Hz C7+8 ) 76 (s 4-C [NEt4]+) ppm

[Et4N][7-Me-nido-78-C2B9H11] A 100 mL glass tube equipped with a magnetic stirring bar was

charged with 1-Me-12-dicarba-closo-dodecaborane (0250 g 158 mmol) 4 equivalents of anhydrous

[Me4N]F (0590 g 632 mmol) and dry THF (15 mL) under an argon atmosphere The suspension was

stirred at room temperature for 24 h The reaction mixture was taken up into ice-cold water and the

residual THF was removed using a rotary evaporator A solid separated during removal of the THF that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N]+ salts during

the next step An aqueous solution of [Et4N]Cl (261 g 1580 mmol) was added to the clear solution and

then a colourless precipitate was formed The solid was isolated by filtration through a fine glass frit

and dried in a vacuum overnight Yield of 0259 g [Et4N][7-Me-nido-78-C2B9H11] (093 mmol 591)

[Et4N][7-Me-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 166 (s 1-H

C8H) 188 (s 1-H B9H) 179 (s 1-H B11H) 161 (s 1-H B3H) 136 (s 3-H C7CH3) 133 (s 1-

H B2H or B6H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 111 (s 2-H

B4H+B2H or B6H) 103 (s 1-H B5H) 043 (s 1-H B1H) -004 (s 1-H B10H) ndash272 (m 1-H

BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash102 (d 1-B 1J(11B1H) = overlapped B11) ndash111 (d 1-B 1J(11B1H) = overlapped B9) ndash135 (d 1-B 1J(11B1H) = 1561 Hz B3) ndash180 (d 2-B 1J(11B1H) =

overlapped B2+B6) ndash189 (d 1-B 1J(11B1H) = overlapped B5) ndash225 (d 1-B 1J(11B1H) = 1475

Hz) ndash338 (dd 1-B 1J(11B1H) = 1284 Hz 1J(11B1Hmicro) = 397 Hz B10) ndash371 (d 1-B 1J(11B1H) =

1377 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5497 (brq 1-C 1J(13C11B) = 348 Hz C7CH3) 5308 (t 4-

C 1J(14N13C) = 31 Hz [Et4N]+) 4955 (brq 1-C 1J(13C11B) = 348 Hz C8H) 2548 (s 1-C C7CH3)

769 (s 4-C [Et4N]+) ppm

[Et4N][7-Ph-nido-78-C2B9H11] The reaction was performed as outlined for the preparation of [Et4N]4

1-Ph-12-dicarba-closo-dodecaborane (0300 g 136 mmol) [Me4N]F (0509 g 545 mmol) [Et4N]Cl

(225 g 1360 mmol) and THF (20 mL) were employed as starting materials Yield of 0254 g [Et4N][1-

Ph-nido-78-C2B9H11] (075 mmol 550)

[Et4N][1-Ph-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 721 (m 2-H PhH) 713 (m 2-H PhH) 704 (m 1-H

PhH) 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 228 (s 1-H C8H) 207 (s 2-H B9+11H) 177 (s

19

1-H B3H) 172 (s 1-H B2H) 123 (s 3-H B4+5+6H) 119 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 065 (s 1-H B1H) 015 (s 1-H B10H) ndash246 (s 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash88 (d 1-B 1J(11B1H) = 1386 Hz B11) ndash104 (d 1-B 1J(11B1H) = 1367 Hz B9) ndash137 (d 1-B 1J(11B1H) = 1594 Hz B3) ndash169 (d 1-B 1J(11B1H) =

overlapped B5) ndash181 (d 1-B 1J(11B1H) = overlapped B6) ndash198 (d 1-B 1J(11B1H) = 1489 Hz

B2) ndash227 (d 1-B 1J(11B1H) = 1507 Hz B4) ndash329 (dd 1-B 1J(11B1H) = 1334 Hz 1J(11B1Hmicro) =

394 Hz B10) ndash361 (d 1-B 1J(11B1H) = 1422 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 1467 (s 1-C CPh) 12845 (s 2-C CPh) 12757 (s 2-C CPh)

12565 (s 1-C CPh) 6317 (brq 1 C 1J(13C11B) = 342 Hz C7Ph) 5307 (t 4-C 1J(14N13C) = 31 Hz

[Et4N]+) 4632 (brq 1-C 1J(13C11B) = 342 Hz C8H) 768 (s 4-C [Et4N]+) ppm

References

1 R K Harris E D Becker S M Cabral de Menezes R Goodfellow P Granger Pure Appl Chem 2001 73 1795ndash1818

2 G R Fulmer A J M Miller N H Sherden H E Gottlieb A Nudelman B M Stoltz J E Bercaw K I Goldberg Organometallics 2010 29 2176ndash2179

3 (a) D C Finster W C Hutton R N Grimes J Am Chem Soc 1980 102 400ndash401 (b) I J Colquhoun W McFarlane J Chem Soc Dalton Trans 1981 2014ndash2016

4 (a) T L Venable W C Hutton R N Grimes J Am Chem Soc 1982 104 4716ndash4717 (b) T L Venable W C Hutton R N Grimes J Am Chem Soc 1984 106 29ndash37

5 W L F Armarego C L L Chai Purification of Laboratory Chemicals 5 ed Butterworth-Heinemann (Elsevier) 2003

6 D S Wilbur M-K Chyan D K Hamlin B B Kegley R Risler P M Pathare J Quinn R L Vessella C Foulon M Zalutsky T J Wedge M F Hawthorne Bioconjugate Chem 2004 15 203ndash223

7 M F Hawthorne T D Andrews P M Garrett F P Olsen M Reintjes F N Tebbe L F Warren P A Wegner D C Young Inorg Synth 1967 10 91ndash118

8 A S Batsanov M A Fox J A K Howard A K Hughes A L Johnson S J Martindale Acta Crystallogr 2003 C59 o74ndasho76

9 K O Christe W W Wilson R D Wilson R Bau J A Feng J Am Chem Soc 1990 112 7619ndash7625

10 W Kohn L J Sham Phys Rev A 1965 140 1133ndash1138 11 (a) A D Becke Phys Rev A 1988 38 3098ndash3100 (b) A D Becke J Chem Phys 1993 98

5648ndash5652 (c) C Lee W Yang R G Parr Phys Rev B 1988 37 785ndash789 12 M J Frisch G W Trucks H B Schlegel G E Scuseria M A Robb J R Cheeseman V

Barone B Mennucci G A Petersson H Nakatsuji M Caricato X Xi H P Hratchian A F Izmaylov J Bloino G Zheng J L Sonnenberg M Hada M Ehara K Toyota R Fukuda J Hasegawa M Ishida T Nakajima Y Honda O Kitao H Nakai T Vreven J J A Montgomery J E Peralta M B F Ogliaro J J Heyd E Brothers K N Kudin V N Staroverov R Kobayashi J Normand K Raghavachari A Rendell J C Burant S S Iyengar J Tomasi M Cossi N Rega J M Millam M Klene J E Knox J B Cross V Bakken C

20

Adamo J Jaramillo R Gomperts R E Stratmann O Yazyev A J Austin R Cammi C Pomelli J W Ochterski R L Martin K Morokuma V G Zakrzewski G A Voth P Salvador J J Dannenberg S Dapprich A D Daniels Ouml Farkas J B Foresman J V Ortiz J Cioslowski D J Fox Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA 2009

13 J C Rienstra-Kiracofe G S Tschumper H F Schaefer III S Nandi G B Ellison Chem Rev 2002 102 231ndash282

14 K Wolinski J F Hinton P Pulay J Am Chem Soc 1990 112 8251ndash8260 15 J D Kennedy in Multinuclear NMR (Ed J Mason) Plenum Press New York 1987 p 221 16 S Berger S Braun H-O Kalinowski NMR Spectroscopy of the Non-Metallic Elements John

Wiley amp Sons Ltd Chichester England 1997 17 (a) G M Sheldrick Acta Crystallogr 2008 A64 112ndash122 (b) G M Sheldrick SHELXS-97

Program for Crystal Structure Solution Universitaumlt Goumlttingen 1997 18 G M Sheldrick SHELXT Program for Crystal Structure Solution Universitaumlt Goumlttingen

2014 19 G M Sheldrick SHELXL-97 Program for Crystal Structure Refinement Universitaumlt

Goumlttingen 1997 20 C B Huumlbschle G M Sheldrick B Dittrich J Appl Crystallogr 2011 44 1281ndash1284 21 K Brandenburg Diamond 422 Crystal Impact GbR Bonn Germany 1997-2016

Page 6: Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

6

Figure S1 1H 1H11B and 1H19F NMR spectra of [Me4N]1

IR (ATR) 120584 = 2375 (w BminusH) 2208 (w BminusH) cmminus1

Raman 120584 = 2375 (w BminusH) 2213 (w BminusH) 950 (m sh BminusF) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 1 (HBF3)minus 68 (25) 69 (100) found 68 (25) 69 (100)

Elemental analysis calcd () for C4H13BF3N (14296) C 3361 H 917 N 980 found C 3404 H

987 N 1012

7

Figure S2 IR and Raman spectrum of [Me4N]1

[Me4N][BH2F2] 1H NMR (50013 MHz CD3CN) δ = 317 (qt 2-H 1J(11B1H) = 1089 Hz 2J(19F1H) = 553 Hz) 311

(t 12-H 2J(14N1H) = 059 Hz [N(CH3)4]+) ppm 1H11B NMR (50013 MHz CD3CN) δ = 317 (t 2-H 2J(19F1H) = 553 Hz) 311 (t 1-H 2J(14N1H) = 059 Hz [N(CH3)4]+) ppm 11B NMR (16046 MHz CD3CN) δ = 51 (tt 1-B 1J(11B1H) = 1089 Hz 1J(19F11B) = 916 Hz) ppm 11B1H NMR (16046 MHz CD3CN) δ = 51 (t 1-B 1J(19F11B) = 916 Hz) ppm 19F NMR (37649 MHz CD3CN) δ = ndash16443 (qt 2-F 1J(19F11B) = 916 Hz 2J(19F1H) = 553 Hz) ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash16443 (q 2-F 1J(19F11B) = 1089 Hz) ppm 19F11B NMR (47059 MHz CD3CN) δ = ndash16443 (t 2-F 2J(19F1H) = 553 Hz) ppm

8

Figure S3 11B and 11B1H NMR spectra of [Me4N]1 with the side product [Me4N][BH2F2]

[Et4N][nido-79-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 220 (s 2-H

B2+5H) 201 (s 1-H B8H) 142 (dd 2-H 2J(1H1Hmicro) = 122 Hz 3J(1H1H) = 35 Hz B10+11H) 121

(tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 117 (s 2-H C7+9H) 108 (s 2-H

B3+4H) 065 (s 1-H B1) 008 (s 1-H B6) ndash233 (t 1-H 2J(1H1Hmicro) = 122 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) ndash47 (d 2-B 1J(11B1H) = 1477 Hz B2+5) ndash59 (d 1-B 1J(11B1H)

= 1344 Hz B8) ndash216 (d 2-B 1J(11B1H) = 1575 Hz B3+4) ndash229 (dd 2-B 1J(11B1H) = 1283 Hz 1J(11B1Hmicro) = 496 Hz B10+11) ndash344 (d 1-B 1J(11B1H) = overlapped B1) ndash355 (d 1-B 1J(11B1H) = overlapped B6) ppm 11B1H NMR (16046 MHz CD3CN) δ = ndash47 (s 2-B B2+5) ndash59 (s 1-B B8) ndash216 (s 2-B

B3+4) ndash229 (s 2-B B10+11) ndash344 (s 1-B B1) ndash355 (s 1-B B6) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5308 (t 4-C 1J(14N 13C) = 31 Hz [Et4N]+) 3269 (brs 2-

C C7+9) 768 (s 4-C [Et4N]+) ppm

9

[Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2) A 250 mL glass tube was charged with 12-dicarba-

closo-dodecaborane (1 g 69 mmol) 4 equivalents of anhydrous [Me4N]F (518 g 276 mmol) and dry

THF (50 mL) The suspension was stirred at room temperature for 24 h The resulting suspension was

transferred by cannula onto a fine glass frit under argon The filtrate contained the [Me4N]2 whereas

[Me4N]1 and [Me4N]2[nido-78-C2B9H11] are insoluble in THF The solid material was worked up as

described for the synthesis of [Me4N]1 and [Et4N][nido-79-C2B9H12] from 17-dicarba-closo-

dodecaborane Yield [Me4N]1 0193 g (135 mmol 20) [Et4N][nido-78-C2B9H12] 106 g (402

mmol 58) The solution of [Me4N]2 in THF was concentrated to approximately 10 mL using a rotary

evaporator Hexane (300 mL) was added to the solution During the addition a colourless precipitate

formed that was isolated by filtration through a glass frit in air Yield [Me4N]2 0203 g (077 mmol

22)

[Me4N]2 1H NMR (50013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (qt 1-H 1J(11B1H) = 1252 Hz 2J(19F1H) = 632 Hz) 213 (s 2-H B3+6H or

B7+11H) 200 (s 8-H B4+58+109123+6 or 7+11H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (t 1-H 2J(19F1H) = 632 Hz) 213 (s 2-H B3+6H or B7+11H) 200 (s 8-H

B4+58+109123+6 or 7+11H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (q 1-H 1J(11B1H) = 1252 Hz) 213 (s 2-H B3+6H or B7+11H) 200 (s 8-H

B4+58+109123+6 or 7+11H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 30 [15] (dt 1-B 1J(19F11B) = 772 Hz 1J(11B1H) = 1262 Hz HBF2-Cluster) ndash36 [ndash58] (d 1-B 1J(11B1H) = 1486 Hz B9) ndash50 [ndash74] (d

1-B 1J(11B1H) = 1439 Hz B12) -92 [ndash111] (d 2-B 1J(11B1H) = 1454 Hz B8+10) ndash116 [ndash132]

(d 2-B 1J(11B1H) = 1586 Hz B4+5) ndash134 [ndash158 ndash168] (d 4-B 1J(11B1H) = 1486 Hz

B3+67+11) ppm 11B1H NMR (16046 MHz CD3CN) [DFT calculations] δ = 30 [15] (t 1-B 1J(19F11B) = 772 Hz

HBF2-Cluster) ndash36 [ndash58] (s 1-B B9) ndash50 [ndash74] (s 1-B B12) ndash92 [ndash111] (s 2-B B8+10) ndash116

[ndash132] (s 2-B B4+5) ndash134 [ndash158 ndash168] (s 4-B B3+67+11) ppm 11B19F NMR (16046 MHz CD3CN) 30 (d 1-B 1J(11B1H) = 1262 Hz HBF2-Cluster) ndash36 (d 1-

B 1J(11B1H) = 1486 Hz B9) ndash50 (d 1-B 1J(11B1H) = 1439 Hz B12) ndash92 (d 2-B 1J(11B1H) =

1454 Hz B8+10) ndash116 (d 2-B 1J(11B1H) = 1586 Hz B4+5) ndash134 (d 4-B 1J(11B1H) = 1486 Hz

B3+67+11) ppm 13C1H NMR (12576 MHz CD3CN) δ = 814 (q 1-C 1J(13C11B) = 528 Hz C1BHF2) 6048 (s 1-

C C2) 5618 (t 4-C 2J(14N13C) = 42 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 8140 (t 1-C 2J(19F13C) = 371 Hz C1BHF2) 605 (t

1-C 3J(19F13C) = 277 Hz C2) 5618 (t 4-C 2J(14N13C) = 42 Hz [Me4N]+) ppm

10

19F NMR (37649 MHz CD3CN) δ = ndash15487 (qd 2-F 1J(19F11B) = 767 Hz 2J(19F1H) = 633 Hz) ppm 19F1H NMR (7548 MHz CD3CN) δ = ndash15487 (q 2-F 1J(19F11B) = 767 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15487 (d 2-F 2J(19F1H) = 633 Hz) ppm

Figure S4 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

the signal of the BHF2 unit is marked with asterisks

11

Figure S5 11B and 11B1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

Figure S6 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

12

Figure S7 19F and 19F11B NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

IR (ATR) 120584 = 3081 (w CClusterminusH) 2633-2516 (m BminusH) 2341 (w BminusH) 2185 (w BminusH) cmminus1

Raman 120584 = 2683-2527 (s BminusH) 2342 (w BminusH) 2158 (w BminusH) 956 (m sh BminusF) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 2 (C2H12B11F2)minus 190 (13) 191 (37) 192 (74) 193

(100) 194 (81) 195 (31) found 190 (13) 191 (37) 192 (73) 193 (100) 194 (83) 195 (31)

Elemental analysis calcd () for C6H24B11F2N (26718) C 2697 H 905 N 524 found C 2780 H

926 N 622

13

Figure S8 IR and Raman spectrum of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

[Et4N][nido-78-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 186 (s 2-H

B9+11H) 169 (s 1-H B3H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 114

(s 4-H B5+62+4H) 045 (s 1-H B1H) -001 (s 1-H B10H) ndash296 (m 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash111 (d 2-B 1J(11B1H) = 1351 Hz B9+11) ndash171 (d 2-B 1J(11B 1H) = overlapped B5+6) ndash177 (d 1-B 1J(11B1H) = overlapped B3) ndash223 (d 2-B 1J(11B 1H) = 1492 Hz B2+4) ndash335 (dd 1-B 1J(11B 1H) = 1329 Hz 1J(11B1Hmicro) = 353 Hz B10) ndash381 (d

1-B 1J(11B1H) = 1365 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5307 (t 4-C 1J(14N13C) = 31 Hz [Et4N]+) 4310 (brq 2-

C 1J(13C11B) = 350 Hz C7+8) 768 (s 4-C [Et4N]+) ppm

[Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3) The reaction was performed as outlined for the

preparation of [Me4N]2 912-diiodo-12-dicarba-closo-dodecaborane (042 g 106 mmol) [Me4N]F

(0396 g 424 mmol) and THF (20 mL) were employed as starting materials Yield of [Me4N]3

0066 g (013 mmol 24) [Me4N]1 0030 g (021 mmol 20) and [Et4N][56-I2-nido-78-C2B9H10]

0306 g (0594 mmol 56)

14

[Me4N]3 1H NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (qt 1-H 1J(11B1H) = 1288 Hz 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250

(s 4-H B4+57+11H ) 226 (s 2-H B3+6H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (t 1-H 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (q 1-H 1J(11B1H) = 1288 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 31 [ndash04] (dt 1-B 1J(19F11B) = 769 Hz 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 [ndash82] (d 2-B 1J(11B1H) = 1537 Hz B8+10) ndash111

[ndash164] (d 2-B 1J(11B1H) = 1682Hz B7+11) ndash127 [ndash128] (d 2-B 1J(11B1H) = overlapped B4+5)

ndash134 [ndash176] (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s

1-B B9) ppm 11B1H NMR (16046 MHz CD3CN) δ = 31 [ndash04] (t 1-B 1J(19F11B) = 769 Hz HBF2-Cluster)

ndash60 [ndash82] (s 2-B B8+10) ndash111 [ndash 164] (s 2-B B7+11) ndash127 [ndash128] (s 2-B B4+5) ndash134

[ndash176] (s 2-B B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s 1-B B9) ppm 11B19F NMR (16046 MHz CD3CN) δ = 31 (d 1-B 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 (d

2-B 1J(11B1H) = 1537 Hz B8+10) ndash111 (d 2-B 1J(11B1H) = 1682 Hz B7+11) ndash127 (d 2-B 1J(11B1H) = overlapped B4+5) ndash134 (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 (s 1-B B12)

ndash167 (s 1-B B9) ppm 13C1H NMR (12576 MHz CD3CN) δ = 7697 (q 1-C 1J(13C11B) = 505 Hz C1BHF2) 579 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 7710 (t 1-C 2J(19F13C) = 379 Hz C1BHF2) 5795 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 19F NMR (37649 MHz CD3CN) δ = ndash15483 (qd 2-F 1J(19F11B) = 769 Hz 2J(19F1H) = 631 Hz)

ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash15483 (q 2-F 1J(19F11B) = 769 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15483 (d 2-F 2J(19F1H) = 631 Hz) ppm

15

Figure S9 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3) the signal of the BHF2 unit is marked with asterisks

Figure S10 11B and 11B1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

16

Figure S11 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3)

Figure S12 19F and 19F1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

17

IR (ATR) 120584 = 3077 (w CClusterminusH) 3072 (vw CClusterminusH) 2644-2505 (m BminusH) 2340 (w BminusH) 2187

(w BminusH) cmminus1

Raman 120584 = 2675-2552 (s BminusH) 2350 (w BminusH) 2191 (w BminusH) 951 (m sh BminusF) 220 (m sh

BminusI) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 3 (C2H10B11F2I2)minus 442 (13) 443 (37) 444 (74) 445

(100) 446 (74) 447 (31) found 442 (13) 443 (38) 444 (73) 445 (100) 446 (80) 447 (29)

Elemental analysis calcd () for C6H22B11F2I2N (51897) C 1389 H 427 N 270 found C 1404 H

435 N 323

Figure S13 IR and Raman spectrum of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Et4N][56-I2-nido-78-C2B9H10] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 237 (s 2-H

B9+11H) 218 (s 2-H C7+8H) 180 (s 2-H B2+4H) 176 (s 1-H B3H) 122 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 096 (s 1-H B1H) 094 (d 1-H 3J(1H1H) = 74 Hz

B2H) 071 (s 1 H B10H) ndash213 (t 1 H 2J(1H1Hmicro) = 99 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash94 (d 2-B 1J(11B 1H) = 1419 Hz B9+11) ndash169 (d 1-B 1J(11B 1H) = 1673 Hz) ndash210 (d 2-B 1J(11B1H) = 1571 Hz B2+4) ndash243 (s 2-B B5+6) ndash279 (dd

18

1-B 1J(11B1H) = 1324 Hz 1J(11B1Hmicro) = 393 Hz B10) ndash337 (d 1-B 1J(11B1H) = 1471 Hz

B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 531 (t 4-C 1J(14N13C) = 3 Hz [NEt4]+) 427 (brq 2-C 1J(13C11B) = 346 Hz C7+8 ) 76 (s 4-C [NEt4]+) ppm

[Et4N][7-Me-nido-78-C2B9H11] A 100 mL glass tube equipped with a magnetic stirring bar was

charged with 1-Me-12-dicarba-closo-dodecaborane (0250 g 158 mmol) 4 equivalents of anhydrous

[Me4N]F (0590 g 632 mmol) and dry THF (15 mL) under an argon atmosphere The suspension was

stirred at room temperature for 24 h The reaction mixture was taken up into ice-cold water and the

residual THF was removed using a rotary evaporator A solid separated during removal of the THF that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N]+ salts during

the next step An aqueous solution of [Et4N]Cl (261 g 1580 mmol) was added to the clear solution and

then a colourless precipitate was formed The solid was isolated by filtration through a fine glass frit

and dried in a vacuum overnight Yield of 0259 g [Et4N][7-Me-nido-78-C2B9H11] (093 mmol 591)

[Et4N][7-Me-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 166 (s 1-H

C8H) 188 (s 1-H B9H) 179 (s 1-H B11H) 161 (s 1-H B3H) 136 (s 3-H C7CH3) 133 (s 1-

H B2H or B6H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 111 (s 2-H

B4H+B2H or B6H) 103 (s 1-H B5H) 043 (s 1-H B1H) -004 (s 1-H B10H) ndash272 (m 1-H

BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash102 (d 1-B 1J(11B1H) = overlapped B11) ndash111 (d 1-B 1J(11B1H) = overlapped B9) ndash135 (d 1-B 1J(11B1H) = 1561 Hz B3) ndash180 (d 2-B 1J(11B1H) =

overlapped B2+B6) ndash189 (d 1-B 1J(11B1H) = overlapped B5) ndash225 (d 1-B 1J(11B1H) = 1475

Hz) ndash338 (dd 1-B 1J(11B1H) = 1284 Hz 1J(11B1Hmicro) = 397 Hz B10) ndash371 (d 1-B 1J(11B1H) =

1377 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5497 (brq 1-C 1J(13C11B) = 348 Hz C7CH3) 5308 (t 4-

C 1J(14N13C) = 31 Hz [Et4N]+) 4955 (brq 1-C 1J(13C11B) = 348 Hz C8H) 2548 (s 1-C C7CH3)

769 (s 4-C [Et4N]+) ppm

[Et4N][7-Ph-nido-78-C2B9H11] The reaction was performed as outlined for the preparation of [Et4N]4

1-Ph-12-dicarba-closo-dodecaborane (0300 g 136 mmol) [Me4N]F (0509 g 545 mmol) [Et4N]Cl

(225 g 1360 mmol) and THF (20 mL) were employed as starting materials Yield of 0254 g [Et4N][1-

Ph-nido-78-C2B9H11] (075 mmol 550)

[Et4N][1-Ph-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 721 (m 2-H PhH) 713 (m 2-H PhH) 704 (m 1-H

PhH) 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 228 (s 1-H C8H) 207 (s 2-H B9+11H) 177 (s

19

1-H B3H) 172 (s 1-H B2H) 123 (s 3-H B4+5+6H) 119 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 065 (s 1-H B1H) 015 (s 1-H B10H) ndash246 (s 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash88 (d 1-B 1J(11B1H) = 1386 Hz B11) ndash104 (d 1-B 1J(11B1H) = 1367 Hz B9) ndash137 (d 1-B 1J(11B1H) = 1594 Hz B3) ndash169 (d 1-B 1J(11B1H) =

overlapped B5) ndash181 (d 1-B 1J(11B1H) = overlapped B6) ndash198 (d 1-B 1J(11B1H) = 1489 Hz

B2) ndash227 (d 1-B 1J(11B1H) = 1507 Hz B4) ndash329 (dd 1-B 1J(11B1H) = 1334 Hz 1J(11B1Hmicro) =

394 Hz B10) ndash361 (d 1-B 1J(11B1H) = 1422 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 1467 (s 1-C CPh) 12845 (s 2-C CPh) 12757 (s 2-C CPh)

12565 (s 1-C CPh) 6317 (brq 1 C 1J(13C11B) = 342 Hz C7Ph) 5307 (t 4-C 1J(14N13C) = 31 Hz

[Et4N]+) 4632 (brq 1-C 1J(13C11B) = 342 Hz C8H) 768 (s 4-C [Et4N]+) ppm

References

1 R K Harris E D Becker S M Cabral de Menezes R Goodfellow P Granger Pure Appl Chem 2001 73 1795ndash1818

2 G R Fulmer A J M Miller N H Sherden H E Gottlieb A Nudelman B M Stoltz J E Bercaw K I Goldberg Organometallics 2010 29 2176ndash2179

3 (a) D C Finster W C Hutton R N Grimes J Am Chem Soc 1980 102 400ndash401 (b) I J Colquhoun W McFarlane J Chem Soc Dalton Trans 1981 2014ndash2016

4 (a) T L Venable W C Hutton R N Grimes J Am Chem Soc 1982 104 4716ndash4717 (b) T L Venable W C Hutton R N Grimes J Am Chem Soc 1984 106 29ndash37

5 W L F Armarego C L L Chai Purification of Laboratory Chemicals 5 ed Butterworth-Heinemann (Elsevier) 2003

6 D S Wilbur M-K Chyan D K Hamlin B B Kegley R Risler P M Pathare J Quinn R L Vessella C Foulon M Zalutsky T J Wedge M F Hawthorne Bioconjugate Chem 2004 15 203ndash223

7 M F Hawthorne T D Andrews P M Garrett F P Olsen M Reintjes F N Tebbe L F Warren P A Wegner D C Young Inorg Synth 1967 10 91ndash118

8 A S Batsanov M A Fox J A K Howard A K Hughes A L Johnson S J Martindale Acta Crystallogr 2003 C59 o74ndasho76

9 K O Christe W W Wilson R D Wilson R Bau J A Feng J Am Chem Soc 1990 112 7619ndash7625

10 W Kohn L J Sham Phys Rev A 1965 140 1133ndash1138 11 (a) A D Becke Phys Rev A 1988 38 3098ndash3100 (b) A D Becke J Chem Phys 1993 98

5648ndash5652 (c) C Lee W Yang R G Parr Phys Rev B 1988 37 785ndash789 12 M J Frisch G W Trucks H B Schlegel G E Scuseria M A Robb J R Cheeseman V

Barone B Mennucci G A Petersson H Nakatsuji M Caricato X Xi H P Hratchian A F Izmaylov J Bloino G Zheng J L Sonnenberg M Hada M Ehara K Toyota R Fukuda J Hasegawa M Ishida T Nakajima Y Honda O Kitao H Nakai T Vreven J J A Montgomery J E Peralta M B F Ogliaro J J Heyd E Brothers K N Kudin V N Staroverov R Kobayashi J Normand K Raghavachari A Rendell J C Burant S S Iyengar J Tomasi M Cossi N Rega J M Millam M Klene J E Knox J B Cross V Bakken C

20

Adamo J Jaramillo R Gomperts R E Stratmann O Yazyev A J Austin R Cammi C Pomelli J W Ochterski R L Martin K Morokuma V G Zakrzewski G A Voth P Salvador J J Dannenberg S Dapprich A D Daniels Ouml Farkas J B Foresman J V Ortiz J Cioslowski D J Fox Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA 2009

13 J C Rienstra-Kiracofe G S Tschumper H F Schaefer III S Nandi G B Ellison Chem Rev 2002 102 231ndash282

14 K Wolinski J F Hinton P Pulay J Am Chem Soc 1990 112 8251ndash8260 15 J D Kennedy in Multinuclear NMR (Ed J Mason) Plenum Press New York 1987 p 221 16 S Berger S Braun H-O Kalinowski NMR Spectroscopy of the Non-Metallic Elements John

Wiley amp Sons Ltd Chichester England 1997 17 (a) G M Sheldrick Acta Crystallogr 2008 A64 112ndash122 (b) G M Sheldrick SHELXS-97

Program for Crystal Structure Solution Universitaumlt Goumlttingen 1997 18 G M Sheldrick SHELXT Program for Crystal Structure Solution Universitaumlt Goumlttingen

2014 19 G M Sheldrick SHELXL-97 Program for Crystal Structure Refinement Universitaumlt

Goumlttingen 1997 20 C B Huumlbschle G M Sheldrick B Dittrich J Appl Crystallogr 2011 44 1281ndash1284 21 K Brandenburg Diamond 422 Crystal Impact GbR Bonn Germany 1997-2016

Page 7: Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

7

Figure S2 IR and Raman spectrum of [Me4N]1

[Me4N][BH2F2] 1H NMR (50013 MHz CD3CN) δ = 317 (qt 2-H 1J(11B1H) = 1089 Hz 2J(19F1H) = 553 Hz) 311

(t 12-H 2J(14N1H) = 059 Hz [N(CH3)4]+) ppm 1H11B NMR (50013 MHz CD3CN) δ = 317 (t 2-H 2J(19F1H) = 553 Hz) 311 (t 1-H 2J(14N1H) = 059 Hz [N(CH3)4]+) ppm 11B NMR (16046 MHz CD3CN) δ = 51 (tt 1-B 1J(11B1H) = 1089 Hz 1J(19F11B) = 916 Hz) ppm 11B1H NMR (16046 MHz CD3CN) δ = 51 (t 1-B 1J(19F11B) = 916 Hz) ppm 19F NMR (37649 MHz CD3CN) δ = ndash16443 (qt 2-F 1J(19F11B) = 916 Hz 2J(19F1H) = 553 Hz) ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash16443 (q 2-F 1J(19F11B) = 1089 Hz) ppm 19F11B NMR (47059 MHz CD3CN) δ = ndash16443 (t 2-F 2J(19F1H) = 553 Hz) ppm

8

Figure S3 11B and 11B1H NMR spectra of [Me4N]1 with the side product [Me4N][BH2F2]

[Et4N][nido-79-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 220 (s 2-H

B2+5H) 201 (s 1-H B8H) 142 (dd 2-H 2J(1H1Hmicro) = 122 Hz 3J(1H1H) = 35 Hz B10+11H) 121

(tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 117 (s 2-H C7+9H) 108 (s 2-H

B3+4H) 065 (s 1-H B1) 008 (s 1-H B6) ndash233 (t 1-H 2J(1H1Hmicro) = 122 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) ndash47 (d 2-B 1J(11B1H) = 1477 Hz B2+5) ndash59 (d 1-B 1J(11B1H)

= 1344 Hz B8) ndash216 (d 2-B 1J(11B1H) = 1575 Hz B3+4) ndash229 (dd 2-B 1J(11B1H) = 1283 Hz 1J(11B1Hmicro) = 496 Hz B10+11) ndash344 (d 1-B 1J(11B1H) = overlapped B1) ndash355 (d 1-B 1J(11B1H) = overlapped B6) ppm 11B1H NMR (16046 MHz CD3CN) δ = ndash47 (s 2-B B2+5) ndash59 (s 1-B B8) ndash216 (s 2-B

B3+4) ndash229 (s 2-B B10+11) ndash344 (s 1-B B1) ndash355 (s 1-B B6) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5308 (t 4-C 1J(14N 13C) = 31 Hz [Et4N]+) 3269 (brs 2-

C C7+9) 768 (s 4-C [Et4N]+) ppm

9

[Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2) A 250 mL glass tube was charged with 12-dicarba-

closo-dodecaborane (1 g 69 mmol) 4 equivalents of anhydrous [Me4N]F (518 g 276 mmol) and dry

THF (50 mL) The suspension was stirred at room temperature for 24 h The resulting suspension was

transferred by cannula onto a fine glass frit under argon The filtrate contained the [Me4N]2 whereas

[Me4N]1 and [Me4N]2[nido-78-C2B9H11] are insoluble in THF The solid material was worked up as

described for the synthesis of [Me4N]1 and [Et4N][nido-79-C2B9H12] from 17-dicarba-closo-

dodecaborane Yield [Me4N]1 0193 g (135 mmol 20) [Et4N][nido-78-C2B9H12] 106 g (402

mmol 58) The solution of [Me4N]2 in THF was concentrated to approximately 10 mL using a rotary

evaporator Hexane (300 mL) was added to the solution During the addition a colourless precipitate

formed that was isolated by filtration through a glass frit in air Yield [Me4N]2 0203 g (077 mmol

22)

[Me4N]2 1H NMR (50013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (qt 1-H 1J(11B1H) = 1252 Hz 2J(19F1H) = 632 Hz) 213 (s 2-H B3+6H or

B7+11H) 200 (s 8-H B4+58+109123+6 or 7+11H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (t 1-H 2J(19F1H) = 632 Hz) 213 (s 2-H B3+6H or B7+11H) 200 (s 8-H

B4+58+109123+6 or 7+11H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (q 1-H 1J(11B1H) = 1252 Hz) 213 (s 2-H B3+6H or B7+11H) 200 (s 8-H

B4+58+109123+6 or 7+11H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 30 [15] (dt 1-B 1J(19F11B) = 772 Hz 1J(11B1H) = 1262 Hz HBF2-Cluster) ndash36 [ndash58] (d 1-B 1J(11B1H) = 1486 Hz B9) ndash50 [ndash74] (d

1-B 1J(11B1H) = 1439 Hz B12) -92 [ndash111] (d 2-B 1J(11B1H) = 1454 Hz B8+10) ndash116 [ndash132]

(d 2-B 1J(11B1H) = 1586 Hz B4+5) ndash134 [ndash158 ndash168] (d 4-B 1J(11B1H) = 1486 Hz

B3+67+11) ppm 11B1H NMR (16046 MHz CD3CN) [DFT calculations] δ = 30 [15] (t 1-B 1J(19F11B) = 772 Hz

HBF2-Cluster) ndash36 [ndash58] (s 1-B B9) ndash50 [ndash74] (s 1-B B12) ndash92 [ndash111] (s 2-B B8+10) ndash116

[ndash132] (s 2-B B4+5) ndash134 [ndash158 ndash168] (s 4-B B3+67+11) ppm 11B19F NMR (16046 MHz CD3CN) 30 (d 1-B 1J(11B1H) = 1262 Hz HBF2-Cluster) ndash36 (d 1-

B 1J(11B1H) = 1486 Hz B9) ndash50 (d 1-B 1J(11B1H) = 1439 Hz B12) ndash92 (d 2-B 1J(11B1H) =

1454 Hz B8+10) ndash116 (d 2-B 1J(11B1H) = 1586 Hz B4+5) ndash134 (d 4-B 1J(11B1H) = 1486 Hz

B3+67+11) ppm 13C1H NMR (12576 MHz CD3CN) δ = 814 (q 1-C 1J(13C11B) = 528 Hz C1BHF2) 6048 (s 1-

C C2) 5618 (t 4-C 2J(14N13C) = 42 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 8140 (t 1-C 2J(19F13C) = 371 Hz C1BHF2) 605 (t

1-C 3J(19F13C) = 277 Hz C2) 5618 (t 4-C 2J(14N13C) = 42 Hz [Me4N]+) ppm

10

19F NMR (37649 MHz CD3CN) δ = ndash15487 (qd 2-F 1J(19F11B) = 767 Hz 2J(19F1H) = 633 Hz) ppm 19F1H NMR (7548 MHz CD3CN) δ = ndash15487 (q 2-F 1J(19F11B) = 767 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15487 (d 2-F 2J(19F1H) = 633 Hz) ppm

Figure S4 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

the signal of the BHF2 unit is marked with asterisks

11

Figure S5 11B and 11B1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

Figure S6 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

12

Figure S7 19F and 19F11B NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

IR (ATR) 120584 = 3081 (w CClusterminusH) 2633-2516 (m BminusH) 2341 (w BminusH) 2185 (w BminusH) cmminus1

Raman 120584 = 2683-2527 (s BminusH) 2342 (w BminusH) 2158 (w BminusH) 956 (m sh BminusF) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 2 (C2H12B11F2)minus 190 (13) 191 (37) 192 (74) 193

(100) 194 (81) 195 (31) found 190 (13) 191 (37) 192 (73) 193 (100) 194 (83) 195 (31)

Elemental analysis calcd () for C6H24B11F2N (26718) C 2697 H 905 N 524 found C 2780 H

926 N 622

13

Figure S8 IR and Raman spectrum of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

[Et4N][nido-78-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 186 (s 2-H

B9+11H) 169 (s 1-H B3H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 114

(s 4-H B5+62+4H) 045 (s 1-H B1H) -001 (s 1-H B10H) ndash296 (m 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash111 (d 2-B 1J(11B1H) = 1351 Hz B9+11) ndash171 (d 2-B 1J(11B 1H) = overlapped B5+6) ndash177 (d 1-B 1J(11B1H) = overlapped B3) ndash223 (d 2-B 1J(11B 1H) = 1492 Hz B2+4) ndash335 (dd 1-B 1J(11B 1H) = 1329 Hz 1J(11B1Hmicro) = 353 Hz B10) ndash381 (d

1-B 1J(11B1H) = 1365 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5307 (t 4-C 1J(14N13C) = 31 Hz [Et4N]+) 4310 (brq 2-

C 1J(13C11B) = 350 Hz C7+8) 768 (s 4-C [Et4N]+) ppm

[Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3) The reaction was performed as outlined for the

preparation of [Me4N]2 912-diiodo-12-dicarba-closo-dodecaborane (042 g 106 mmol) [Me4N]F

(0396 g 424 mmol) and THF (20 mL) were employed as starting materials Yield of [Me4N]3

0066 g (013 mmol 24) [Me4N]1 0030 g (021 mmol 20) and [Et4N][56-I2-nido-78-C2B9H10]

0306 g (0594 mmol 56)

14

[Me4N]3 1H NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (qt 1-H 1J(11B1H) = 1288 Hz 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250

(s 4-H B4+57+11H ) 226 (s 2-H B3+6H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (t 1-H 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (q 1-H 1J(11B1H) = 1288 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 31 [ndash04] (dt 1-B 1J(19F11B) = 769 Hz 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 [ndash82] (d 2-B 1J(11B1H) = 1537 Hz B8+10) ndash111

[ndash164] (d 2-B 1J(11B1H) = 1682Hz B7+11) ndash127 [ndash128] (d 2-B 1J(11B1H) = overlapped B4+5)

ndash134 [ndash176] (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s

1-B B9) ppm 11B1H NMR (16046 MHz CD3CN) δ = 31 [ndash04] (t 1-B 1J(19F11B) = 769 Hz HBF2-Cluster)

ndash60 [ndash82] (s 2-B B8+10) ndash111 [ndash 164] (s 2-B B7+11) ndash127 [ndash128] (s 2-B B4+5) ndash134

[ndash176] (s 2-B B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s 1-B B9) ppm 11B19F NMR (16046 MHz CD3CN) δ = 31 (d 1-B 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 (d

2-B 1J(11B1H) = 1537 Hz B8+10) ndash111 (d 2-B 1J(11B1H) = 1682 Hz B7+11) ndash127 (d 2-B 1J(11B1H) = overlapped B4+5) ndash134 (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 (s 1-B B12)

ndash167 (s 1-B B9) ppm 13C1H NMR (12576 MHz CD3CN) δ = 7697 (q 1-C 1J(13C11B) = 505 Hz C1BHF2) 579 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 7710 (t 1-C 2J(19F13C) = 379 Hz C1BHF2) 5795 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 19F NMR (37649 MHz CD3CN) δ = ndash15483 (qd 2-F 1J(19F11B) = 769 Hz 2J(19F1H) = 631 Hz)

ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash15483 (q 2-F 1J(19F11B) = 769 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15483 (d 2-F 2J(19F1H) = 631 Hz) ppm

15

Figure S9 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3) the signal of the BHF2 unit is marked with asterisks

Figure S10 11B and 11B1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

16

Figure S11 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3)

Figure S12 19F and 19F1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

17

IR (ATR) 120584 = 3077 (w CClusterminusH) 3072 (vw CClusterminusH) 2644-2505 (m BminusH) 2340 (w BminusH) 2187

(w BminusH) cmminus1

Raman 120584 = 2675-2552 (s BminusH) 2350 (w BminusH) 2191 (w BminusH) 951 (m sh BminusF) 220 (m sh

BminusI) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 3 (C2H10B11F2I2)minus 442 (13) 443 (37) 444 (74) 445

(100) 446 (74) 447 (31) found 442 (13) 443 (38) 444 (73) 445 (100) 446 (80) 447 (29)

Elemental analysis calcd () for C6H22B11F2I2N (51897) C 1389 H 427 N 270 found C 1404 H

435 N 323

Figure S13 IR and Raman spectrum of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Et4N][56-I2-nido-78-C2B9H10] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 237 (s 2-H

B9+11H) 218 (s 2-H C7+8H) 180 (s 2-H B2+4H) 176 (s 1-H B3H) 122 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 096 (s 1-H B1H) 094 (d 1-H 3J(1H1H) = 74 Hz

B2H) 071 (s 1 H B10H) ndash213 (t 1 H 2J(1H1Hmicro) = 99 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash94 (d 2-B 1J(11B 1H) = 1419 Hz B9+11) ndash169 (d 1-B 1J(11B 1H) = 1673 Hz) ndash210 (d 2-B 1J(11B1H) = 1571 Hz B2+4) ndash243 (s 2-B B5+6) ndash279 (dd

18

1-B 1J(11B1H) = 1324 Hz 1J(11B1Hmicro) = 393 Hz B10) ndash337 (d 1-B 1J(11B1H) = 1471 Hz

B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 531 (t 4-C 1J(14N13C) = 3 Hz [NEt4]+) 427 (brq 2-C 1J(13C11B) = 346 Hz C7+8 ) 76 (s 4-C [NEt4]+) ppm

[Et4N][7-Me-nido-78-C2B9H11] A 100 mL glass tube equipped with a magnetic stirring bar was

charged with 1-Me-12-dicarba-closo-dodecaborane (0250 g 158 mmol) 4 equivalents of anhydrous

[Me4N]F (0590 g 632 mmol) and dry THF (15 mL) under an argon atmosphere The suspension was

stirred at room temperature for 24 h The reaction mixture was taken up into ice-cold water and the

residual THF was removed using a rotary evaporator A solid separated during removal of the THF that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N]+ salts during

the next step An aqueous solution of [Et4N]Cl (261 g 1580 mmol) was added to the clear solution and

then a colourless precipitate was formed The solid was isolated by filtration through a fine glass frit

and dried in a vacuum overnight Yield of 0259 g [Et4N][7-Me-nido-78-C2B9H11] (093 mmol 591)

[Et4N][7-Me-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 166 (s 1-H

C8H) 188 (s 1-H B9H) 179 (s 1-H B11H) 161 (s 1-H B3H) 136 (s 3-H C7CH3) 133 (s 1-

H B2H or B6H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 111 (s 2-H

B4H+B2H or B6H) 103 (s 1-H B5H) 043 (s 1-H B1H) -004 (s 1-H B10H) ndash272 (m 1-H

BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash102 (d 1-B 1J(11B1H) = overlapped B11) ndash111 (d 1-B 1J(11B1H) = overlapped B9) ndash135 (d 1-B 1J(11B1H) = 1561 Hz B3) ndash180 (d 2-B 1J(11B1H) =

overlapped B2+B6) ndash189 (d 1-B 1J(11B1H) = overlapped B5) ndash225 (d 1-B 1J(11B1H) = 1475

Hz) ndash338 (dd 1-B 1J(11B1H) = 1284 Hz 1J(11B1Hmicro) = 397 Hz B10) ndash371 (d 1-B 1J(11B1H) =

1377 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5497 (brq 1-C 1J(13C11B) = 348 Hz C7CH3) 5308 (t 4-

C 1J(14N13C) = 31 Hz [Et4N]+) 4955 (brq 1-C 1J(13C11B) = 348 Hz C8H) 2548 (s 1-C C7CH3)

769 (s 4-C [Et4N]+) ppm

[Et4N][7-Ph-nido-78-C2B9H11] The reaction was performed as outlined for the preparation of [Et4N]4

1-Ph-12-dicarba-closo-dodecaborane (0300 g 136 mmol) [Me4N]F (0509 g 545 mmol) [Et4N]Cl

(225 g 1360 mmol) and THF (20 mL) were employed as starting materials Yield of 0254 g [Et4N][1-

Ph-nido-78-C2B9H11] (075 mmol 550)

[Et4N][1-Ph-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 721 (m 2-H PhH) 713 (m 2-H PhH) 704 (m 1-H

PhH) 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 228 (s 1-H C8H) 207 (s 2-H B9+11H) 177 (s

19

1-H B3H) 172 (s 1-H B2H) 123 (s 3-H B4+5+6H) 119 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 065 (s 1-H B1H) 015 (s 1-H B10H) ndash246 (s 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash88 (d 1-B 1J(11B1H) = 1386 Hz B11) ndash104 (d 1-B 1J(11B1H) = 1367 Hz B9) ndash137 (d 1-B 1J(11B1H) = 1594 Hz B3) ndash169 (d 1-B 1J(11B1H) =

overlapped B5) ndash181 (d 1-B 1J(11B1H) = overlapped B6) ndash198 (d 1-B 1J(11B1H) = 1489 Hz

B2) ndash227 (d 1-B 1J(11B1H) = 1507 Hz B4) ndash329 (dd 1-B 1J(11B1H) = 1334 Hz 1J(11B1Hmicro) =

394 Hz B10) ndash361 (d 1-B 1J(11B1H) = 1422 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 1467 (s 1-C CPh) 12845 (s 2-C CPh) 12757 (s 2-C CPh)

12565 (s 1-C CPh) 6317 (brq 1 C 1J(13C11B) = 342 Hz C7Ph) 5307 (t 4-C 1J(14N13C) = 31 Hz

[Et4N]+) 4632 (brq 1-C 1J(13C11B) = 342 Hz C8H) 768 (s 4-C [Et4N]+) ppm

References

1 R K Harris E D Becker S M Cabral de Menezes R Goodfellow P Granger Pure Appl Chem 2001 73 1795ndash1818

2 G R Fulmer A J M Miller N H Sherden H E Gottlieb A Nudelman B M Stoltz J E Bercaw K I Goldberg Organometallics 2010 29 2176ndash2179

3 (a) D C Finster W C Hutton R N Grimes J Am Chem Soc 1980 102 400ndash401 (b) I J Colquhoun W McFarlane J Chem Soc Dalton Trans 1981 2014ndash2016

4 (a) T L Venable W C Hutton R N Grimes J Am Chem Soc 1982 104 4716ndash4717 (b) T L Venable W C Hutton R N Grimes J Am Chem Soc 1984 106 29ndash37

5 W L F Armarego C L L Chai Purification of Laboratory Chemicals 5 ed Butterworth-Heinemann (Elsevier) 2003

6 D S Wilbur M-K Chyan D K Hamlin B B Kegley R Risler P M Pathare J Quinn R L Vessella C Foulon M Zalutsky T J Wedge M F Hawthorne Bioconjugate Chem 2004 15 203ndash223

7 M F Hawthorne T D Andrews P M Garrett F P Olsen M Reintjes F N Tebbe L F Warren P A Wegner D C Young Inorg Synth 1967 10 91ndash118

8 A S Batsanov M A Fox J A K Howard A K Hughes A L Johnson S J Martindale Acta Crystallogr 2003 C59 o74ndasho76

9 K O Christe W W Wilson R D Wilson R Bau J A Feng J Am Chem Soc 1990 112 7619ndash7625

10 W Kohn L J Sham Phys Rev A 1965 140 1133ndash1138 11 (a) A D Becke Phys Rev A 1988 38 3098ndash3100 (b) A D Becke J Chem Phys 1993 98

5648ndash5652 (c) C Lee W Yang R G Parr Phys Rev B 1988 37 785ndash789 12 M J Frisch G W Trucks H B Schlegel G E Scuseria M A Robb J R Cheeseman V

Barone B Mennucci G A Petersson H Nakatsuji M Caricato X Xi H P Hratchian A F Izmaylov J Bloino G Zheng J L Sonnenberg M Hada M Ehara K Toyota R Fukuda J Hasegawa M Ishida T Nakajima Y Honda O Kitao H Nakai T Vreven J J A Montgomery J E Peralta M B F Ogliaro J J Heyd E Brothers K N Kudin V N Staroverov R Kobayashi J Normand K Raghavachari A Rendell J C Burant S S Iyengar J Tomasi M Cossi N Rega J M Millam M Klene J E Knox J B Cross V Bakken C

20

Adamo J Jaramillo R Gomperts R E Stratmann O Yazyev A J Austin R Cammi C Pomelli J W Ochterski R L Martin K Morokuma V G Zakrzewski G A Voth P Salvador J J Dannenberg S Dapprich A D Daniels Ouml Farkas J B Foresman J V Ortiz J Cioslowski D J Fox Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA 2009

13 J C Rienstra-Kiracofe G S Tschumper H F Schaefer III S Nandi G B Ellison Chem Rev 2002 102 231ndash282

14 K Wolinski J F Hinton P Pulay J Am Chem Soc 1990 112 8251ndash8260 15 J D Kennedy in Multinuclear NMR (Ed J Mason) Plenum Press New York 1987 p 221 16 S Berger S Braun H-O Kalinowski NMR Spectroscopy of the Non-Metallic Elements John

Wiley amp Sons Ltd Chichester England 1997 17 (a) G M Sheldrick Acta Crystallogr 2008 A64 112ndash122 (b) G M Sheldrick SHELXS-97

Program for Crystal Structure Solution Universitaumlt Goumlttingen 1997 18 G M Sheldrick SHELXT Program for Crystal Structure Solution Universitaumlt Goumlttingen

2014 19 G M Sheldrick SHELXL-97 Program for Crystal Structure Refinement Universitaumlt

Goumlttingen 1997 20 C B Huumlbschle G M Sheldrick B Dittrich J Appl Crystallogr 2011 44 1281ndash1284 21 K Brandenburg Diamond 422 Crystal Impact GbR Bonn Germany 1997-2016

Page 8: Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

8

Figure S3 11B and 11B1H NMR spectra of [Me4N]1 with the side product [Me4N][BH2F2]

[Et4N][nido-79-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 220 (s 2-H

B2+5H) 201 (s 1-H B8H) 142 (dd 2-H 2J(1H1Hmicro) = 122 Hz 3J(1H1H) = 35 Hz B10+11H) 121

(tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 117 (s 2-H C7+9H) 108 (s 2-H

B3+4H) 065 (s 1-H B1) 008 (s 1-H B6) ndash233 (t 1-H 2J(1H1Hmicro) = 122 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) ndash47 (d 2-B 1J(11B1H) = 1477 Hz B2+5) ndash59 (d 1-B 1J(11B1H)

= 1344 Hz B8) ndash216 (d 2-B 1J(11B1H) = 1575 Hz B3+4) ndash229 (dd 2-B 1J(11B1H) = 1283 Hz 1J(11B1Hmicro) = 496 Hz B10+11) ndash344 (d 1-B 1J(11B1H) = overlapped B1) ndash355 (d 1-B 1J(11B1H) = overlapped B6) ppm 11B1H NMR (16046 MHz CD3CN) δ = ndash47 (s 2-B B2+5) ndash59 (s 1-B B8) ndash216 (s 2-B

B3+4) ndash229 (s 2-B B10+11) ndash344 (s 1-B B1) ndash355 (s 1-B B6) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5308 (t 4-C 1J(14N 13C) = 31 Hz [Et4N]+) 3269 (brs 2-

C C7+9) 768 (s 4-C [Et4N]+) ppm

9

[Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2) A 250 mL glass tube was charged with 12-dicarba-

closo-dodecaborane (1 g 69 mmol) 4 equivalents of anhydrous [Me4N]F (518 g 276 mmol) and dry

THF (50 mL) The suspension was stirred at room temperature for 24 h The resulting suspension was

transferred by cannula onto a fine glass frit under argon The filtrate contained the [Me4N]2 whereas

[Me4N]1 and [Me4N]2[nido-78-C2B9H11] are insoluble in THF The solid material was worked up as

described for the synthesis of [Me4N]1 and [Et4N][nido-79-C2B9H12] from 17-dicarba-closo-

dodecaborane Yield [Me4N]1 0193 g (135 mmol 20) [Et4N][nido-78-C2B9H12] 106 g (402

mmol 58) The solution of [Me4N]2 in THF was concentrated to approximately 10 mL using a rotary

evaporator Hexane (300 mL) was added to the solution During the addition a colourless precipitate

formed that was isolated by filtration through a glass frit in air Yield [Me4N]2 0203 g (077 mmol

22)

[Me4N]2 1H NMR (50013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (qt 1-H 1J(11B1H) = 1252 Hz 2J(19F1H) = 632 Hz) 213 (s 2-H B3+6H or

B7+11H) 200 (s 8-H B4+58+109123+6 or 7+11H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (t 1-H 2J(19F1H) = 632 Hz) 213 (s 2-H B3+6H or B7+11H) 200 (s 8-H

B4+58+109123+6 or 7+11H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (q 1-H 1J(11B1H) = 1252 Hz) 213 (s 2-H B3+6H or B7+11H) 200 (s 8-H

B4+58+109123+6 or 7+11H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 30 [15] (dt 1-B 1J(19F11B) = 772 Hz 1J(11B1H) = 1262 Hz HBF2-Cluster) ndash36 [ndash58] (d 1-B 1J(11B1H) = 1486 Hz B9) ndash50 [ndash74] (d

1-B 1J(11B1H) = 1439 Hz B12) -92 [ndash111] (d 2-B 1J(11B1H) = 1454 Hz B8+10) ndash116 [ndash132]

(d 2-B 1J(11B1H) = 1586 Hz B4+5) ndash134 [ndash158 ndash168] (d 4-B 1J(11B1H) = 1486 Hz

B3+67+11) ppm 11B1H NMR (16046 MHz CD3CN) [DFT calculations] δ = 30 [15] (t 1-B 1J(19F11B) = 772 Hz

HBF2-Cluster) ndash36 [ndash58] (s 1-B B9) ndash50 [ndash74] (s 1-B B12) ndash92 [ndash111] (s 2-B B8+10) ndash116

[ndash132] (s 2-B B4+5) ndash134 [ndash158 ndash168] (s 4-B B3+67+11) ppm 11B19F NMR (16046 MHz CD3CN) 30 (d 1-B 1J(11B1H) = 1262 Hz HBF2-Cluster) ndash36 (d 1-

B 1J(11B1H) = 1486 Hz B9) ndash50 (d 1-B 1J(11B1H) = 1439 Hz B12) ndash92 (d 2-B 1J(11B1H) =

1454 Hz B8+10) ndash116 (d 2-B 1J(11B1H) = 1586 Hz B4+5) ndash134 (d 4-B 1J(11B1H) = 1486 Hz

B3+67+11) ppm 13C1H NMR (12576 MHz CD3CN) δ = 814 (q 1-C 1J(13C11B) = 528 Hz C1BHF2) 6048 (s 1-

C C2) 5618 (t 4-C 2J(14N13C) = 42 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 8140 (t 1-C 2J(19F13C) = 371 Hz C1BHF2) 605 (t

1-C 3J(19F13C) = 277 Hz C2) 5618 (t 4-C 2J(14N13C) = 42 Hz [Me4N]+) ppm

10

19F NMR (37649 MHz CD3CN) δ = ndash15487 (qd 2-F 1J(19F11B) = 767 Hz 2J(19F1H) = 633 Hz) ppm 19F1H NMR (7548 MHz CD3CN) δ = ndash15487 (q 2-F 1J(19F11B) = 767 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15487 (d 2-F 2J(19F1H) = 633 Hz) ppm

Figure S4 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

the signal of the BHF2 unit is marked with asterisks

11

Figure S5 11B and 11B1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

Figure S6 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

12

Figure S7 19F and 19F11B NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

IR (ATR) 120584 = 3081 (w CClusterminusH) 2633-2516 (m BminusH) 2341 (w BminusH) 2185 (w BminusH) cmminus1

Raman 120584 = 2683-2527 (s BminusH) 2342 (w BminusH) 2158 (w BminusH) 956 (m sh BminusF) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 2 (C2H12B11F2)minus 190 (13) 191 (37) 192 (74) 193

(100) 194 (81) 195 (31) found 190 (13) 191 (37) 192 (73) 193 (100) 194 (83) 195 (31)

Elemental analysis calcd () for C6H24B11F2N (26718) C 2697 H 905 N 524 found C 2780 H

926 N 622

13

Figure S8 IR and Raman spectrum of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

[Et4N][nido-78-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 186 (s 2-H

B9+11H) 169 (s 1-H B3H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 114

(s 4-H B5+62+4H) 045 (s 1-H B1H) -001 (s 1-H B10H) ndash296 (m 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash111 (d 2-B 1J(11B1H) = 1351 Hz B9+11) ndash171 (d 2-B 1J(11B 1H) = overlapped B5+6) ndash177 (d 1-B 1J(11B1H) = overlapped B3) ndash223 (d 2-B 1J(11B 1H) = 1492 Hz B2+4) ndash335 (dd 1-B 1J(11B 1H) = 1329 Hz 1J(11B1Hmicro) = 353 Hz B10) ndash381 (d

1-B 1J(11B1H) = 1365 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5307 (t 4-C 1J(14N13C) = 31 Hz [Et4N]+) 4310 (brq 2-

C 1J(13C11B) = 350 Hz C7+8) 768 (s 4-C [Et4N]+) ppm

[Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3) The reaction was performed as outlined for the

preparation of [Me4N]2 912-diiodo-12-dicarba-closo-dodecaborane (042 g 106 mmol) [Me4N]F

(0396 g 424 mmol) and THF (20 mL) were employed as starting materials Yield of [Me4N]3

0066 g (013 mmol 24) [Me4N]1 0030 g (021 mmol 20) and [Et4N][56-I2-nido-78-C2B9H10]

0306 g (0594 mmol 56)

14

[Me4N]3 1H NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (qt 1-H 1J(11B1H) = 1288 Hz 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250

(s 4-H B4+57+11H ) 226 (s 2-H B3+6H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (t 1-H 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (q 1-H 1J(11B1H) = 1288 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 31 [ndash04] (dt 1-B 1J(19F11B) = 769 Hz 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 [ndash82] (d 2-B 1J(11B1H) = 1537 Hz B8+10) ndash111

[ndash164] (d 2-B 1J(11B1H) = 1682Hz B7+11) ndash127 [ndash128] (d 2-B 1J(11B1H) = overlapped B4+5)

ndash134 [ndash176] (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s

1-B B9) ppm 11B1H NMR (16046 MHz CD3CN) δ = 31 [ndash04] (t 1-B 1J(19F11B) = 769 Hz HBF2-Cluster)

ndash60 [ndash82] (s 2-B B8+10) ndash111 [ndash 164] (s 2-B B7+11) ndash127 [ndash128] (s 2-B B4+5) ndash134

[ndash176] (s 2-B B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s 1-B B9) ppm 11B19F NMR (16046 MHz CD3CN) δ = 31 (d 1-B 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 (d

2-B 1J(11B1H) = 1537 Hz B8+10) ndash111 (d 2-B 1J(11B1H) = 1682 Hz B7+11) ndash127 (d 2-B 1J(11B1H) = overlapped B4+5) ndash134 (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 (s 1-B B12)

ndash167 (s 1-B B9) ppm 13C1H NMR (12576 MHz CD3CN) δ = 7697 (q 1-C 1J(13C11B) = 505 Hz C1BHF2) 579 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 7710 (t 1-C 2J(19F13C) = 379 Hz C1BHF2) 5795 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 19F NMR (37649 MHz CD3CN) δ = ndash15483 (qd 2-F 1J(19F11B) = 769 Hz 2J(19F1H) = 631 Hz)

ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash15483 (q 2-F 1J(19F11B) = 769 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15483 (d 2-F 2J(19F1H) = 631 Hz) ppm

15

Figure S9 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3) the signal of the BHF2 unit is marked with asterisks

Figure S10 11B and 11B1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

16

Figure S11 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3)

Figure S12 19F and 19F1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

17

IR (ATR) 120584 = 3077 (w CClusterminusH) 3072 (vw CClusterminusH) 2644-2505 (m BminusH) 2340 (w BminusH) 2187

(w BminusH) cmminus1

Raman 120584 = 2675-2552 (s BminusH) 2350 (w BminusH) 2191 (w BminusH) 951 (m sh BminusF) 220 (m sh

BminusI) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 3 (C2H10B11F2I2)minus 442 (13) 443 (37) 444 (74) 445

(100) 446 (74) 447 (31) found 442 (13) 443 (38) 444 (73) 445 (100) 446 (80) 447 (29)

Elemental analysis calcd () for C6H22B11F2I2N (51897) C 1389 H 427 N 270 found C 1404 H

435 N 323

Figure S13 IR and Raman spectrum of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Et4N][56-I2-nido-78-C2B9H10] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 237 (s 2-H

B9+11H) 218 (s 2-H C7+8H) 180 (s 2-H B2+4H) 176 (s 1-H B3H) 122 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 096 (s 1-H B1H) 094 (d 1-H 3J(1H1H) = 74 Hz

B2H) 071 (s 1 H B10H) ndash213 (t 1 H 2J(1H1Hmicro) = 99 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash94 (d 2-B 1J(11B 1H) = 1419 Hz B9+11) ndash169 (d 1-B 1J(11B 1H) = 1673 Hz) ndash210 (d 2-B 1J(11B1H) = 1571 Hz B2+4) ndash243 (s 2-B B5+6) ndash279 (dd

18

1-B 1J(11B1H) = 1324 Hz 1J(11B1Hmicro) = 393 Hz B10) ndash337 (d 1-B 1J(11B1H) = 1471 Hz

B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 531 (t 4-C 1J(14N13C) = 3 Hz [NEt4]+) 427 (brq 2-C 1J(13C11B) = 346 Hz C7+8 ) 76 (s 4-C [NEt4]+) ppm

[Et4N][7-Me-nido-78-C2B9H11] A 100 mL glass tube equipped with a magnetic stirring bar was

charged with 1-Me-12-dicarba-closo-dodecaborane (0250 g 158 mmol) 4 equivalents of anhydrous

[Me4N]F (0590 g 632 mmol) and dry THF (15 mL) under an argon atmosphere The suspension was

stirred at room temperature for 24 h The reaction mixture was taken up into ice-cold water and the

residual THF was removed using a rotary evaporator A solid separated during removal of the THF that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N]+ salts during

the next step An aqueous solution of [Et4N]Cl (261 g 1580 mmol) was added to the clear solution and

then a colourless precipitate was formed The solid was isolated by filtration through a fine glass frit

and dried in a vacuum overnight Yield of 0259 g [Et4N][7-Me-nido-78-C2B9H11] (093 mmol 591)

[Et4N][7-Me-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 166 (s 1-H

C8H) 188 (s 1-H B9H) 179 (s 1-H B11H) 161 (s 1-H B3H) 136 (s 3-H C7CH3) 133 (s 1-

H B2H or B6H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 111 (s 2-H

B4H+B2H or B6H) 103 (s 1-H B5H) 043 (s 1-H B1H) -004 (s 1-H B10H) ndash272 (m 1-H

BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash102 (d 1-B 1J(11B1H) = overlapped B11) ndash111 (d 1-B 1J(11B1H) = overlapped B9) ndash135 (d 1-B 1J(11B1H) = 1561 Hz B3) ndash180 (d 2-B 1J(11B1H) =

overlapped B2+B6) ndash189 (d 1-B 1J(11B1H) = overlapped B5) ndash225 (d 1-B 1J(11B1H) = 1475

Hz) ndash338 (dd 1-B 1J(11B1H) = 1284 Hz 1J(11B1Hmicro) = 397 Hz B10) ndash371 (d 1-B 1J(11B1H) =

1377 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5497 (brq 1-C 1J(13C11B) = 348 Hz C7CH3) 5308 (t 4-

C 1J(14N13C) = 31 Hz [Et4N]+) 4955 (brq 1-C 1J(13C11B) = 348 Hz C8H) 2548 (s 1-C C7CH3)

769 (s 4-C [Et4N]+) ppm

[Et4N][7-Ph-nido-78-C2B9H11] The reaction was performed as outlined for the preparation of [Et4N]4

1-Ph-12-dicarba-closo-dodecaborane (0300 g 136 mmol) [Me4N]F (0509 g 545 mmol) [Et4N]Cl

(225 g 1360 mmol) and THF (20 mL) were employed as starting materials Yield of 0254 g [Et4N][1-

Ph-nido-78-C2B9H11] (075 mmol 550)

[Et4N][1-Ph-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 721 (m 2-H PhH) 713 (m 2-H PhH) 704 (m 1-H

PhH) 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 228 (s 1-H C8H) 207 (s 2-H B9+11H) 177 (s

19

1-H B3H) 172 (s 1-H B2H) 123 (s 3-H B4+5+6H) 119 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 065 (s 1-H B1H) 015 (s 1-H B10H) ndash246 (s 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash88 (d 1-B 1J(11B1H) = 1386 Hz B11) ndash104 (d 1-B 1J(11B1H) = 1367 Hz B9) ndash137 (d 1-B 1J(11B1H) = 1594 Hz B3) ndash169 (d 1-B 1J(11B1H) =

overlapped B5) ndash181 (d 1-B 1J(11B1H) = overlapped B6) ndash198 (d 1-B 1J(11B1H) = 1489 Hz

B2) ndash227 (d 1-B 1J(11B1H) = 1507 Hz B4) ndash329 (dd 1-B 1J(11B1H) = 1334 Hz 1J(11B1Hmicro) =

394 Hz B10) ndash361 (d 1-B 1J(11B1H) = 1422 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 1467 (s 1-C CPh) 12845 (s 2-C CPh) 12757 (s 2-C CPh)

12565 (s 1-C CPh) 6317 (brq 1 C 1J(13C11B) = 342 Hz C7Ph) 5307 (t 4-C 1J(14N13C) = 31 Hz

[Et4N]+) 4632 (brq 1-C 1J(13C11B) = 342 Hz C8H) 768 (s 4-C [Et4N]+) ppm

References

1 R K Harris E D Becker S M Cabral de Menezes R Goodfellow P Granger Pure Appl Chem 2001 73 1795ndash1818

2 G R Fulmer A J M Miller N H Sherden H E Gottlieb A Nudelman B M Stoltz J E Bercaw K I Goldberg Organometallics 2010 29 2176ndash2179

3 (a) D C Finster W C Hutton R N Grimes J Am Chem Soc 1980 102 400ndash401 (b) I J Colquhoun W McFarlane J Chem Soc Dalton Trans 1981 2014ndash2016

4 (a) T L Venable W C Hutton R N Grimes J Am Chem Soc 1982 104 4716ndash4717 (b) T L Venable W C Hutton R N Grimes J Am Chem Soc 1984 106 29ndash37

5 W L F Armarego C L L Chai Purification of Laboratory Chemicals 5 ed Butterworth-Heinemann (Elsevier) 2003

6 D S Wilbur M-K Chyan D K Hamlin B B Kegley R Risler P M Pathare J Quinn R L Vessella C Foulon M Zalutsky T J Wedge M F Hawthorne Bioconjugate Chem 2004 15 203ndash223

7 M F Hawthorne T D Andrews P M Garrett F P Olsen M Reintjes F N Tebbe L F Warren P A Wegner D C Young Inorg Synth 1967 10 91ndash118

8 A S Batsanov M A Fox J A K Howard A K Hughes A L Johnson S J Martindale Acta Crystallogr 2003 C59 o74ndasho76

9 K O Christe W W Wilson R D Wilson R Bau J A Feng J Am Chem Soc 1990 112 7619ndash7625

10 W Kohn L J Sham Phys Rev A 1965 140 1133ndash1138 11 (a) A D Becke Phys Rev A 1988 38 3098ndash3100 (b) A D Becke J Chem Phys 1993 98

5648ndash5652 (c) C Lee W Yang R G Parr Phys Rev B 1988 37 785ndash789 12 M J Frisch G W Trucks H B Schlegel G E Scuseria M A Robb J R Cheeseman V

Barone B Mennucci G A Petersson H Nakatsuji M Caricato X Xi H P Hratchian A F Izmaylov J Bloino G Zheng J L Sonnenberg M Hada M Ehara K Toyota R Fukuda J Hasegawa M Ishida T Nakajima Y Honda O Kitao H Nakai T Vreven J J A Montgomery J E Peralta M B F Ogliaro J J Heyd E Brothers K N Kudin V N Staroverov R Kobayashi J Normand K Raghavachari A Rendell J C Burant S S Iyengar J Tomasi M Cossi N Rega J M Millam M Klene J E Knox J B Cross V Bakken C

20

Adamo J Jaramillo R Gomperts R E Stratmann O Yazyev A J Austin R Cammi C Pomelli J W Ochterski R L Martin K Morokuma V G Zakrzewski G A Voth P Salvador J J Dannenberg S Dapprich A D Daniels Ouml Farkas J B Foresman J V Ortiz J Cioslowski D J Fox Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA 2009

13 J C Rienstra-Kiracofe G S Tschumper H F Schaefer III S Nandi G B Ellison Chem Rev 2002 102 231ndash282

14 K Wolinski J F Hinton P Pulay J Am Chem Soc 1990 112 8251ndash8260 15 J D Kennedy in Multinuclear NMR (Ed J Mason) Plenum Press New York 1987 p 221 16 S Berger S Braun H-O Kalinowski NMR Spectroscopy of the Non-Metallic Elements John

Wiley amp Sons Ltd Chichester England 1997 17 (a) G M Sheldrick Acta Crystallogr 2008 A64 112ndash122 (b) G M Sheldrick SHELXS-97

Program for Crystal Structure Solution Universitaumlt Goumlttingen 1997 18 G M Sheldrick SHELXT Program for Crystal Structure Solution Universitaumlt Goumlttingen

2014 19 G M Sheldrick SHELXL-97 Program for Crystal Structure Refinement Universitaumlt

Goumlttingen 1997 20 C B Huumlbschle G M Sheldrick B Dittrich J Appl Crystallogr 2011 44 1281ndash1284 21 K Brandenburg Diamond 422 Crystal Impact GbR Bonn Germany 1997-2016

Page 9: Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

9

[Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2) A 250 mL glass tube was charged with 12-dicarba-

closo-dodecaborane (1 g 69 mmol) 4 equivalents of anhydrous [Me4N]F (518 g 276 mmol) and dry

THF (50 mL) The suspension was stirred at room temperature for 24 h The resulting suspension was

transferred by cannula onto a fine glass frit under argon The filtrate contained the [Me4N]2 whereas

[Me4N]1 and [Me4N]2[nido-78-C2B9H11] are insoluble in THF The solid material was worked up as

described for the synthesis of [Me4N]1 and [Et4N][nido-79-C2B9H12] from 17-dicarba-closo-

dodecaborane Yield [Me4N]1 0193 g (135 mmol 20) [Et4N][nido-78-C2B9H12] 106 g (402

mmol 58) The solution of [Me4N]2 in THF was concentrated to approximately 10 mL using a rotary

evaporator Hexane (300 mL) was added to the solution During the addition a colourless precipitate

formed that was isolated by filtration through a glass frit in air Yield [Me4N]2 0203 g (077 mmol

22)

[Me4N]2 1H NMR (50013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (qt 1-H 1J(11B1H) = 1252 Hz 2J(19F1H) = 632 Hz) 213 (s 2-H B3+6H or

B7+11H) 200 (s 8-H B4+58+109123+6 or 7+11H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (t 1-H 2J(19F1H) = 632 Hz) 213 (s 2-H B3+6H or B7+11H) 200 (s 8-H

B4+58+109123+6 or 7+11H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 365 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 283 (q 1-H 1J(11B1H) = 1252 Hz) 213 (s 2-H B3+6H or B7+11H) 200 (s 8-H

B4+58+109123+6 or 7+11H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 30 [15] (dt 1-B 1J(19F11B) = 772 Hz 1J(11B1H) = 1262 Hz HBF2-Cluster) ndash36 [ndash58] (d 1-B 1J(11B1H) = 1486 Hz B9) ndash50 [ndash74] (d

1-B 1J(11B1H) = 1439 Hz B12) -92 [ndash111] (d 2-B 1J(11B1H) = 1454 Hz B8+10) ndash116 [ndash132]

(d 2-B 1J(11B1H) = 1586 Hz B4+5) ndash134 [ndash158 ndash168] (d 4-B 1J(11B1H) = 1486 Hz

B3+67+11) ppm 11B1H NMR (16046 MHz CD3CN) [DFT calculations] δ = 30 [15] (t 1-B 1J(19F11B) = 772 Hz

HBF2-Cluster) ndash36 [ndash58] (s 1-B B9) ndash50 [ndash74] (s 1-B B12) ndash92 [ndash111] (s 2-B B8+10) ndash116

[ndash132] (s 2-B B4+5) ndash134 [ndash158 ndash168] (s 4-B B3+67+11) ppm 11B19F NMR (16046 MHz CD3CN) 30 (d 1-B 1J(11B1H) = 1262 Hz HBF2-Cluster) ndash36 (d 1-

B 1J(11B1H) = 1486 Hz B9) ndash50 (d 1-B 1J(11B1H) = 1439 Hz B12) ndash92 (d 2-B 1J(11B1H) =

1454 Hz B8+10) ndash116 (d 2-B 1J(11B1H) = 1586 Hz B4+5) ndash134 (d 4-B 1J(11B1H) = 1486 Hz

B3+67+11) ppm 13C1H NMR (12576 MHz CD3CN) δ = 814 (q 1-C 1J(13C11B) = 528 Hz C1BHF2) 6048 (s 1-

C C2) 5618 (t 4-C 2J(14N13C) = 42 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 8140 (t 1-C 2J(19F13C) = 371 Hz C1BHF2) 605 (t

1-C 3J(19F13C) = 277 Hz C2) 5618 (t 4-C 2J(14N13C) = 42 Hz [Me4N]+) ppm

10

19F NMR (37649 MHz CD3CN) δ = ndash15487 (qd 2-F 1J(19F11B) = 767 Hz 2J(19F1H) = 633 Hz) ppm 19F1H NMR (7548 MHz CD3CN) δ = ndash15487 (q 2-F 1J(19F11B) = 767 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15487 (d 2-F 2J(19F1H) = 633 Hz) ppm

Figure S4 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

the signal of the BHF2 unit is marked with asterisks

11

Figure S5 11B and 11B1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

Figure S6 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

12

Figure S7 19F and 19F11B NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

IR (ATR) 120584 = 3081 (w CClusterminusH) 2633-2516 (m BminusH) 2341 (w BminusH) 2185 (w BminusH) cmminus1

Raman 120584 = 2683-2527 (s BminusH) 2342 (w BminusH) 2158 (w BminusH) 956 (m sh BminusF) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 2 (C2H12B11F2)minus 190 (13) 191 (37) 192 (74) 193

(100) 194 (81) 195 (31) found 190 (13) 191 (37) 192 (73) 193 (100) 194 (83) 195 (31)

Elemental analysis calcd () for C6H24B11F2N (26718) C 2697 H 905 N 524 found C 2780 H

926 N 622

13

Figure S8 IR and Raman spectrum of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

[Et4N][nido-78-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 186 (s 2-H

B9+11H) 169 (s 1-H B3H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 114

(s 4-H B5+62+4H) 045 (s 1-H B1H) -001 (s 1-H B10H) ndash296 (m 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash111 (d 2-B 1J(11B1H) = 1351 Hz B9+11) ndash171 (d 2-B 1J(11B 1H) = overlapped B5+6) ndash177 (d 1-B 1J(11B1H) = overlapped B3) ndash223 (d 2-B 1J(11B 1H) = 1492 Hz B2+4) ndash335 (dd 1-B 1J(11B 1H) = 1329 Hz 1J(11B1Hmicro) = 353 Hz B10) ndash381 (d

1-B 1J(11B1H) = 1365 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5307 (t 4-C 1J(14N13C) = 31 Hz [Et4N]+) 4310 (brq 2-

C 1J(13C11B) = 350 Hz C7+8) 768 (s 4-C [Et4N]+) ppm

[Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3) The reaction was performed as outlined for the

preparation of [Me4N]2 912-diiodo-12-dicarba-closo-dodecaborane (042 g 106 mmol) [Me4N]F

(0396 g 424 mmol) and THF (20 mL) were employed as starting materials Yield of [Me4N]3

0066 g (013 mmol 24) [Me4N]1 0030 g (021 mmol 20) and [Et4N][56-I2-nido-78-C2B9H10]

0306 g (0594 mmol 56)

14

[Me4N]3 1H NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (qt 1-H 1J(11B1H) = 1288 Hz 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250

(s 4-H B4+57+11H ) 226 (s 2-H B3+6H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (t 1-H 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (q 1-H 1J(11B1H) = 1288 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 31 [ndash04] (dt 1-B 1J(19F11B) = 769 Hz 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 [ndash82] (d 2-B 1J(11B1H) = 1537 Hz B8+10) ndash111

[ndash164] (d 2-B 1J(11B1H) = 1682Hz B7+11) ndash127 [ndash128] (d 2-B 1J(11B1H) = overlapped B4+5)

ndash134 [ndash176] (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s

1-B B9) ppm 11B1H NMR (16046 MHz CD3CN) δ = 31 [ndash04] (t 1-B 1J(19F11B) = 769 Hz HBF2-Cluster)

ndash60 [ndash82] (s 2-B B8+10) ndash111 [ndash 164] (s 2-B B7+11) ndash127 [ndash128] (s 2-B B4+5) ndash134

[ndash176] (s 2-B B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s 1-B B9) ppm 11B19F NMR (16046 MHz CD3CN) δ = 31 (d 1-B 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 (d

2-B 1J(11B1H) = 1537 Hz B8+10) ndash111 (d 2-B 1J(11B1H) = 1682 Hz B7+11) ndash127 (d 2-B 1J(11B1H) = overlapped B4+5) ndash134 (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 (s 1-B B12)

ndash167 (s 1-B B9) ppm 13C1H NMR (12576 MHz CD3CN) δ = 7697 (q 1-C 1J(13C11B) = 505 Hz C1BHF2) 579 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 7710 (t 1-C 2J(19F13C) = 379 Hz C1BHF2) 5795 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 19F NMR (37649 MHz CD3CN) δ = ndash15483 (qd 2-F 1J(19F11B) = 769 Hz 2J(19F1H) = 631 Hz)

ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash15483 (q 2-F 1J(19F11B) = 769 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15483 (d 2-F 2J(19F1H) = 631 Hz) ppm

15

Figure S9 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3) the signal of the BHF2 unit is marked with asterisks

Figure S10 11B and 11B1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

16

Figure S11 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3)

Figure S12 19F and 19F1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

17

IR (ATR) 120584 = 3077 (w CClusterminusH) 3072 (vw CClusterminusH) 2644-2505 (m BminusH) 2340 (w BminusH) 2187

(w BminusH) cmminus1

Raman 120584 = 2675-2552 (s BminusH) 2350 (w BminusH) 2191 (w BminusH) 951 (m sh BminusF) 220 (m sh

BminusI) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 3 (C2H10B11F2I2)minus 442 (13) 443 (37) 444 (74) 445

(100) 446 (74) 447 (31) found 442 (13) 443 (38) 444 (73) 445 (100) 446 (80) 447 (29)

Elemental analysis calcd () for C6H22B11F2I2N (51897) C 1389 H 427 N 270 found C 1404 H

435 N 323

Figure S13 IR and Raman spectrum of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Et4N][56-I2-nido-78-C2B9H10] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 237 (s 2-H

B9+11H) 218 (s 2-H C7+8H) 180 (s 2-H B2+4H) 176 (s 1-H B3H) 122 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 096 (s 1-H B1H) 094 (d 1-H 3J(1H1H) = 74 Hz

B2H) 071 (s 1 H B10H) ndash213 (t 1 H 2J(1H1Hmicro) = 99 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash94 (d 2-B 1J(11B 1H) = 1419 Hz B9+11) ndash169 (d 1-B 1J(11B 1H) = 1673 Hz) ndash210 (d 2-B 1J(11B1H) = 1571 Hz B2+4) ndash243 (s 2-B B5+6) ndash279 (dd

18

1-B 1J(11B1H) = 1324 Hz 1J(11B1Hmicro) = 393 Hz B10) ndash337 (d 1-B 1J(11B1H) = 1471 Hz

B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 531 (t 4-C 1J(14N13C) = 3 Hz [NEt4]+) 427 (brq 2-C 1J(13C11B) = 346 Hz C7+8 ) 76 (s 4-C [NEt4]+) ppm

[Et4N][7-Me-nido-78-C2B9H11] A 100 mL glass tube equipped with a magnetic stirring bar was

charged with 1-Me-12-dicarba-closo-dodecaborane (0250 g 158 mmol) 4 equivalents of anhydrous

[Me4N]F (0590 g 632 mmol) and dry THF (15 mL) under an argon atmosphere The suspension was

stirred at room temperature for 24 h The reaction mixture was taken up into ice-cold water and the

residual THF was removed using a rotary evaporator A solid separated during removal of the THF that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N]+ salts during

the next step An aqueous solution of [Et4N]Cl (261 g 1580 mmol) was added to the clear solution and

then a colourless precipitate was formed The solid was isolated by filtration through a fine glass frit

and dried in a vacuum overnight Yield of 0259 g [Et4N][7-Me-nido-78-C2B9H11] (093 mmol 591)

[Et4N][7-Me-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 166 (s 1-H

C8H) 188 (s 1-H B9H) 179 (s 1-H B11H) 161 (s 1-H B3H) 136 (s 3-H C7CH3) 133 (s 1-

H B2H or B6H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 111 (s 2-H

B4H+B2H or B6H) 103 (s 1-H B5H) 043 (s 1-H B1H) -004 (s 1-H B10H) ndash272 (m 1-H

BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash102 (d 1-B 1J(11B1H) = overlapped B11) ndash111 (d 1-B 1J(11B1H) = overlapped B9) ndash135 (d 1-B 1J(11B1H) = 1561 Hz B3) ndash180 (d 2-B 1J(11B1H) =

overlapped B2+B6) ndash189 (d 1-B 1J(11B1H) = overlapped B5) ndash225 (d 1-B 1J(11B1H) = 1475

Hz) ndash338 (dd 1-B 1J(11B1H) = 1284 Hz 1J(11B1Hmicro) = 397 Hz B10) ndash371 (d 1-B 1J(11B1H) =

1377 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5497 (brq 1-C 1J(13C11B) = 348 Hz C7CH3) 5308 (t 4-

C 1J(14N13C) = 31 Hz [Et4N]+) 4955 (brq 1-C 1J(13C11B) = 348 Hz C8H) 2548 (s 1-C C7CH3)

769 (s 4-C [Et4N]+) ppm

[Et4N][7-Ph-nido-78-C2B9H11] The reaction was performed as outlined for the preparation of [Et4N]4

1-Ph-12-dicarba-closo-dodecaborane (0300 g 136 mmol) [Me4N]F (0509 g 545 mmol) [Et4N]Cl

(225 g 1360 mmol) and THF (20 mL) were employed as starting materials Yield of 0254 g [Et4N][1-

Ph-nido-78-C2B9H11] (075 mmol 550)

[Et4N][1-Ph-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 721 (m 2-H PhH) 713 (m 2-H PhH) 704 (m 1-H

PhH) 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 228 (s 1-H C8H) 207 (s 2-H B9+11H) 177 (s

19

1-H B3H) 172 (s 1-H B2H) 123 (s 3-H B4+5+6H) 119 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 065 (s 1-H B1H) 015 (s 1-H B10H) ndash246 (s 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash88 (d 1-B 1J(11B1H) = 1386 Hz B11) ndash104 (d 1-B 1J(11B1H) = 1367 Hz B9) ndash137 (d 1-B 1J(11B1H) = 1594 Hz B3) ndash169 (d 1-B 1J(11B1H) =

overlapped B5) ndash181 (d 1-B 1J(11B1H) = overlapped B6) ndash198 (d 1-B 1J(11B1H) = 1489 Hz

B2) ndash227 (d 1-B 1J(11B1H) = 1507 Hz B4) ndash329 (dd 1-B 1J(11B1H) = 1334 Hz 1J(11B1Hmicro) =

394 Hz B10) ndash361 (d 1-B 1J(11B1H) = 1422 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 1467 (s 1-C CPh) 12845 (s 2-C CPh) 12757 (s 2-C CPh)

12565 (s 1-C CPh) 6317 (brq 1 C 1J(13C11B) = 342 Hz C7Ph) 5307 (t 4-C 1J(14N13C) = 31 Hz

[Et4N]+) 4632 (brq 1-C 1J(13C11B) = 342 Hz C8H) 768 (s 4-C [Et4N]+) ppm

References

1 R K Harris E D Becker S M Cabral de Menezes R Goodfellow P Granger Pure Appl Chem 2001 73 1795ndash1818

2 G R Fulmer A J M Miller N H Sherden H E Gottlieb A Nudelman B M Stoltz J E Bercaw K I Goldberg Organometallics 2010 29 2176ndash2179

3 (a) D C Finster W C Hutton R N Grimes J Am Chem Soc 1980 102 400ndash401 (b) I J Colquhoun W McFarlane J Chem Soc Dalton Trans 1981 2014ndash2016

4 (a) T L Venable W C Hutton R N Grimes J Am Chem Soc 1982 104 4716ndash4717 (b) T L Venable W C Hutton R N Grimes J Am Chem Soc 1984 106 29ndash37

5 W L F Armarego C L L Chai Purification of Laboratory Chemicals 5 ed Butterworth-Heinemann (Elsevier) 2003

6 D S Wilbur M-K Chyan D K Hamlin B B Kegley R Risler P M Pathare J Quinn R L Vessella C Foulon M Zalutsky T J Wedge M F Hawthorne Bioconjugate Chem 2004 15 203ndash223

7 M F Hawthorne T D Andrews P M Garrett F P Olsen M Reintjes F N Tebbe L F Warren P A Wegner D C Young Inorg Synth 1967 10 91ndash118

8 A S Batsanov M A Fox J A K Howard A K Hughes A L Johnson S J Martindale Acta Crystallogr 2003 C59 o74ndasho76

9 K O Christe W W Wilson R D Wilson R Bau J A Feng J Am Chem Soc 1990 112 7619ndash7625

10 W Kohn L J Sham Phys Rev A 1965 140 1133ndash1138 11 (a) A D Becke Phys Rev A 1988 38 3098ndash3100 (b) A D Becke J Chem Phys 1993 98

5648ndash5652 (c) C Lee W Yang R G Parr Phys Rev B 1988 37 785ndash789 12 M J Frisch G W Trucks H B Schlegel G E Scuseria M A Robb J R Cheeseman V

Barone B Mennucci G A Petersson H Nakatsuji M Caricato X Xi H P Hratchian A F Izmaylov J Bloino G Zheng J L Sonnenberg M Hada M Ehara K Toyota R Fukuda J Hasegawa M Ishida T Nakajima Y Honda O Kitao H Nakai T Vreven J J A Montgomery J E Peralta M B F Ogliaro J J Heyd E Brothers K N Kudin V N Staroverov R Kobayashi J Normand K Raghavachari A Rendell J C Burant S S Iyengar J Tomasi M Cossi N Rega J M Millam M Klene J E Knox J B Cross V Bakken C

20

Adamo J Jaramillo R Gomperts R E Stratmann O Yazyev A J Austin R Cammi C Pomelli J W Ochterski R L Martin K Morokuma V G Zakrzewski G A Voth P Salvador J J Dannenberg S Dapprich A D Daniels Ouml Farkas J B Foresman J V Ortiz J Cioslowski D J Fox Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA 2009

13 J C Rienstra-Kiracofe G S Tschumper H F Schaefer III S Nandi G B Ellison Chem Rev 2002 102 231ndash282

14 K Wolinski J F Hinton P Pulay J Am Chem Soc 1990 112 8251ndash8260 15 J D Kennedy in Multinuclear NMR (Ed J Mason) Plenum Press New York 1987 p 221 16 S Berger S Braun H-O Kalinowski NMR Spectroscopy of the Non-Metallic Elements John

Wiley amp Sons Ltd Chichester England 1997 17 (a) G M Sheldrick Acta Crystallogr 2008 A64 112ndash122 (b) G M Sheldrick SHELXS-97

Program for Crystal Structure Solution Universitaumlt Goumlttingen 1997 18 G M Sheldrick SHELXT Program for Crystal Structure Solution Universitaumlt Goumlttingen

2014 19 G M Sheldrick SHELXL-97 Program for Crystal Structure Refinement Universitaumlt

Goumlttingen 1997 20 C B Huumlbschle G M Sheldrick B Dittrich J Appl Crystallogr 2011 44 1281ndash1284 21 K Brandenburg Diamond 422 Crystal Impact GbR Bonn Germany 1997-2016

Page 10: Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

10

19F NMR (37649 MHz CD3CN) δ = ndash15487 (qd 2-F 1J(19F11B) = 767 Hz 2J(19F1H) = 633 Hz) ppm 19F1H NMR (7548 MHz CD3CN) δ = ndash15487 (q 2-F 1J(19F11B) = 767 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15487 (d 2-F 2J(19F1H) = 633 Hz) ppm

Figure S4 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

the signal of the BHF2 unit is marked with asterisks

11

Figure S5 11B and 11B1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

Figure S6 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

12

Figure S7 19F and 19F11B NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

IR (ATR) 120584 = 3081 (w CClusterminusH) 2633-2516 (m BminusH) 2341 (w BminusH) 2185 (w BminusH) cmminus1

Raman 120584 = 2683-2527 (s BminusH) 2342 (w BminusH) 2158 (w BminusH) 956 (m sh BminusF) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 2 (C2H12B11F2)minus 190 (13) 191 (37) 192 (74) 193

(100) 194 (81) 195 (31) found 190 (13) 191 (37) 192 (73) 193 (100) 194 (83) 195 (31)

Elemental analysis calcd () for C6H24B11F2N (26718) C 2697 H 905 N 524 found C 2780 H

926 N 622

13

Figure S8 IR and Raman spectrum of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

[Et4N][nido-78-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 186 (s 2-H

B9+11H) 169 (s 1-H B3H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 114

(s 4-H B5+62+4H) 045 (s 1-H B1H) -001 (s 1-H B10H) ndash296 (m 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash111 (d 2-B 1J(11B1H) = 1351 Hz B9+11) ndash171 (d 2-B 1J(11B 1H) = overlapped B5+6) ndash177 (d 1-B 1J(11B1H) = overlapped B3) ndash223 (d 2-B 1J(11B 1H) = 1492 Hz B2+4) ndash335 (dd 1-B 1J(11B 1H) = 1329 Hz 1J(11B1Hmicro) = 353 Hz B10) ndash381 (d

1-B 1J(11B1H) = 1365 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5307 (t 4-C 1J(14N13C) = 31 Hz [Et4N]+) 4310 (brq 2-

C 1J(13C11B) = 350 Hz C7+8) 768 (s 4-C [Et4N]+) ppm

[Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3) The reaction was performed as outlined for the

preparation of [Me4N]2 912-diiodo-12-dicarba-closo-dodecaborane (042 g 106 mmol) [Me4N]F

(0396 g 424 mmol) and THF (20 mL) were employed as starting materials Yield of [Me4N]3

0066 g (013 mmol 24) [Me4N]1 0030 g (021 mmol 20) and [Et4N][56-I2-nido-78-C2B9H10]

0306 g (0594 mmol 56)

14

[Me4N]3 1H NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (qt 1-H 1J(11B1H) = 1288 Hz 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250

(s 4-H B4+57+11H ) 226 (s 2-H B3+6H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (t 1-H 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (q 1-H 1J(11B1H) = 1288 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 31 [ndash04] (dt 1-B 1J(19F11B) = 769 Hz 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 [ndash82] (d 2-B 1J(11B1H) = 1537 Hz B8+10) ndash111

[ndash164] (d 2-B 1J(11B1H) = 1682Hz B7+11) ndash127 [ndash128] (d 2-B 1J(11B1H) = overlapped B4+5)

ndash134 [ndash176] (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s

1-B B9) ppm 11B1H NMR (16046 MHz CD3CN) δ = 31 [ndash04] (t 1-B 1J(19F11B) = 769 Hz HBF2-Cluster)

ndash60 [ndash82] (s 2-B B8+10) ndash111 [ndash 164] (s 2-B B7+11) ndash127 [ndash128] (s 2-B B4+5) ndash134

[ndash176] (s 2-B B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s 1-B B9) ppm 11B19F NMR (16046 MHz CD3CN) δ = 31 (d 1-B 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 (d

2-B 1J(11B1H) = 1537 Hz B8+10) ndash111 (d 2-B 1J(11B1H) = 1682 Hz B7+11) ndash127 (d 2-B 1J(11B1H) = overlapped B4+5) ndash134 (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 (s 1-B B12)

ndash167 (s 1-B B9) ppm 13C1H NMR (12576 MHz CD3CN) δ = 7697 (q 1-C 1J(13C11B) = 505 Hz C1BHF2) 579 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 7710 (t 1-C 2J(19F13C) = 379 Hz C1BHF2) 5795 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 19F NMR (37649 MHz CD3CN) δ = ndash15483 (qd 2-F 1J(19F11B) = 769 Hz 2J(19F1H) = 631 Hz)

ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash15483 (q 2-F 1J(19F11B) = 769 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15483 (d 2-F 2J(19F1H) = 631 Hz) ppm

15

Figure S9 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3) the signal of the BHF2 unit is marked with asterisks

Figure S10 11B and 11B1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

16

Figure S11 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3)

Figure S12 19F and 19F1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

17

IR (ATR) 120584 = 3077 (w CClusterminusH) 3072 (vw CClusterminusH) 2644-2505 (m BminusH) 2340 (w BminusH) 2187

(w BminusH) cmminus1

Raman 120584 = 2675-2552 (s BminusH) 2350 (w BminusH) 2191 (w BminusH) 951 (m sh BminusF) 220 (m sh

BminusI) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 3 (C2H10B11F2I2)minus 442 (13) 443 (37) 444 (74) 445

(100) 446 (74) 447 (31) found 442 (13) 443 (38) 444 (73) 445 (100) 446 (80) 447 (29)

Elemental analysis calcd () for C6H22B11F2I2N (51897) C 1389 H 427 N 270 found C 1404 H

435 N 323

Figure S13 IR and Raman spectrum of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Et4N][56-I2-nido-78-C2B9H10] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 237 (s 2-H

B9+11H) 218 (s 2-H C7+8H) 180 (s 2-H B2+4H) 176 (s 1-H B3H) 122 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 096 (s 1-H B1H) 094 (d 1-H 3J(1H1H) = 74 Hz

B2H) 071 (s 1 H B10H) ndash213 (t 1 H 2J(1H1Hmicro) = 99 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash94 (d 2-B 1J(11B 1H) = 1419 Hz B9+11) ndash169 (d 1-B 1J(11B 1H) = 1673 Hz) ndash210 (d 2-B 1J(11B1H) = 1571 Hz B2+4) ndash243 (s 2-B B5+6) ndash279 (dd

18

1-B 1J(11B1H) = 1324 Hz 1J(11B1Hmicro) = 393 Hz B10) ndash337 (d 1-B 1J(11B1H) = 1471 Hz

B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 531 (t 4-C 1J(14N13C) = 3 Hz [NEt4]+) 427 (brq 2-C 1J(13C11B) = 346 Hz C7+8 ) 76 (s 4-C [NEt4]+) ppm

[Et4N][7-Me-nido-78-C2B9H11] A 100 mL glass tube equipped with a magnetic stirring bar was

charged with 1-Me-12-dicarba-closo-dodecaborane (0250 g 158 mmol) 4 equivalents of anhydrous

[Me4N]F (0590 g 632 mmol) and dry THF (15 mL) under an argon atmosphere The suspension was

stirred at room temperature for 24 h The reaction mixture was taken up into ice-cold water and the

residual THF was removed using a rotary evaporator A solid separated during removal of the THF that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N]+ salts during

the next step An aqueous solution of [Et4N]Cl (261 g 1580 mmol) was added to the clear solution and

then a colourless precipitate was formed The solid was isolated by filtration through a fine glass frit

and dried in a vacuum overnight Yield of 0259 g [Et4N][7-Me-nido-78-C2B9H11] (093 mmol 591)

[Et4N][7-Me-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 166 (s 1-H

C8H) 188 (s 1-H B9H) 179 (s 1-H B11H) 161 (s 1-H B3H) 136 (s 3-H C7CH3) 133 (s 1-

H B2H or B6H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 111 (s 2-H

B4H+B2H or B6H) 103 (s 1-H B5H) 043 (s 1-H B1H) -004 (s 1-H B10H) ndash272 (m 1-H

BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash102 (d 1-B 1J(11B1H) = overlapped B11) ndash111 (d 1-B 1J(11B1H) = overlapped B9) ndash135 (d 1-B 1J(11B1H) = 1561 Hz B3) ndash180 (d 2-B 1J(11B1H) =

overlapped B2+B6) ndash189 (d 1-B 1J(11B1H) = overlapped B5) ndash225 (d 1-B 1J(11B1H) = 1475

Hz) ndash338 (dd 1-B 1J(11B1H) = 1284 Hz 1J(11B1Hmicro) = 397 Hz B10) ndash371 (d 1-B 1J(11B1H) =

1377 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5497 (brq 1-C 1J(13C11B) = 348 Hz C7CH3) 5308 (t 4-

C 1J(14N13C) = 31 Hz [Et4N]+) 4955 (brq 1-C 1J(13C11B) = 348 Hz C8H) 2548 (s 1-C C7CH3)

769 (s 4-C [Et4N]+) ppm

[Et4N][7-Ph-nido-78-C2B9H11] The reaction was performed as outlined for the preparation of [Et4N]4

1-Ph-12-dicarba-closo-dodecaborane (0300 g 136 mmol) [Me4N]F (0509 g 545 mmol) [Et4N]Cl

(225 g 1360 mmol) and THF (20 mL) were employed as starting materials Yield of 0254 g [Et4N][1-

Ph-nido-78-C2B9H11] (075 mmol 550)

[Et4N][1-Ph-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 721 (m 2-H PhH) 713 (m 2-H PhH) 704 (m 1-H

PhH) 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 228 (s 1-H C8H) 207 (s 2-H B9+11H) 177 (s

19

1-H B3H) 172 (s 1-H B2H) 123 (s 3-H B4+5+6H) 119 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 065 (s 1-H B1H) 015 (s 1-H B10H) ndash246 (s 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash88 (d 1-B 1J(11B1H) = 1386 Hz B11) ndash104 (d 1-B 1J(11B1H) = 1367 Hz B9) ndash137 (d 1-B 1J(11B1H) = 1594 Hz B3) ndash169 (d 1-B 1J(11B1H) =

overlapped B5) ndash181 (d 1-B 1J(11B1H) = overlapped B6) ndash198 (d 1-B 1J(11B1H) = 1489 Hz

B2) ndash227 (d 1-B 1J(11B1H) = 1507 Hz B4) ndash329 (dd 1-B 1J(11B1H) = 1334 Hz 1J(11B1Hmicro) =

394 Hz B10) ndash361 (d 1-B 1J(11B1H) = 1422 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 1467 (s 1-C CPh) 12845 (s 2-C CPh) 12757 (s 2-C CPh)

12565 (s 1-C CPh) 6317 (brq 1 C 1J(13C11B) = 342 Hz C7Ph) 5307 (t 4-C 1J(14N13C) = 31 Hz

[Et4N]+) 4632 (brq 1-C 1J(13C11B) = 342 Hz C8H) 768 (s 4-C [Et4N]+) ppm

References

1 R K Harris E D Becker S M Cabral de Menezes R Goodfellow P Granger Pure Appl Chem 2001 73 1795ndash1818

2 G R Fulmer A J M Miller N H Sherden H E Gottlieb A Nudelman B M Stoltz J E Bercaw K I Goldberg Organometallics 2010 29 2176ndash2179

3 (a) D C Finster W C Hutton R N Grimes J Am Chem Soc 1980 102 400ndash401 (b) I J Colquhoun W McFarlane J Chem Soc Dalton Trans 1981 2014ndash2016

4 (a) T L Venable W C Hutton R N Grimes J Am Chem Soc 1982 104 4716ndash4717 (b) T L Venable W C Hutton R N Grimes J Am Chem Soc 1984 106 29ndash37

5 W L F Armarego C L L Chai Purification of Laboratory Chemicals 5 ed Butterworth-Heinemann (Elsevier) 2003

6 D S Wilbur M-K Chyan D K Hamlin B B Kegley R Risler P M Pathare J Quinn R L Vessella C Foulon M Zalutsky T J Wedge M F Hawthorne Bioconjugate Chem 2004 15 203ndash223

7 M F Hawthorne T D Andrews P M Garrett F P Olsen M Reintjes F N Tebbe L F Warren P A Wegner D C Young Inorg Synth 1967 10 91ndash118

8 A S Batsanov M A Fox J A K Howard A K Hughes A L Johnson S J Martindale Acta Crystallogr 2003 C59 o74ndasho76

9 K O Christe W W Wilson R D Wilson R Bau J A Feng J Am Chem Soc 1990 112 7619ndash7625

10 W Kohn L J Sham Phys Rev A 1965 140 1133ndash1138 11 (a) A D Becke Phys Rev A 1988 38 3098ndash3100 (b) A D Becke J Chem Phys 1993 98

5648ndash5652 (c) C Lee W Yang R G Parr Phys Rev B 1988 37 785ndash789 12 M J Frisch G W Trucks H B Schlegel G E Scuseria M A Robb J R Cheeseman V

Barone B Mennucci G A Petersson H Nakatsuji M Caricato X Xi H P Hratchian A F Izmaylov J Bloino G Zheng J L Sonnenberg M Hada M Ehara K Toyota R Fukuda J Hasegawa M Ishida T Nakajima Y Honda O Kitao H Nakai T Vreven J J A Montgomery J E Peralta M B F Ogliaro J J Heyd E Brothers K N Kudin V N Staroverov R Kobayashi J Normand K Raghavachari A Rendell J C Burant S S Iyengar J Tomasi M Cossi N Rega J M Millam M Klene J E Knox J B Cross V Bakken C

20

Adamo J Jaramillo R Gomperts R E Stratmann O Yazyev A J Austin R Cammi C Pomelli J W Ochterski R L Martin K Morokuma V G Zakrzewski G A Voth P Salvador J J Dannenberg S Dapprich A D Daniels Ouml Farkas J B Foresman J V Ortiz J Cioslowski D J Fox Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA 2009

13 J C Rienstra-Kiracofe G S Tschumper H F Schaefer III S Nandi G B Ellison Chem Rev 2002 102 231ndash282

14 K Wolinski J F Hinton P Pulay J Am Chem Soc 1990 112 8251ndash8260 15 J D Kennedy in Multinuclear NMR (Ed J Mason) Plenum Press New York 1987 p 221 16 S Berger S Braun H-O Kalinowski NMR Spectroscopy of the Non-Metallic Elements John

Wiley amp Sons Ltd Chichester England 1997 17 (a) G M Sheldrick Acta Crystallogr 2008 A64 112ndash122 (b) G M Sheldrick SHELXS-97

Program for Crystal Structure Solution Universitaumlt Goumlttingen 1997 18 G M Sheldrick SHELXT Program for Crystal Structure Solution Universitaumlt Goumlttingen

2014 19 G M Sheldrick SHELXL-97 Program for Crystal Structure Refinement Universitaumlt

Goumlttingen 1997 20 C B Huumlbschle G M Sheldrick B Dittrich J Appl Crystallogr 2011 44 1281ndash1284 21 K Brandenburg Diamond 422 Crystal Impact GbR Bonn Germany 1997-2016

Page 11: Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

11

Figure S5 11B and 11B1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

Figure S6 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

12

Figure S7 19F and 19F11B NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

IR (ATR) 120584 = 3081 (w CClusterminusH) 2633-2516 (m BminusH) 2341 (w BminusH) 2185 (w BminusH) cmminus1

Raman 120584 = 2683-2527 (s BminusH) 2342 (w BminusH) 2158 (w BminusH) 956 (m sh BminusF) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 2 (C2H12B11F2)minus 190 (13) 191 (37) 192 (74) 193

(100) 194 (81) 195 (31) found 190 (13) 191 (37) 192 (73) 193 (100) 194 (83) 195 (31)

Elemental analysis calcd () for C6H24B11F2N (26718) C 2697 H 905 N 524 found C 2780 H

926 N 622

13

Figure S8 IR and Raman spectrum of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

[Et4N][nido-78-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 186 (s 2-H

B9+11H) 169 (s 1-H B3H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 114

(s 4-H B5+62+4H) 045 (s 1-H B1H) -001 (s 1-H B10H) ndash296 (m 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash111 (d 2-B 1J(11B1H) = 1351 Hz B9+11) ndash171 (d 2-B 1J(11B 1H) = overlapped B5+6) ndash177 (d 1-B 1J(11B1H) = overlapped B3) ndash223 (d 2-B 1J(11B 1H) = 1492 Hz B2+4) ndash335 (dd 1-B 1J(11B 1H) = 1329 Hz 1J(11B1Hmicro) = 353 Hz B10) ndash381 (d

1-B 1J(11B1H) = 1365 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5307 (t 4-C 1J(14N13C) = 31 Hz [Et4N]+) 4310 (brq 2-

C 1J(13C11B) = 350 Hz C7+8) 768 (s 4-C [Et4N]+) ppm

[Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3) The reaction was performed as outlined for the

preparation of [Me4N]2 912-diiodo-12-dicarba-closo-dodecaborane (042 g 106 mmol) [Me4N]F

(0396 g 424 mmol) and THF (20 mL) were employed as starting materials Yield of [Me4N]3

0066 g (013 mmol 24) [Me4N]1 0030 g (021 mmol 20) and [Et4N][56-I2-nido-78-C2B9H10]

0306 g (0594 mmol 56)

14

[Me4N]3 1H NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (qt 1-H 1J(11B1H) = 1288 Hz 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250

(s 4-H B4+57+11H ) 226 (s 2-H B3+6H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (t 1-H 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (q 1-H 1J(11B1H) = 1288 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 31 [ndash04] (dt 1-B 1J(19F11B) = 769 Hz 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 [ndash82] (d 2-B 1J(11B1H) = 1537 Hz B8+10) ndash111

[ndash164] (d 2-B 1J(11B1H) = 1682Hz B7+11) ndash127 [ndash128] (d 2-B 1J(11B1H) = overlapped B4+5)

ndash134 [ndash176] (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s

1-B B9) ppm 11B1H NMR (16046 MHz CD3CN) δ = 31 [ndash04] (t 1-B 1J(19F11B) = 769 Hz HBF2-Cluster)

ndash60 [ndash82] (s 2-B B8+10) ndash111 [ndash 164] (s 2-B B7+11) ndash127 [ndash128] (s 2-B B4+5) ndash134

[ndash176] (s 2-B B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s 1-B B9) ppm 11B19F NMR (16046 MHz CD3CN) δ = 31 (d 1-B 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 (d

2-B 1J(11B1H) = 1537 Hz B8+10) ndash111 (d 2-B 1J(11B1H) = 1682 Hz B7+11) ndash127 (d 2-B 1J(11B1H) = overlapped B4+5) ndash134 (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 (s 1-B B12)

ndash167 (s 1-B B9) ppm 13C1H NMR (12576 MHz CD3CN) δ = 7697 (q 1-C 1J(13C11B) = 505 Hz C1BHF2) 579 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 7710 (t 1-C 2J(19F13C) = 379 Hz C1BHF2) 5795 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 19F NMR (37649 MHz CD3CN) δ = ndash15483 (qd 2-F 1J(19F11B) = 769 Hz 2J(19F1H) = 631 Hz)

ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash15483 (q 2-F 1J(19F11B) = 769 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15483 (d 2-F 2J(19F1H) = 631 Hz) ppm

15

Figure S9 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3) the signal of the BHF2 unit is marked with asterisks

Figure S10 11B and 11B1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

16

Figure S11 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3)

Figure S12 19F and 19F1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

17

IR (ATR) 120584 = 3077 (w CClusterminusH) 3072 (vw CClusterminusH) 2644-2505 (m BminusH) 2340 (w BminusH) 2187

(w BminusH) cmminus1

Raman 120584 = 2675-2552 (s BminusH) 2350 (w BminusH) 2191 (w BminusH) 951 (m sh BminusF) 220 (m sh

BminusI) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 3 (C2H10B11F2I2)minus 442 (13) 443 (37) 444 (74) 445

(100) 446 (74) 447 (31) found 442 (13) 443 (38) 444 (73) 445 (100) 446 (80) 447 (29)

Elemental analysis calcd () for C6H22B11F2I2N (51897) C 1389 H 427 N 270 found C 1404 H

435 N 323

Figure S13 IR and Raman spectrum of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Et4N][56-I2-nido-78-C2B9H10] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 237 (s 2-H

B9+11H) 218 (s 2-H C7+8H) 180 (s 2-H B2+4H) 176 (s 1-H B3H) 122 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 096 (s 1-H B1H) 094 (d 1-H 3J(1H1H) = 74 Hz

B2H) 071 (s 1 H B10H) ndash213 (t 1 H 2J(1H1Hmicro) = 99 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash94 (d 2-B 1J(11B 1H) = 1419 Hz B9+11) ndash169 (d 1-B 1J(11B 1H) = 1673 Hz) ndash210 (d 2-B 1J(11B1H) = 1571 Hz B2+4) ndash243 (s 2-B B5+6) ndash279 (dd

18

1-B 1J(11B1H) = 1324 Hz 1J(11B1Hmicro) = 393 Hz B10) ndash337 (d 1-B 1J(11B1H) = 1471 Hz

B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 531 (t 4-C 1J(14N13C) = 3 Hz [NEt4]+) 427 (brq 2-C 1J(13C11B) = 346 Hz C7+8 ) 76 (s 4-C [NEt4]+) ppm

[Et4N][7-Me-nido-78-C2B9H11] A 100 mL glass tube equipped with a magnetic stirring bar was

charged with 1-Me-12-dicarba-closo-dodecaborane (0250 g 158 mmol) 4 equivalents of anhydrous

[Me4N]F (0590 g 632 mmol) and dry THF (15 mL) under an argon atmosphere The suspension was

stirred at room temperature for 24 h The reaction mixture was taken up into ice-cold water and the

residual THF was removed using a rotary evaporator A solid separated during removal of the THF that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N]+ salts during

the next step An aqueous solution of [Et4N]Cl (261 g 1580 mmol) was added to the clear solution and

then a colourless precipitate was formed The solid was isolated by filtration through a fine glass frit

and dried in a vacuum overnight Yield of 0259 g [Et4N][7-Me-nido-78-C2B9H11] (093 mmol 591)

[Et4N][7-Me-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 166 (s 1-H

C8H) 188 (s 1-H B9H) 179 (s 1-H B11H) 161 (s 1-H B3H) 136 (s 3-H C7CH3) 133 (s 1-

H B2H or B6H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 111 (s 2-H

B4H+B2H or B6H) 103 (s 1-H B5H) 043 (s 1-H B1H) -004 (s 1-H B10H) ndash272 (m 1-H

BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash102 (d 1-B 1J(11B1H) = overlapped B11) ndash111 (d 1-B 1J(11B1H) = overlapped B9) ndash135 (d 1-B 1J(11B1H) = 1561 Hz B3) ndash180 (d 2-B 1J(11B1H) =

overlapped B2+B6) ndash189 (d 1-B 1J(11B1H) = overlapped B5) ndash225 (d 1-B 1J(11B1H) = 1475

Hz) ndash338 (dd 1-B 1J(11B1H) = 1284 Hz 1J(11B1Hmicro) = 397 Hz B10) ndash371 (d 1-B 1J(11B1H) =

1377 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5497 (brq 1-C 1J(13C11B) = 348 Hz C7CH3) 5308 (t 4-

C 1J(14N13C) = 31 Hz [Et4N]+) 4955 (brq 1-C 1J(13C11B) = 348 Hz C8H) 2548 (s 1-C C7CH3)

769 (s 4-C [Et4N]+) ppm

[Et4N][7-Ph-nido-78-C2B9H11] The reaction was performed as outlined for the preparation of [Et4N]4

1-Ph-12-dicarba-closo-dodecaborane (0300 g 136 mmol) [Me4N]F (0509 g 545 mmol) [Et4N]Cl

(225 g 1360 mmol) and THF (20 mL) were employed as starting materials Yield of 0254 g [Et4N][1-

Ph-nido-78-C2B9H11] (075 mmol 550)

[Et4N][1-Ph-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 721 (m 2-H PhH) 713 (m 2-H PhH) 704 (m 1-H

PhH) 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 228 (s 1-H C8H) 207 (s 2-H B9+11H) 177 (s

19

1-H B3H) 172 (s 1-H B2H) 123 (s 3-H B4+5+6H) 119 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 065 (s 1-H B1H) 015 (s 1-H B10H) ndash246 (s 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash88 (d 1-B 1J(11B1H) = 1386 Hz B11) ndash104 (d 1-B 1J(11B1H) = 1367 Hz B9) ndash137 (d 1-B 1J(11B1H) = 1594 Hz B3) ndash169 (d 1-B 1J(11B1H) =

overlapped B5) ndash181 (d 1-B 1J(11B1H) = overlapped B6) ndash198 (d 1-B 1J(11B1H) = 1489 Hz

B2) ndash227 (d 1-B 1J(11B1H) = 1507 Hz B4) ndash329 (dd 1-B 1J(11B1H) = 1334 Hz 1J(11B1Hmicro) =

394 Hz B10) ndash361 (d 1-B 1J(11B1H) = 1422 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 1467 (s 1-C CPh) 12845 (s 2-C CPh) 12757 (s 2-C CPh)

12565 (s 1-C CPh) 6317 (brq 1 C 1J(13C11B) = 342 Hz C7Ph) 5307 (t 4-C 1J(14N13C) = 31 Hz

[Et4N]+) 4632 (brq 1-C 1J(13C11B) = 342 Hz C8H) 768 (s 4-C [Et4N]+) ppm

References

1 R K Harris E D Becker S M Cabral de Menezes R Goodfellow P Granger Pure Appl Chem 2001 73 1795ndash1818

2 G R Fulmer A J M Miller N H Sherden H E Gottlieb A Nudelman B M Stoltz J E Bercaw K I Goldberg Organometallics 2010 29 2176ndash2179

3 (a) D C Finster W C Hutton R N Grimes J Am Chem Soc 1980 102 400ndash401 (b) I J Colquhoun W McFarlane J Chem Soc Dalton Trans 1981 2014ndash2016

4 (a) T L Venable W C Hutton R N Grimes J Am Chem Soc 1982 104 4716ndash4717 (b) T L Venable W C Hutton R N Grimes J Am Chem Soc 1984 106 29ndash37

5 W L F Armarego C L L Chai Purification of Laboratory Chemicals 5 ed Butterworth-Heinemann (Elsevier) 2003

6 D S Wilbur M-K Chyan D K Hamlin B B Kegley R Risler P M Pathare J Quinn R L Vessella C Foulon M Zalutsky T J Wedge M F Hawthorne Bioconjugate Chem 2004 15 203ndash223

7 M F Hawthorne T D Andrews P M Garrett F P Olsen M Reintjes F N Tebbe L F Warren P A Wegner D C Young Inorg Synth 1967 10 91ndash118

8 A S Batsanov M A Fox J A K Howard A K Hughes A L Johnson S J Martindale Acta Crystallogr 2003 C59 o74ndasho76

9 K O Christe W W Wilson R D Wilson R Bau J A Feng J Am Chem Soc 1990 112 7619ndash7625

10 W Kohn L J Sham Phys Rev A 1965 140 1133ndash1138 11 (a) A D Becke Phys Rev A 1988 38 3098ndash3100 (b) A D Becke J Chem Phys 1993 98

5648ndash5652 (c) C Lee W Yang R G Parr Phys Rev B 1988 37 785ndash789 12 M J Frisch G W Trucks H B Schlegel G E Scuseria M A Robb J R Cheeseman V

Barone B Mennucci G A Petersson H Nakatsuji M Caricato X Xi H P Hratchian A F Izmaylov J Bloino G Zheng J L Sonnenberg M Hada M Ehara K Toyota R Fukuda J Hasegawa M Ishida T Nakajima Y Honda O Kitao H Nakai T Vreven J J A Montgomery J E Peralta M B F Ogliaro J J Heyd E Brothers K N Kudin V N Staroverov R Kobayashi J Normand K Raghavachari A Rendell J C Burant S S Iyengar J Tomasi M Cossi N Rega J M Millam M Klene J E Knox J B Cross V Bakken C

20

Adamo J Jaramillo R Gomperts R E Stratmann O Yazyev A J Austin R Cammi C Pomelli J W Ochterski R L Martin K Morokuma V G Zakrzewski G A Voth P Salvador J J Dannenberg S Dapprich A D Daniels Ouml Farkas J B Foresman J V Ortiz J Cioslowski D J Fox Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA 2009

13 J C Rienstra-Kiracofe G S Tschumper H F Schaefer III S Nandi G B Ellison Chem Rev 2002 102 231ndash282

14 K Wolinski J F Hinton P Pulay J Am Chem Soc 1990 112 8251ndash8260 15 J D Kennedy in Multinuclear NMR (Ed J Mason) Plenum Press New York 1987 p 221 16 S Berger S Braun H-O Kalinowski NMR Spectroscopy of the Non-Metallic Elements John

Wiley amp Sons Ltd Chichester England 1997 17 (a) G M Sheldrick Acta Crystallogr 2008 A64 112ndash122 (b) G M Sheldrick SHELXS-97

Program for Crystal Structure Solution Universitaumlt Goumlttingen 1997 18 G M Sheldrick SHELXT Program for Crystal Structure Solution Universitaumlt Goumlttingen

2014 19 G M Sheldrick SHELXL-97 Program for Crystal Structure Refinement Universitaumlt

Goumlttingen 1997 20 C B Huumlbschle G M Sheldrick B Dittrich J Appl Crystallogr 2011 44 1281ndash1284 21 K Brandenburg Diamond 422 Crystal Impact GbR Bonn Germany 1997-2016

Page 12: Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

12

Figure S7 19F and 19F11B NMR spectra of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

IR (ATR) 120584 = 3081 (w CClusterminusH) 2633-2516 (m BminusH) 2341 (w BminusH) 2185 (w BminusH) cmminus1

Raman 120584 = 2683-2527 (s BminusH) 2342 (w BminusH) 2158 (w BminusH) 956 (m sh BminusF) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 2 (C2H12B11F2)minus 190 (13) 191 (37) 192 (74) 193

(100) 194 (81) 195 (31) found 190 (13) 191 (37) 192 (73) 193 (100) 194 (83) 195 (31)

Elemental analysis calcd () for C6H24B11F2N (26718) C 2697 H 905 N 524 found C 2780 H

926 N 622

13

Figure S8 IR and Raman spectrum of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

[Et4N][nido-78-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 186 (s 2-H

B9+11H) 169 (s 1-H B3H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 114

(s 4-H B5+62+4H) 045 (s 1-H B1H) -001 (s 1-H B10H) ndash296 (m 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash111 (d 2-B 1J(11B1H) = 1351 Hz B9+11) ndash171 (d 2-B 1J(11B 1H) = overlapped B5+6) ndash177 (d 1-B 1J(11B1H) = overlapped B3) ndash223 (d 2-B 1J(11B 1H) = 1492 Hz B2+4) ndash335 (dd 1-B 1J(11B 1H) = 1329 Hz 1J(11B1Hmicro) = 353 Hz B10) ndash381 (d

1-B 1J(11B1H) = 1365 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5307 (t 4-C 1J(14N13C) = 31 Hz [Et4N]+) 4310 (brq 2-

C 1J(13C11B) = 350 Hz C7+8) 768 (s 4-C [Et4N]+) ppm

[Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3) The reaction was performed as outlined for the

preparation of [Me4N]2 912-diiodo-12-dicarba-closo-dodecaborane (042 g 106 mmol) [Me4N]F

(0396 g 424 mmol) and THF (20 mL) were employed as starting materials Yield of [Me4N]3

0066 g (013 mmol 24) [Me4N]1 0030 g (021 mmol 20) and [Et4N][56-I2-nido-78-C2B9H10]

0306 g (0594 mmol 56)

14

[Me4N]3 1H NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (qt 1-H 1J(11B1H) = 1288 Hz 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250

(s 4-H B4+57+11H ) 226 (s 2-H B3+6H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (t 1-H 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (q 1-H 1J(11B1H) = 1288 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 31 [ndash04] (dt 1-B 1J(19F11B) = 769 Hz 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 [ndash82] (d 2-B 1J(11B1H) = 1537 Hz B8+10) ndash111

[ndash164] (d 2-B 1J(11B1H) = 1682Hz B7+11) ndash127 [ndash128] (d 2-B 1J(11B1H) = overlapped B4+5)

ndash134 [ndash176] (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s

1-B B9) ppm 11B1H NMR (16046 MHz CD3CN) δ = 31 [ndash04] (t 1-B 1J(19F11B) = 769 Hz HBF2-Cluster)

ndash60 [ndash82] (s 2-B B8+10) ndash111 [ndash 164] (s 2-B B7+11) ndash127 [ndash128] (s 2-B B4+5) ndash134

[ndash176] (s 2-B B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s 1-B B9) ppm 11B19F NMR (16046 MHz CD3CN) δ = 31 (d 1-B 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 (d

2-B 1J(11B1H) = 1537 Hz B8+10) ndash111 (d 2-B 1J(11B1H) = 1682 Hz B7+11) ndash127 (d 2-B 1J(11B1H) = overlapped B4+5) ndash134 (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 (s 1-B B12)

ndash167 (s 1-B B9) ppm 13C1H NMR (12576 MHz CD3CN) δ = 7697 (q 1-C 1J(13C11B) = 505 Hz C1BHF2) 579 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 7710 (t 1-C 2J(19F13C) = 379 Hz C1BHF2) 5795 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 19F NMR (37649 MHz CD3CN) δ = ndash15483 (qd 2-F 1J(19F11B) = 769 Hz 2J(19F1H) = 631 Hz)

ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash15483 (q 2-F 1J(19F11B) = 769 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15483 (d 2-F 2J(19F1H) = 631 Hz) ppm

15

Figure S9 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3) the signal of the BHF2 unit is marked with asterisks

Figure S10 11B and 11B1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

16

Figure S11 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3)

Figure S12 19F and 19F1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

17

IR (ATR) 120584 = 3077 (w CClusterminusH) 3072 (vw CClusterminusH) 2644-2505 (m BminusH) 2340 (w BminusH) 2187

(w BminusH) cmminus1

Raman 120584 = 2675-2552 (s BminusH) 2350 (w BminusH) 2191 (w BminusH) 951 (m sh BminusF) 220 (m sh

BminusI) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 3 (C2H10B11F2I2)minus 442 (13) 443 (37) 444 (74) 445

(100) 446 (74) 447 (31) found 442 (13) 443 (38) 444 (73) 445 (100) 446 (80) 447 (29)

Elemental analysis calcd () for C6H22B11F2I2N (51897) C 1389 H 427 N 270 found C 1404 H

435 N 323

Figure S13 IR and Raman spectrum of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Et4N][56-I2-nido-78-C2B9H10] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 237 (s 2-H

B9+11H) 218 (s 2-H C7+8H) 180 (s 2-H B2+4H) 176 (s 1-H B3H) 122 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 096 (s 1-H B1H) 094 (d 1-H 3J(1H1H) = 74 Hz

B2H) 071 (s 1 H B10H) ndash213 (t 1 H 2J(1H1Hmicro) = 99 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash94 (d 2-B 1J(11B 1H) = 1419 Hz B9+11) ndash169 (d 1-B 1J(11B 1H) = 1673 Hz) ndash210 (d 2-B 1J(11B1H) = 1571 Hz B2+4) ndash243 (s 2-B B5+6) ndash279 (dd

18

1-B 1J(11B1H) = 1324 Hz 1J(11B1Hmicro) = 393 Hz B10) ndash337 (d 1-B 1J(11B1H) = 1471 Hz

B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 531 (t 4-C 1J(14N13C) = 3 Hz [NEt4]+) 427 (brq 2-C 1J(13C11B) = 346 Hz C7+8 ) 76 (s 4-C [NEt4]+) ppm

[Et4N][7-Me-nido-78-C2B9H11] A 100 mL glass tube equipped with a magnetic stirring bar was

charged with 1-Me-12-dicarba-closo-dodecaborane (0250 g 158 mmol) 4 equivalents of anhydrous

[Me4N]F (0590 g 632 mmol) and dry THF (15 mL) under an argon atmosphere The suspension was

stirred at room temperature for 24 h The reaction mixture was taken up into ice-cold water and the

residual THF was removed using a rotary evaporator A solid separated during removal of the THF that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N]+ salts during

the next step An aqueous solution of [Et4N]Cl (261 g 1580 mmol) was added to the clear solution and

then a colourless precipitate was formed The solid was isolated by filtration through a fine glass frit

and dried in a vacuum overnight Yield of 0259 g [Et4N][7-Me-nido-78-C2B9H11] (093 mmol 591)

[Et4N][7-Me-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 166 (s 1-H

C8H) 188 (s 1-H B9H) 179 (s 1-H B11H) 161 (s 1-H B3H) 136 (s 3-H C7CH3) 133 (s 1-

H B2H or B6H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 111 (s 2-H

B4H+B2H or B6H) 103 (s 1-H B5H) 043 (s 1-H B1H) -004 (s 1-H B10H) ndash272 (m 1-H

BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash102 (d 1-B 1J(11B1H) = overlapped B11) ndash111 (d 1-B 1J(11B1H) = overlapped B9) ndash135 (d 1-B 1J(11B1H) = 1561 Hz B3) ndash180 (d 2-B 1J(11B1H) =

overlapped B2+B6) ndash189 (d 1-B 1J(11B1H) = overlapped B5) ndash225 (d 1-B 1J(11B1H) = 1475

Hz) ndash338 (dd 1-B 1J(11B1H) = 1284 Hz 1J(11B1Hmicro) = 397 Hz B10) ndash371 (d 1-B 1J(11B1H) =

1377 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5497 (brq 1-C 1J(13C11B) = 348 Hz C7CH3) 5308 (t 4-

C 1J(14N13C) = 31 Hz [Et4N]+) 4955 (brq 1-C 1J(13C11B) = 348 Hz C8H) 2548 (s 1-C C7CH3)

769 (s 4-C [Et4N]+) ppm

[Et4N][7-Ph-nido-78-C2B9H11] The reaction was performed as outlined for the preparation of [Et4N]4

1-Ph-12-dicarba-closo-dodecaborane (0300 g 136 mmol) [Me4N]F (0509 g 545 mmol) [Et4N]Cl

(225 g 1360 mmol) and THF (20 mL) were employed as starting materials Yield of 0254 g [Et4N][1-

Ph-nido-78-C2B9H11] (075 mmol 550)

[Et4N][1-Ph-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 721 (m 2-H PhH) 713 (m 2-H PhH) 704 (m 1-H

PhH) 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 228 (s 1-H C8H) 207 (s 2-H B9+11H) 177 (s

19

1-H B3H) 172 (s 1-H B2H) 123 (s 3-H B4+5+6H) 119 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 065 (s 1-H B1H) 015 (s 1-H B10H) ndash246 (s 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash88 (d 1-B 1J(11B1H) = 1386 Hz B11) ndash104 (d 1-B 1J(11B1H) = 1367 Hz B9) ndash137 (d 1-B 1J(11B1H) = 1594 Hz B3) ndash169 (d 1-B 1J(11B1H) =

overlapped B5) ndash181 (d 1-B 1J(11B1H) = overlapped B6) ndash198 (d 1-B 1J(11B1H) = 1489 Hz

B2) ndash227 (d 1-B 1J(11B1H) = 1507 Hz B4) ndash329 (dd 1-B 1J(11B1H) = 1334 Hz 1J(11B1Hmicro) =

394 Hz B10) ndash361 (d 1-B 1J(11B1H) = 1422 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 1467 (s 1-C CPh) 12845 (s 2-C CPh) 12757 (s 2-C CPh)

12565 (s 1-C CPh) 6317 (brq 1 C 1J(13C11B) = 342 Hz C7Ph) 5307 (t 4-C 1J(14N13C) = 31 Hz

[Et4N]+) 4632 (brq 1-C 1J(13C11B) = 342 Hz C8H) 768 (s 4-C [Et4N]+) ppm

References

1 R K Harris E D Becker S M Cabral de Menezes R Goodfellow P Granger Pure Appl Chem 2001 73 1795ndash1818

2 G R Fulmer A J M Miller N H Sherden H E Gottlieb A Nudelman B M Stoltz J E Bercaw K I Goldberg Organometallics 2010 29 2176ndash2179

3 (a) D C Finster W C Hutton R N Grimes J Am Chem Soc 1980 102 400ndash401 (b) I J Colquhoun W McFarlane J Chem Soc Dalton Trans 1981 2014ndash2016

4 (a) T L Venable W C Hutton R N Grimes J Am Chem Soc 1982 104 4716ndash4717 (b) T L Venable W C Hutton R N Grimes J Am Chem Soc 1984 106 29ndash37

5 W L F Armarego C L L Chai Purification of Laboratory Chemicals 5 ed Butterworth-Heinemann (Elsevier) 2003

6 D S Wilbur M-K Chyan D K Hamlin B B Kegley R Risler P M Pathare J Quinn R L Vessella C Foulon M Zalutsky T J Wedge M F Hawthorne Bioconjugate Chem 2004 15 203ndash223

7 M F Hawthorne T D Andrews P M Garrett F P Olsen M Reintjes F N Tebbe L F Warren P A Wegner D C Young Inorg Synth 1967 10 91ndash118

8 A S Batsanov M A Fox J A K Howard A K Hughes A L Johnson S J Martindale Acta Crystallogr 2003 C59 o74ndasho76

9 K O Christe W W Wilson R D Wilson R Bau J A Feng J Am Chem Soc 1990 112 7619ndash7625

10 W Kohn L J Sham Phys Rev A 1965 140 1133ndash1138 11 (a) A D Becke Phys Rev A 1988 38 3098ndash3100 (b) A D Becke J Chem Phys 1993 98

5648ndash5652 (c) C Lee W Yang R G Parr Phys Rev B 1988 37 785ndash789 12 M J Frisch G W Trucks H B Schlegel G E Scuseria M A Robb J R Cheeseman V

Barone B Mennucci G A Petersson H Nakatsuji M Caricato X Xi H P Hratchian A F Izmaylov J Bloino G Zheng J L Sonnenberg M Hada M Ehara K Toyota R Fukuda J Hasegawa M Ishida T Nakajima Y Honda O Kitao H Nakai T Vreven J J A Montgomery J E Peralta M B F Ogliaro J J Heyd E Brothers K N Kudin V N Staroverov R Kobayashi J Normand K Raghavachari A Rendell J C Burant S S Iyengar J Tomasi M Cossi N Rega J M Millam M Klene J E Knox J B Cross V Bakken C

20

Adamo J Jaramillo R Gomperts R E Stratmann O Yazyev A J Austin R Cammi C Pomelli J W Ochterski R L Martin K Morokuma V G Zakrzewski G A Voth P Salvador J J Dannenberg S Dapprich A D Daniels Ouml Farkas J B Foresman J V Ortiz J Cioslowski D J Fox Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA 2009

13 J C Rienstra-Kiracofe G S Tschumper H F Schaefer III S Nandi G B Ellison Chem Rev 2002 102 231ndash282

14 K Wolinski J F Hinton P Pulay J Am Chem Soc 1990 112 8251ndash8260 15 J D Kennedy in Multinuclear NMR (Ed J Mason) Plenum Press New York 1987 p 221 16 S Berger S Braun H-O Kalinowski NMR Spectroscopy of the Non-Metallic Elements John

Wiley amp Sons Ltd Chichester England 1997 17 (a) G M Sheldrick Acta Crystallogr 2008 A64 112ndash122 (b) G M Sheldrick SHELXS-97

Program for Crystal Structure Solution Universitaumlt Goumlttingen 1997 18 G M Sheldrick SHELXT Program for Crystal Structure Solution Universitaumlt Goumlttingen

2014 19 G M Sheldrick SHELXL-97 Program for Crystal Structure Refinement Universitaumlt

Goumlttingen 1997 20 C B Huumlbschle G M Sheldrick B Dittrich J Appl Crystallogr 2011 44 1281ndash1284 21 K Brandenburg Diamond 422 Crystal Impact GbR Bonn Germany 1997-2016

Page 13: Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

13

Figure S8 IR and Raman spectrum of [Me4N][1-HF2B-closo-12-C2B10H11] ([Me4N]2)

[Et4N][nido-78-C2B9H12] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 186 (s 2-H

B9+11H) 169 (s 1-H B3H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 114

(s 4-H B5+62+4H) 045 (s 1-H B1H) -001 (s 1-H B10H) ndash296 (m 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash111 (d 2-B 1J(11B1H) = 1351 Hz B9+11) ndash171 (d 2-B 1J(11B 1H) = overlapped B5+6) ndash177 (d 1-B 1J(11B1H) = overlapped B3) ndash223 (d 2-B 1J(11B 1H) = 1492 Hz B2+4) ndash335 (dd 1-B 1J(11B 1H) = 1329 Hz 1J(11B1Hmicro) = 353 Hz B10) ndash381 (d

1-B 1J(11B1H) = 1365 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5307 (t 4-C 1J(14N13C) = 31 Hz [Et4N]+) 4310 (brq 2-

C 1J(13C11B) = 350 Hz C7+8) 768 (s 4-C [Et4N]+) ppm

[Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3) The reaction was performed as outlined for the

preparation of [Me4N]2 912-diiodo-12-dicarba-closo-dodecaborane (042 g 106 mmol) [Me4N]F

(0396 g 424 mmol) and THF (20 mL) were employed as starting materials Yield of [Me4N]3

0066 g (013 mmol 24) [Me4N]1 0030 g (021 mmol 20) and [Et4N][56-I2-nido-78-C2B9H10]

0306 g (0594 mmol 56)

14

[Me4N]3 1H NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (qt 1-H 1J(11B1H) = 1288 Hz 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250

(s 4-H B4+57+11H ) 226 (s 2-H B3+6H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (t 1-H 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (q 1-H 1J(11B1H) = 1288 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 31 [ndash04] (dt 1-B 1J(19F11B) = 769 Hz 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 [ndash82] (d 2-B 1J(11B1H) = 1537 Hz B8+10) ndash111

[ndash164] (d 2-B 1J(11B1H) = 1682Hz B7+11) ndash127 [ndash128] (d 2-B 1J(11B1H) = overlapped B4+5)

ndash134 [ndash176] (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s

1-B B9) ppm 11B1H NMR (16046 MHz CD3CN) δ = 31 [ndash04] (t 1-B 1J(19F11B) = 769 Hz HBF2-Cluster)

ndash60 [ndash82] (s 2-B B8+10) ndash111 [ndash 164] (s 2-B B7+11) ndash127 [ndash128] (s 2-B B4+5) ndash134

[ndash176] (s 2-B B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s 1-B B9) ppm 11B19F NMR (16046 MHz CD3CN) δ = 31 (d 1-B 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 (d

2-B 1J(11B1H) = 1537 Hz B8+10) ndash111 (d 2-B 1J(11B1H) = 1682 Hz B7+11) ndash127 (d 2-B 1J(11B1H) = overlapped B4+5) ndash134 (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 (s 1-B B12)

ndash167 (s 1-B B9) ppm 13C1H NMR (12576 MHz CD3CN) δ = 7697 (q 1-C 1J(13C11B) = 505 Hz C1BHF2) 579 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 7710 (t 1-C 2J(19F13C) = 379 Hz C1BHF2) 5795 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 19F NMR (37649 MHz CD3CN) δ = ndash15483 (qd 2-F 1J(19F11B) = 769 Hz 2J(19F1H) = 631 Hz)

ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash15483 (q 2-F 1J(19F11B) = 769 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15483 (d 2-F 2J(19F1H) = 631 Hz) ppm

15

Figure S9 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3) the signal of the BHF2 unit is marked with asterisks

Figure S10 11B and 11B1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

16

Figure S11 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3)

Figure S12 19F and 19F1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

17

IR (ATR) 120584 = 3077 (w CClusterminusH) 3072 (vw CClusterminusH) 2644-2505 (m BminusH) 2340 (w BminusH) 2187

(w BminusH) cmminus1

Raman 120584 = 2675-2552 (s BminusH) 2350 (w BminusH) 2191 (w BminusH) 951 (m sh BminusF) 220 (m sh

BminusI) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 3 (C2H10B11F2I2)minus 442 (13) 443 (37) 444 (74) 445

(100) 446 (74) 447 (31) found 442 (13) 443 (38) 444 (73) 445 (100) 446 (80) 447 (29)

Elemental analysis calcd () for C6H22B11F2I2N (51897) C 1389 H 427 N 270 found C 1404 H

435 N 323

Figure S13 IR and Raman spectrum of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Et4N][56-I2-nido-78-C2B9H10] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 237 (s 2-H

B9+11H) 218 (s 2-H C7+8H) 180 (s 2-H B2+4H) 176 (s 1-H B3H) 122 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 096 (s 1-H B1H) 094 (d 1-H 3J(1H1H) = 74 Hz

B2H) 071 (s 1 H B10H) ndash213 (t 1 H 2J(1H1Hmicro) = 99 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash94 (d 2-B 1J(11B 1H) = 1419 Hz B9+11) ndash169 (d 1-B 1J(11B 1H) = 1673 Hz) ndash210 (d 2-B 1J(11B1H) = 1571 Hz B2+4) ndash243 (s 2-B B5+6) ndash279 (dd

18

1-B 1J(11B1H) = 1324 Hz 1J(11B1Hmicro) = 393 Hz B10) ndash337 (d 1-B 1J(11B1H) = 1471 Hz

B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 531 (t 4-C 1J(14N13C) = 3 Hz [NEt4]+) 427 (brq 2-C 1J(13C11B) = 346 Hz C7+8 ) 76 (s 4-C [NEt4]+) ppm

[Et4N][7-Me-nido-78-C2B9H11] A 100 mL glass tube equipped with a magnetic stirring bar was

charged with 1-Me-12-dicarba-closo-dodecaborane (0250 g 158 mmol) 4 equivalents of anhydrous

[Me4N]F (0590 g 632 mmol) and dry THF (15 mL) under an argon atmosphere The suspension was

stirred at room temperature for 24 h The reaction mixture was taken up into ice-cold water and the

residual THF was removed using a rotary evaporator A solid separated during removal of the THF that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N]+ salts during

the next step An aqueous solution of [Et4N]Cl (261 g 1580 mmol) was added to the clear solution and

then a colourless precipitate was formed The solid was isolated by filtration through a fine glass frit

and dried in a vacuum overnight Yield of 0259 g [Et4N][7-Me-nido-78-C2B9H11] (093 mmol 591)

[Et4N][7-Me-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 166 (s 1-H

C8H) 188 (s 1-H B9H) 179 (s 1-H B11H) 161 (s 1-H B3H) 136 (s 3-H C7CH3) 133 (s 1-

H B2H or B6H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 111 (s 2-H

B4H+B2H or B6H) 103 (s 1-H B5H) 043 (s 1-H B1H) -004 (s 1-H B10H) ndash272 (m 1-H

BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash102 (d 1-B 1J(11B1H) = overlapped B11) ndash111 (d 1-B 1J(11B1H) = overlapped B9) ndash135 (d 1-B 1J(11B1H) = 1561 Hz B3) ndash180 (d 2-B 1J(11B1H) =

overlapped B2+B6) ndash189 (d 1-B 1J(11B1H) = overlapped B5) ndash225 (d 1-B 1J(11B1H) = 1475

Hz) ndash338 (dd 1-B 1J(11B1H) = 1284 Hz 1J(11B1Hmicro) = 397 Hz B10) ndash371 (d 1-B 1J(11B1H) =

1377 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5497 (brq 1-C 1J(13C11B) = 348 Hz C7CH3) 5308 (t 4-

C 1J(14N13C) = 31 Hz [Et4N]+) 4955 (brq 1-C 1J(13C11B) = 348 Hz C8H) 2548 (s 1-C C7CH3)

769 (s 4-C [Et4N]+) ppm

[Et4N][7-Ph-nido-78-C2B9H11] The reaction was performed as outlined for the preparation of [Et4N]4

1-Ph-12-dicarba-closo-dodecaborane (0300 g 136 mmol) [Me4N]F (0509 g 545 mmol) [Et4N]Cl

(225 g 1360 mmol) and THF (20 mL) were employed as starting materials Yield of 0254 g [Et4N][1-

Ph-nido-78-C2B9H11] (075 mmol 550)

[Et4N][1-Ph-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 721 (m 2-H PhH) 713 (m 2-H PhH) 704 (m 1-H

PhH) 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 228 (s 1-H C8H) 207 (s 2-H B9+11H) 177 (s

19

1-H B3H) 172 (s 1-H B2H) 123 (s 3-H B4+5+6H) 119 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 065 (s 1-H B1H) 015 (s 1-H B10H) ndash246 (s 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash88 (d 1-B 1J(11B1H) = 1386 Hz B11) ndash104 (d 1-B 1J(11B1H) = 1367 Hz B9) ndash137 (d 1-B 1J(11B1H) = 1594 Hz B3) ndash169 (d 1-B 1J(11B1H) =

overlapped B5) ndash181 (d 1-B 1J(11B1H) = overlapped B6) ndash198 (d 1-B 1J(11B1H) = 1489 Hz

B2) ndash227 (d 1-B 1J(11B1H) = 1507 Hz B4) ndash329 (dd 1-B 1J(11B1H) = 1334 Hz 1J(11B1Hmicro) =

394 Hz B10) ndash361 (d 1-B 1J(11B1H) = 1422 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 1467 (s 1-C CPh) 12845 (s 2-C CPh) 12757 (s 2-C CPh)

12565 (s 1-C CPh) 6317 (brq 1 C 1J(13C11B) = 342 Hz C7Ph) 5307 (t 4-C 1J(14N13C) = 31 Hz

[Et4N]+) 4632 (brq 1-C 1J(13C11B) = 342 Hz C8H) 768 (s 4-C [Et4N]+) ppm

References

1 R K Harris E D Becker S M Cabral de Menezes R Goodfellow P Granger Pure Appl Chem 2001 73 1795ndash1818

2 G R Fulmer A J M Miller N H Sherden H E Gottlieb A Nudelman B M Stoltz J E Bercaw K I Goldberg Organometallics 2010 29 2176ndash2179

3 (a) D C Finster W C Hutton R N Grimes J Am Chem Soc 1980 102 400ndash401 (b) I J Colquhoun W McFarlane J Chem Soc Dalton Trans 1981 2014ndash2016

4 (a) T L Venable W C Hutton R N Grimes J Am Chem Soc 1982 104 4716ndash4717 (b) T L Venable W C Hutton R N Grimes J Am Chem Soc 1984 106 29ndash37

5 W L F Armarego C L L Chai Purification of Laboratory Chemicals 5 ed Butterworth-Heinemann (Elsevier) 2003

6 D S Wilbur M-K Chyan D K Hamlin B B Kegley R Risler P M Pathare J Quinn R L Vessella C Foulon M Zalutsky T J Wedge M F Hawthorne Bioconjugate Chem 2004 15 203ndash223

7 M F Hawthorne T D Andrews P M Garrett F P Olsen M Reintjes F N Tebbe L F Warren P A Wegner D C Young Inorg Synth 1967 10 91ndash118

8 A S Batsanov M A Fox J A K Howard A K Hughes A L Johnson S J Martindale Acta Crystallogr 2003 C59 o74ndasho76

9 K O Christe W W Wilson R D Wilson R Bau J A Feng J Am Chem Soc 1990 112 7619ndash7625

10 W Kohn L J Sham Phys Rev A 1965 140 1133ndash1138 11 (a) A D Becke Phys Rev A 1988 38 3098ndash3100 (b) A D Becke J Chem Phys 1993 98

5648ndash5652 (c) C Lee W Yang R G Parr Phys Rev B 1988 37 785ndash789 12 M J Frisch G W Trucks H B Schlegel G E Scuseria M A Robb J R Cheeseman V

Barone B Mennucci G A Petersson H Nakatsuji M Caricato X Xi H P Hratchian A F Izmaylov J Bloino G Zheng J L Sonnenberg M Hada M Ehara K Toyota R Fukuda J Hasegawa M Ishida T Nakajima Y Honda O Kitao H Nakai T Vreven J J A Montgomery J E Peralta M B F Ogliaro J J Heyd E Brothers K N Kudin V N Staroverov R Kobayashi J Normand K Raghavachari A Rendell J C Burant S S Iyengar J Tomasi M Cossi N Rega J M Millam M Klene J E Knox J B Cross V Bakken C

20

Adamo J Jaramillo R Gomperts R E Stratmann O Yazyev A J Austin R Cammi C Pomelli J W Ochterski R L Martin K Morokuma V G Zakrzewski G A Voth P Salvador J J Dannenberg S Dapprich A D Daniels Ouml Farkas J B Foresman J V Ortiz J Cioslowski D J Fox Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA 2009

13 J C Rienstra-Kiracofe G S Tschumper H F Schaefer III S Nandi G B Ellison Chem Rev 2002 102 231ndash282

14 K Wolinski J F Hinton P Pulay J Am Chem Soc 1990 112 8251ndash8260 15 J D Kennedy in Multinuclear NMR (Ed J Mason) Plenum Press New York 1987 p 221 16 S Berger S Braun H-O Kalinowski NMR Spectroscopy of the Non-Metallic Elements John

Wiley amp Sons Ltd Chichester England 1997 17 (a) G M Sheldrick Acta Crystallogr 2008 A64 112ndash122 (b) G M Sheldrick SHELXS-97

Program for Crystal Structure Solution Universitaumlt Goumlttingen 1997 18 G M Sheldrick SHELXT Program for Crystal Structure Solution Universitaumlt Goumlttingen

2014 19 G M Sheldrick SHELXL-97 Program for Crystal Structure Refinement Universitaumlt

Goumlttingen 1997 20 C B Huumlbschle G M Sheldrick B Dittrich J Appl Crystallogr 2011 44 1281ndash1284 21 K Brandenburg Diamond 422 Crystal Impact GbR Bonn Germany 1997-2016

Page 14: Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

14

[Me4N]3 1H NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (qt 1-H 1J(11B1H) = 1288 Hz 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250

(s 4-H B4+57+11H ) 226 (s 2-H B3+6H) ppm 1H11B NMR (50013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (t 1-H 2J(19F1H) = 631 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 1H19F NMR (40013 MHz CD3CN) δ = 412 (s 1-C C2H) 307 (t 12-H 2J(14N1H) = 06 Hz

[N(CH3)4]+) 279 (q 1-H 1J(11B1H) = 1288 Hz) 266 (s 2-H B8+10H) 250 (s 4-H B4+57+11H)

226 (s 2-H B3+6H) ppm 11B NMR (16046 MHz CD3CN) [DFT calculations] δ = 31 [ndash04] (dt 1-B 1J(19F11B) = 769 Hz 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 [ndash82] (d 2-B 1J(11B1H) = 1537 Hz B8+10) ndash111

[ndash164] (d 2-B 1J(11B1H) = 1682Hz B7+11) ndash127 [ndash128] (d 2-B 1J(11B1H) = overlapped B4+5)

ndash134 [ndash176] (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s

1-B B9) ppm 11B1H NMR (16046 MHz CD3CN) δ = 31 [ndash04] (t 1-B 1J(19F11B) = 769 Hz HBF2-Cluster)

ndash60 [ndash82] (s 2-B B8+10) ndash111 [ndash 164] (s 2-B B7+11) ndash127 [ndash128] (s 2-B B4+5) ndash134

[ndash176] (s 2-B B3+6) ndash148 [+22] (s 1-B B12) ndash167 [+45] (s 1-B B9) ppm 11B19F NMR (16046 MHz CD3CN) δ = 31 (d 1-B 1J(11B1H) = 1288 Hz HBF2-Cluster) ndash60 (d

2-B 1J(11B1H) = 1537 Hz B8+10) ndash111 (d 2-B 1J(11B1H) = 1682 Hz B7+11) ndash127 (d 2-B 1J(11B1H) = overlapped B4+5) ndash134 (d 2-B 1J(11B1H) = overlapped B3+6) ndash148 (s 1-B B12)

ndash167 (s 1-B B9) ppm 13C1H NMR (12576 MHz CD3CN) δ = 7697 (q 1-C 1J(13C11B) = 505 Hz C1BHF2) 579 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 13C1H11B NMR (7548 MHz CD3CN) δ = 7710 (t 1-C 2J(19F13C) = 379 Hz C1BHF2) 5795 (s

1-C C2) 5620 (t 4-C 2J(14N13C) = 36 Hz [Me4N]+) ppm 19F NMR (37649 MHz CD3CN) δ = ndash15483 (qd 2-F 1J(19F11B) = 769 Hz 2J(19F1H) = 631 Hz)

ppm 19F1H NMR (37675 MHz CD3CN) δ = ndash15483 (q 2-F 1J(19F11B) = 769 Hz) ppm 19F11B NMR (37649 MHz CD3CN) δ = ndash15483 (d 2-F 2J(19F1H) = 631 Hz) ppm

15

Figure S9 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3) the signal of the BHF2 unit is marked with asterisks

Figure S10 11B and 11B1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

16

Figure S11 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3)

Figure S12 19F and 19F1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

17

IR (ATR) 120584 = 3077 (w CClusterminusH) 3072 (vw CClusterminusH) 2644-2505 (m BminusH) 2340 (w BminusH) 2187

(w BminusH) cmminus1

Raman 120584 = 2675-2552 (s BminusH) 2350 (w BminusH) 2191 (w BminusH) 951 (m sh BminusF) 220 (m sh

BminusI) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 3 (C2H10B11F2I2)minus 442 (13) 443 (37) 444 (74) 445

(100) 446 (74) 447 (31) found 442 (13) 443 (38) 444 (73) 445 (100) 446 (80) 447 (29)

Elemental analysis calcd () for C6H22B11F2I2N (51897) C 1389 H 427 N 270 found C 1404 H

435 N 323

Figure S13 IR and Raman spectrum of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Et4N][56-I2-nido-78-C2B9H10] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 237 (s 2-H

B9+11H) 218 (s 2-H C7+8H) 180 (s 2-H B2+4H) 176 (s 1-H B3H) 122 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 096 (s 1-H B1H) 094 (d 1-H 3J(1H1H) = 74 Hz

B2H) 071 (s 1 H B10H) ndash213 (t 1 H 2J(1H1Hmicro) = 99 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash94 (d 2-B 1J(11B 1H) = 1419 Hz B9+11) ndash169 (d 1-B 1J(11B 1H) = 1673 Hz) ndash210 (d 2-B 1J(11B1H) = 1571 Hz B2+4) ndash243 (s 2-B B5+6) ndash279 (dd

18

1-B 1J(11B1H) = 1324 Hz 1J(11B1Hmicro) = 393 Hz B10) ndash337 (d 1-B 1J(11B1H) = 1471 Hz

B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 531 (t 4-C 1J(14N13C) = 3 Hz [NEt4]+) 427 (brq 2-C 1J(13C11B) = 346 Hz C7+8 ) 76 (s 4-C [NEt4]+) ppm

[Et4N][7-Me-nido-78-C2B9H11] A 100 mL glass tube equipped with a magnetic stirring bar was

charged with 1-Me-12-dicarba-closo-dodecaborane (0250 g 158 mmol) 4 equivalents of anhydrous

[Me4N]F (0590 g 632 mmol) and dry THF (15 mL) under an argon atmosphere The suspension was

stirred at room temperature for 24 h The reaction mixture was taken up into ice-cold water and the

residual THF was removed using a rotary evaporator A solid separated during removal of the THF that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N]+ salts during

the next step An aqueous solution of [Et4N]Cl (261 g 1580 mmol) was added to the clear solution and

then a colourless precipitate was formed The solid was isolated by filtration through a fine glass frit

and dried in a vacuum overnight Yield of 0259 g [Et4N][7-Me-nido-78-C2B9H11] (093 mmol 591)

[Et4N][7-Me-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 166 (s 1-H

C8H) 188 (s 1-H B9H) 179 (s 1-H B11H) 161 (s 1-H B3H) 136 (s 3-H C7CH3) 133 (s 1-

H B2H or B6H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 111 (s 2-H

B4H+B2H or B6H) 103 (s 1-H B5H) 043 (s 1-H B1H) -004 (s 1-H B10H) ndash272 (m 1-H

BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash102 (d 1-B 1J(11B1H) = overlapped B11) ndash111 (d 1-B 1J(11B1H) = overlapped B9) ndash135 (d 1-B 1J(11B1H) = 1561 Hz B3) ndash180 (d 2-B 1J(11B1H) =

overlapped B2+B6) ndash189 (d 1-B 1J(11B1H) = overlapped B5) ndash225 (d 1-B 1J(11B1H) = 1475

Hz) ndash338 (dd 1-B 1J(11B1H) = 1284 Hz 1J(11B1Hmicro) = 397 Hz B10) ndash371 (d 1-B 1J(11B1H) =

1377 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5497 (brq 1-C 1J(13C11B) = 348 Hz C7CH3) 5308 (t 4-

C 1J(14N13C) = 31 Hz [Et4N]+) 4955 (brq 1-C 1J(13C11B) = 348 Hz C8H) 2548 (s 1-C C7CH3)

769 (s 4-C [Et4N]+) ppm

[Et4N][7-Ph-nido-78-C2B9H11] The reaction was performed as outlined for the preparation of [Et4N]4

1-Ph-12-dicarba-closo-dodecaborane (0300 g 136 mmol) [Me4N]F (0509 g 545 mmol) [Et4N]Cl

(225 g 1360 mmol) and THF (20 mL) were employed as starting materials Yield of 0254 g [Et4N][1-

Ph-nido-78-C2B9H11] (075 mmol 550)

[Et4N][1-Ph-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 721 (m 2-H PhH) 713 (m 2-H PhH) 704 (m 1-H

PhH) 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 228 (s 1-H C8H) 207 (s 2-H B9+11H) 177 (s

19

1-H B3H) 172 (s 1-H B2H) 123 (s 3-H B4+5+6H) 119 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 065 (s 1-H B1H) 015 (s 1-H B10H) ndash246 (s 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash88 (d 1-B 1J(11B1H) = 1386 Hz B11) ndash104 (d 1-B 1J(11B1H) = 1367 Hz B9) ndash137 (d 1-B 1J(11B1H) = 1594 Hz B3) ndash169 (d 1-B 1J(11B1H) =

overlapped B5) ndash181 (d 1-B 1J(11B1H) = overlapped B6) ndash198 (d 1-B 1J(11B1H) = 1489 Hz

B2) ndash227 (d 1-B 1J(11B1H) = 1507 Hz B4) ndash329 (dd 1-B 1J(11B1H) = 1334 Hz 1J(11B1Hmicro) =

394 Hz B10) ndash361 (d 1-B 1J(11B1H) = 1422 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 1467 (s 1-C CPh) 12845 (s 2-C CPh) 12757 (s 2-C CPh)

12565 (s 1-C CPh) 6317 (brq 1 C 1J(13C11B) = 342 Hz C7Ph) 5307 (t 4-C 1J(14N13C) = 31 Hz

[Et4N]+) 4632 (brq 1-C 1J(13C11B) = 342 Hz C8H) 768 (s 4-C [Et4N]+) ppm

References

1 R K Harris E D Becker S M Cabral de Menezes R Goodfellow P Granger Pure Appl Chem 2001 73 1795ndash1818

2 G R Fulmer A J M Miller N H Sherden H E Gottlieb A Nudelman B M Stoltz J E Bercaw K I Goldberg Organometallics 2010 29 2176ndash2179

3 (a) D C Finster W C Hutton R N Grimes J Am Chem Soc 1980 102 400ndash401 (b) I J Colquhoun W McFarlane J Chem Soc Dalton Trans 1981 2014ndash2016

4 (a) T L Venable W C Hutton R N Grimes J Am Chem Soc 1982 104 4716ndash4717 (b) T L Venable W C Hutton R N Grimes J Am Chem Soc 1984 106 29ndash37

5 W L F Armarego C L L Chai Purification of Laboratory Chemicals 5 ed Butterworth-Heinemann (Elsevier) 2003

6 D S Wilbur M-K Chyan D K Hamlin B B Kegley R Risler P M Pathare J Quinn R L Vessella C Foulon M Zalutsky T J Wedge M F Hawthorne Bioconjugate Chem 2004 15 203ndash223

7 M F Hawthorne T D Andrews P M Garrett F P Olsen M Reintjes F N Tebbe L F Warren P A Wegner D C Young Inorg Synth 1967 10 91ndash118

8 A S Batsanov M A Fox J A K Howard A K Hughes A L Johnson S J Martindale Acta Crystallogr 2003 C59 o74ndasho76

9 K O Christe W W Wilson R D Wilson R Bau J A Feng J Am Chem Soc 1990 112 7619ndash7625

10 W Kohn L J Sham Phys Rev A 1965 140 1133ndash1138 11 (a) A D Becke Phys Rev A 1988 38 3098ndash3100 (b) A D Becke J Chem Phys 1993 98

5648ndash5652 (c) C Lee W Yang R G Parr Phys Rev B 1988 37 785ndash789 12 M J Frisch G W Trucks H B Schlegel G E Scuseria M A Robb J R Cheeseman V

Barone B Mennucci G A Petersson H Nakatsuji M Caricato X Xi H P Hratchian A F Izmaylov J Bloino G Zheng J L Sonnenberg M Hada M Ehara K Toyota R Fukuda J Hasegawa M Ishida T Nakajima Y Honda O Kitao H Nakai T Vreven J J A Montgomery J E Peralta M B F Ogliaro J J Heyd E Brothers K N Kudin V N Staroverov R Kobayashi J Normand K Raghavachari A Rendell J C Burant S S Iyengar J Tomasi M Cossi N Rega J M Millam M Klene J E Knox J B Cross V Bakken C

20

Adamo J Jaramillo R Gomperts R E Stratmann O Yazyev A J Austin R Cammi C Pomelli J W Ochterski R L Martin K Morokuma V G Zakrzewski G A Voth P Salvador J J Dannenberg S Dapprich A D Daniels Ouml Farkas J B Foresman J V Ortiz J Cioslowski D J Fox Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA 2009

13 J C Rienstra-Kiracofe G S Tschumper H F Schaefer III S Nandi G B Ellison Chem Rev 2002 102 231ndash282

14 K Wolinski J F Hinton P Pulay J Am Chem Soc 1990 112 8251ndash8260 15 J D Kennedy in Multinuclear NMR (Ed J Mason) Plenum Press New York 1987 p 221 16 S Berger S Braun H-O Kalinowski NMR Spectroscopy of the Non-Metallic Elements John

Wiley amp Sons Ltd Chichester England 1997 17 (a) G M Sheldrick Acta Crystallogr 2008 A64 112ndash122 (b) G M Sheldrick SHELXS-97

Program for Crystal Structure Solution Universitaumlt Goumlttingen 1997 18 G M Sheldrick SHELXT Program for Crystal Structure Solution Universitaumlt Goumlttingen

2014 19 G M Sheldrick SHELXL-97 Program for Crystal Structure Refinement Universitaumlt

Goumlttingen 1997 20 C B Huumlbschle G M Sheldrick B Dittrich J Appl Crystallogr 2011 44 1281ndash1284 21 K Brandenburg Diamond 422 Crystal Impact GbR Bonn Germany 1997-2016

Page 15: Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

15

Figure S9 1H 1H11B and 1H19F NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3) the signal of the BHF2 unit is marked with asterisks

Figure S10 11B and 11B1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

16

Figure S11 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3)

Figure S12 19F and 19F1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

17

IR (ATR) 120584 = 3077 (w CClusterminusH) 3072 (vw CClusterminusH) 2644-2505 (m BminusH) 2340 (w BminusH) 2187

(w BminusH) cmminus1

Raman 120584 = 2675-2552 (s BminusH) 2350 (w BminusH) 2191 (w BminusH) 951 (m sh BminusF) 220 (m sh

BminusI) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 3 (C2H10B11F2I2)minus 442 (13) 443 (37) 444 (74) 445

(100) 446 (74) 447 (31) found 442 (13) 443 (38) 444 (73) 445 (100) 446 (80) 447 (29)

Elemental analysis calcd () for C6H22B11F2I2N (51897) C 1389 H 427 N 270 found C 1404 H

435 N 323

Figure S13 IR and Raman spectrum of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Et4N][56-I2-nido-78-C2B9H10] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 237 (s 2-H

B9+11H) 218 (s 2-H C7+8H) 180 (s 2-H B2+4H) 176 (s 1-H B3H) 122 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 096 (s 1-H B1H) 094 (d 1-H 3J(1H1H) = 74 Hz

B2H) 071 (s 1 H B10H) ndash213 (t 1 H 2J(1H1Hmicro) = 99 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash94 (d 2-B 1J(11B 1H) = 1419 Hz B9+11) ndash169 (d 1-B 1J(11B 1H) = 1673 Hz) ndash210 (d 2-B 1J(11B1H) = 1571 Hz B2+4) ndash243 (s 2-B B5+6) ndash279 (dd

18

1-B 1J(11B1H) = 1324 Hz 1J(11B1Hmicro) = 393 Hz B10) ndash337 (d 1-B 1J(11B1H) = 1471 Hz

B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 531 (t 4-C 1J(14N13C) = 3 Hz [NEt4]+) 427 (brq 2-C 1J(13C11B) = 346 Hz C7+8 ) 76 (s 4-C [NEt4]+) ppm

[Et4N][7-Me-nido-78-C2B9H11] A 100 mL glass tube equipped with a magnetic stirring bar was

charged with 1-Me-12-dicarba-closo-dodecaborane (0250 g 158 mmol) 4 equivalents of anhydrous

[Me4N]F (0590 g 632 mmol) and dry THF (15 mL) under an argon atmosphere The suspension was

stirred at room temperature for 24 h The reaction mixture was taken up into ice-cold water and the

residual THF was removed using a rotary evaporator A solid separated during removal of the THF that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N]+ salts during

the next step An aqueous solution of [Et4N]Cl (261 g 1580 mmol) was added to the clear solution and

then a colourless precipitate was formed The solid was isolated by filtration through a fine glass frit

and dried in a vacuum overnight Yield of 0259 g [Et4N][7-Me-nido-78-C2B9H11] (093 mmol 591)

[Et4N][7-Me-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 166 (s 1-H

C8H) 188 (s 1-H B9H) 179 (s 1-H B11H) 161 (s 1-H B3H) 136 (s 3-H C7CH3) 133 (s 1-

H B2H or B6H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 111 (s 2-H

B4H+B2H or B6H) 103 (s 1-H B5H) 043 (s 1-H B1H) -004 (s 1-H B10H) ndash272 (m 1-H

BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash102 (d 1-B 1J(11B1H) = overlapped B11) ndash111 (d 1-B 1J(11B1H) = overlapped B9) ndash135 (d 1-B 1J(11B1H) = 1561 Hz B3) ndash180 (d 2-B 1J(11B1H) =

overlapped B2+B6) ndash189 (d 1-B 1J(11B1H) = overlapped B5) ndash225 (d 1-B 1J(11B1H) = 1475

Hz) ndash338 (dd 1-B 1J(11B1H) = 1284 Hz 1J(11B1Hmicro) = 397 Hz B10) ndash371 (d 1-B 1J(11B1H) =

1377 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5497 (brq 1-C 1J(13C11B) = 348 Hz C7CH3) 5308 (t 4-

C 1J(14N13C) = 31 Hz [Et4N]+) 4955 (brq 1-C 1J(13C11B) = 348 Hz C8H) 2548 (s 1-C C7CH3)

769 (s 4-C [Et4N]+) ppm

[Et4N][7-Ph-nido-78-C2B9H11] The reaction was performed as outlined for the preparation of [Et4N]4

1-Ph-12-dicarba-closo-dodecaborane (0300 g 136 mmol) [Me4N]F (0509 g 545 mmol) [Et4N]Cl

(225 g 1360 mmol) and THF (20 mL) were employed as starting materials Yield of 0254 g [Et4N][1-

Ph-nido-78-C2B9H11] (075 mmol 550)

[Et4N][1-Ph-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 721 (m 2-H PhH) 713 (m 2-H PhH) 704 (m 1-H

PhH) 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 228 (s 1-H C8H) 207 (s 2-H B9+11H) 177 (s

19

1-H B3H) 172 (s 1-H B2H) 123 (s 3-H B4+5+6H) 119 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 065 (s 1-H B1H) 015 (s 1-H B10H) ndash246 (s 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash88 (d 1-B 1J(11B1H) = 1386 Hz B11) ndash104 (d 1-B 1J(11B1H) = 1367 Hz B9) ndash137 (d 1-B 1J(11B1H) = 1594 Hz B3) ndash169 (d 1-B 1J(11B1H) =

overlapped B5) ndash181 (d 1-B 1J(11B1H) = overlapped B6) ndash198 (d 1-B 1J(11B1H) = 1489 Hz

B2) ndash227 (d 1-B 1J(11B1H) = 1507 Hz B4) ndash329 (dd 1-B 1J(11B1H) = 1334 Hz 1J(11B1Hmicro) =

394 Hz B10) ndash361 (d 1-B 1J(11B1H) = 1422 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 1467 (s 1-C CPh) 12845 (s 2-C CPh) 12757 (s 2-C CPh)

12565 (s 1-C CPh) 6317 (brq 1 C 1J(13C11B) = 342 Hz C7Ph) 5307 (t 4-C 1J(14N13C) = 31 Hz

[Et4N]+) 4632 (brq 1-C 1J(13C11B) = 342 Hz C8H) 768 (s 4-C [Et4N]+) ppm

References

1 R K Harris E D Becker S M Cabral de Menezes R Goodfellow P Granger Pure Appl Chem 2001 73 1795ndash1818

2 G R Fulmer A J M Miller N H Sherden H E Gottlieb A Nudelman B M Stoltz J E Bercaw K I Goldberg Organometallics 2010 29 2176ndash2179

3 (a) D C Finster W C Hutton R N Grimes J Am Chem Soc 1980 102 400ndash401 (b) I J Colquhoun W McFarlane J Chem Soc Dalton Trans 1981 2014ndash2016

4 (a) T L Venable W C Hutton R N Grimes J Am Chem Soc 1982 104 4716ndash4717 (b) T L Venable W C Hutton R N Grimes J Am Chem Soc 1984 106 29ndash37

5 W L F Armarego C L L Chai Purification of Laboratory Chemicals 5 ed Butterworth-Heinemann (Elsevier) 2003

6 D S Wilbur M-K Chyan D K Hamlin B B Kegley R Risler P M Pathare J Quinn R L Vessella C Foulon M Zalutsky T J Wedge M F Hawthorne Bioconjugate Chem 2004 15 203ndash223

7 M F Hawthorne T D Andrews P M Garrett F P Olsen M Reintjes F N Tebbe L F Warren P A Wegner D C Young Inorg Synth 1967 10 91ndash118

8 A S Batsanov M A Fox J A K Howard A K Hughes A L Johnson S J Martindale Acta Crystallogr 2003 C59 o74ndasho76

9 K O Christe W W Wilson R D Wilson R Bau J A Feng J Am Chem Soc 1990 112 7619ndash7625

10 W Kohn L J Sham Phys Rev A 1965 140 1133ndash1138 11 (a) A D Becke Phys Rev A 1988 38 3098ndash3100 (b) A D Becke J Chem Phys 1993 98

5648ndash5652 (c) C Lee W Yang R G Parr Phys Rev B 1988 37 785ndash789 12 M J Frisch G W Trucks H B Schlegel G E Scuseria M A Robb J R Cheeseman V

Barone B Mennucci G A Petersson H Nakatsuji M Caricato X Xi H P Hratchian A F Izmaylov J Bloino G Zheng J L Sonnenberg M Hada M Ehara K Toyota R Fukuda J Hasegawa M Ishida T Nakajima Y Honda O Kitao H Nakai T Vreven J J A Montgomery J E Peralta M B F Ogliaro J J Heyd E Brothers K N Kudin V N Staroverov R Kobayashi J Normand K Raghavachari A Rendell J C Burant S S Iyengar J Tomasi M Cossi N Rega J M Millam M Klene J E Knox J B Cross V Bakken C

20

Adamo J Jaramillo R Gomperts R E Stratmann O Yazyev A J Austin R Cammi C Pomelli J W Ochterski R L Martin K Morokuma V G Zakrzewski G A Voth P Salvador J J Dannenberg S Dapprich A D Daniels Ouml Farkas J B Foresman J V Ortiz J Cioslowski D J Fox Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA 2009

13 J C Rienstra-Kiracofe G S Tschumper H F Schaefer III S Nandi G B Ellison Chem Rev 2002 102 231ndash282

14 K Wolinski J F Hinton P Pulay J Am Chem Soc 1990 112 8251ndash8260 15 J D Kennedy in Multinuclear NMR (Ed J Mason) Plenum Press New York 1987 p 221 16 S Berger S Braun H-O Kalinowski NMR Spectroscopy of the Non-Metallic Elements John

Wiley amp Sons Ltd Chichester England 1997 17 (a) G M Sheldrick Acta Crystallogr 2008 A64 112ndash122 (b) G M Sheldrick SHELXS-97

Program for Crystal Structure Solution Universitaumlt Goumlttingen 1997 18 G M Sheldrick SHELXT Program for Crystal Structure Solution Universitaumlt Goumlttingen

2014 19 G M Sheldrick SHELXL-97 Program for Crystal Structure Refinement Universitaumlt

Goumlttingen 1997 20 C B Huumlbschle G M Sheldrick B Dittrich J Appl Crystallogr 2011 44 1281ndash1284 21 K Brandenburg Diamond 422 Crystal Impact GbR Bonn Germany 1997-2016

Page 16: Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

16

Figure S11 13C1H11B and 13C1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9]

([Me4N]3)

Figure S12 19F and 19F1H NMR spectra of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

17

IR (ATR) 120584 = 3077 (w CClusterminusH) 3072 (vw CClusterminusH) 2644-2505 (m BminusH) 2340 (w BminusH) 2187

(w BminusH) cmminus1

Raman 120584 = 2675-2552 (s BminusH) 2350 (w BminusH) 2191 (w BminusH) 951 (m sh BminusF) 220 (m sh

BminusI) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 3 (C2H10B11F2I2)minus 442 (13) 443 (37) 444 (74) 445

(100) 446 (74) 447 (31) found 442 (13) 443 (38) 444 (73) 445 (100) 446 (80) 447 (29)

Elemental analysis calcd () for C6H22B11F2I2N (51897) C 1389 H 427 N 270 found C 1404 H

435 N 323

Figure S13 IR and Raman spectrum of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Et4N][56-I2-nido-78-C2B9H10] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 237 (s 2-H

B9+11H) 218 (s 2-H C7+8H) 180 (s 2-H B2+4H) 176 (s 1-H B3H) 122 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 096 (s 1-H B1H) 094 (d 1-H 3J(1H1H) = 74 Hz

B2H) 071 (s 1 H B10H) ndash213 (t 1 H 2J(1H1Hmicro) = 99 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash94 (d 2-B 1J(11B 1H) = 1419 Hz B9+11) ndash169 (d 1-B 1J(11B 1H) = 1673 Hz) ndash210 (d 2-B 1J(11B1H) = 1571 Hz B2+4) ndash243 (s 2-B B5+6) ndash279 (dd

18

1-B 1J(11B1H) = 1324 Hz 1J(11B1Hmicro) = 393 Hz B10) ndash337 (d 1-B 1J(11B1H) = 1471 Hz

B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 531 (t 4-C 1J(14N13C) = 3 Hz [NEt4]+) 427 (brq 2-C 1J(13C11B) = 346 Hz C7+8 ) 76 (s 4-C [NEt4]+) ppm

[Et4N][7-Me-nido-78-C2B9H11] A 100 mL glass tube equipped with a magnetic stirring bar was

charged with 1-Me-12-dicarba-closo-dodecaborane (0250 g 158 mmol) 4 equivalents of anhydrous

[Me4N]F (0590 g 632 mmol) and dry THF (15 mL) under an argon atmosphere The suspension was

stirred at room temperature for 24 h The reaction mixture was taken up into ice-cold water and the

residual THF was removed using a rotary evaporator A solid separated during removal of the THF that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N]+ salts during

the next step An aqueous solution of [Et4N]Cl (261 g 1580 mmol) was added to the clear solution and

then a colourless precipitate was formed The solid was isolated by filtration through a fine glass frit

and dried in a vacuum overnight Yield of 0259 g [Et4N][7-Me-nido-78-C2B9H11] (093 mmol 591)

[Et4N][7-Me-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 166 (s 1-H

C8H) 188 (s 1-H B9H) 179 (s 1-H B11H) 161 (s 1-H B3H) 136 (s 3-H C7CH3) 133 (s 1-

H B2H or B6H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 111 (s 2-H

B4H+B2H or B6H) 103 (s 1-H B5H) 043 (s 1-H B1H) -004 (s 1-H B10H) ndash272 (m 1-H

BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash102 (d 1-B 1J(11B1H) = overlapped B11) ndash111 (d 1-B 1J(11B1H) = overlapped B9) ndash135 (d 1-B 1J(11B1H) = 1561 Hz B3) ndash180 (d 2-B 1J(11B1H) =

overlapped B2+B6) ndash189 (d 1-B 1J(11B1H) = overlapped B5) ndash225 (d 1-B 1J(11B1H) = 1475

Hz) ndash338 (dd 1-B 1J(11B1H) = 1284 Hz 1J(11B1Hmicro) = 397 Hz B10) ndash371 (d 1-B 1J(11B1H) =

1377 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5497 (brq 1-C 1J(13C11B) = 348 Hz C7CH3) 5308 (t 4-

C 1J(14N13C) = 31 Hz [Et4N]+) 4955 (brq 1-C 1J(13C11B) = 348 Hz C8H) 2548 (s 1-C C7CH3)

769 (s 4-C [Et4N]+) ppm

[Et4N][7-Ph-nido-78-C2B9H11] The reaction was performed as outlined for the preparation of [Et4N]4

1-Ph-12-dicarba-closo-dodecaborane (0300 g 136 mmol) [Me4N]F (0509 g 545 mmol) [Et4N]Cl

(225 g 1360 mmol) and THF (20 mL) were employed as starting materials Yield of 0254 g [Et4N][1-

Ph-nido-78-C2B9H11] (075 mmol 550)

[Et4N][1-Ph-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 721 (m 2-H PhH) 713 (m 2-H PhH) 704 (m 1-H

PhH) 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 228 (s 1-H C8H) 207 (s 2-H B9+11H) 177 (s

19

1-H B3H) 172 (s 1-H B2H) 123 (s 3-H B4+5+6H) 119 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 065 (s 1-H B1H) 015 (s 1-H B10H) ndash246 (s 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash88 (d 1-B 1J(11B1H) = 1386 Hz B11) ndash104 (d 1-B 1J(11B1H) = 1367 Hz B9) ndash137 (d 1-B 1J(11B1H) = 1594 Hz B3) ndash169 (d 1-B 1J(11B1H) =

overlapped B5) ndash181 (d 1-B 1J(11B1H) = overlapped B6) ndash198 (d 1-B 1J(11B1H) = 1489 Hz

B2) ndash227 (d 1-B 1J(11B1H) = 1507 Hz B4) ndash329 (dd 1-B 1J(11B1H) = 1334 Hz 1J(11B1Hmicro) =

394 Hz B10) ndash361 (d 1-B 1J(11B1H) = 1422 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 1467 (s 1-C CPh) 12845 (s 2-C CPh) 12757 (s 2-C CPh)

12565 (s 1-C CPh) 6317 (brq 1 C 1J(13C11B) = 342 Hz C7Ph) 5307 (t 4-C 1J(14N13C) = 31 Hz

[Et4N]+) 4632 (brq 1-C 1J(13C11B) = 342 Hz C8H) 768 (s 4-C [Et4N]+) ppm

References

1 R K Harris E D Becker S M Cabral de Menezes R Goodfellow P Granger Pure Appl Chem 2001 73 1795ndash1818

2 G R Fulmer A J M Miller N H Sherden H E Gottlieb A Nudelman B M Stoltz J E Bercaw K I Goldberg Organometallics 2010 29 2176ndash2179

3 (a) D C Finster W C Hutton R N Grimes J Am Chem Soc 1980 102 400ndash401 (b) I J Colquhoun W McFarlane J Chem Soc Dalton Trans 1981 2014ndash2016

4 (a) T L Venable W C Hutton R N Grimes J Am Chem Soc 1982 104 4716ndash4717 (b) T L Venable W C Hutton R N Grimes J Am Chem Soc 1984 106 29ndash37

5 W L F Armarego C L L Chai Purification of Laboratory Chemicals 5 ed Butterworth-Heinemann (Elsevier) 2003

6 D S Wilbur M-K Chyan D K Hamlin B B Kegley R Risler P M Pathare J Quinn R L Vessella C Foulon M Zalutsky T J Wedge M F Hawthorne Bioconjugate Chem 2004 15 203ndash223

7 M F Hawthorne T D Andrews P M Garrett F P Olsen M Reintjes F N Tebbe L F Warren P A Wegner D C Young Inorg Synth 1967 10 91ndash118

8 A S Batsanov M A Fox J A K Howard A K Hughes A L Johnson S J Martindale Acta Crystallogr 2003 C59 o74ndasho76

9 K O Christe W W Wilson R D Wilson R Bau J A Feng J Am Chem Soc 1990 112 7619ndash7625

10 W Kohn L J Sham Phys Rev A 1965 140 1133ndash1138 11 (a) A D Becke Phys Rev A 1988 38 3098ndash3100 (b) A D Becke J Chem Phys 1993 98

5648ndash5652 (c) C Lee W Yang R G Parr Phys Rev B 1988 37 785ndash789 12 M J Frisch G W Trucks H B Schlegel G E Scuseria M A Robb J R Cheeseman V

Barone B Mennucci G A Petersson H Nakatsuji M Caricato X Xi H P Hratchian A F Izmaylov J Bloino G Zheng J L Sonnenberg M Hada M Ehara K Toyota R Fukuda J Hasegawa M Ishida T Nakajima Y Honda O Kitao H Nakai T Vreven J J A Montgomery J E Peralta M B F Ogliaro J J Heyd E Brothers K N Kudin V N Staroverov R Kobayashi J Normand K Raghavachari A Rendell J C Burant S S Iyengar J Tomasi M Cossi N Rega J M Millam M Klene J E Knox J B Cross V Bakken C

20

Adamo J Jaramillo R Gomperts R E Stratmann O Yazyev A J Austin R Cammi C Pomelli J W Ochterski R L Martin K Morokuma V G Zakrzewski G A Voth P Salvador J J Dannenberg S Dapprich A D Daniels Ouml Farkas J B Foresman J V Ortiz J Cioslowski D J Fox Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA 2009

13 J C Rienstra-Kiracofe G S Tschumper H F Schaefer III S Nandi G B Ellison Chem Rev 2002 102 231ndash282

14 K Wolinski J F Hinton P Pulay J Am Chem Soc 1990 112 8251ndash8260 15 J D Kennedy in Multinuclear NMR (Ed J Mason) Plenum Press New York 1987 p 221 16 S Berger S Braun H-O Kalinowski NMR Spectroscopy of the Non-Metallic Elements John

Wiley amp Sons Ltd Chichester England 1997 17 (a) G M Sheldrick Acta Crystallogr 2008 A64 112ndash122 (b) G M Sheldrick SHELXS-97

Program for Crystal Structure Solution Universitaumlt Goumlttingen 1997 18 G M Sheldrick SHELXT Program for Crystal Structure Solution Universitaumlt Goumlttingen

2014 19 G M Sheldrick SHELXL-97 Program for Crystal Structure Refinement Universitaumlt

Goumlttingen 1997 20 C B Huumlbschle G M Sheldrick B Dittrich J Appl Crystallogr 2011 44 1281ndash1284 21 K Brandenburg Diamond 422 Crystal Impact GbR Bonn Germany 1997-2016

Page 17: Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

17

IR (ATR) 120584 = 3077 (w CClusterminusH) 3072 (vw CClusterminusH) 2644-2505 (m BminusH) 2340 (w BminusH) 2187

(w BminusH) cmminus1

Raman 120584 = 2675-2552 (s BminusH) 2350 (w BminusH) 2191 (w BminusH) 951 (m sh BminusF) 220 (m sh

BminusI) cmminus1

ESI-MS mz (isotopic abundance gt10) calcd for 3 (C2H10B11F2I2)minus 442 (13) 443 (37) 444 (74) 445

(100) 446 (74) 447 (31) found 442 (13) 443 (38) 444 (73) 445 (100) 446 (80) 447 (29)

Elemental analysis calcd () for C6H22B11F2I2N (51897) C 1389 H 427 N 270 found C 1404 H

435 N 323

Figure S13 IR and Raman spectrum of [Me4N][1-HF2B-912-I2-closo-12-C2B10H9] ([Me4N]3)

[Et4N][56-I2-nido-78-C2B9H10] 1H11B NMR (50013 MHz CD3CN) δ = 316 (q 8-H 3J(1H1H) = 74 Hz [NEt4]+) 237 (s 2-H

B9+11H) 218 (s 2-H C7+8H) 180 (s 2-H B2+4H) 176 (s 1-H B3H) 122 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 096 (s 1-H B1H) 094 (d 1-H 3J(1H1H) = 74 Hz

B2H) 071 (s 1 H B10H) ndash213 (t 1 H 2J(1H1Hmicro) = 99 Hz BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash94 (d 2-B 1J(11B 1H) = 1419 Hz B9+11) ndash169 (d 1-B 1J(11B 1H) = 1673 Hz) ndash210 (d 2-B 1J(11B1H) = 1571 Hz B2+4) ndash243 (s 2-B B5+6) ndash279 (dd

18

1-B 1J(11B1H) = 1324 Hz 1J(11B1Hmicro) = 393 Hz B10) ndash337 (d 1-B 1J(11B1H) = 1471 Hz

B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 531 (t 4-C 1J(14N13C) = 3 Hz [NEt4]+) 427 (brq 2-C 1J(13C11B) = 346 Hz C7+8 ) 76 (s 4-C [NEt4]+) ppm

[Et4N][7-Me-nido-78-C2B9H11] A 100 mL glass tube equipped with a magnetic stirring bar was

charged with 1-Me-12-dicarba-closo-dodecaborane (0250 g 158 mmol) 4 equivalents of anhydrous

[Me4N]F (0590 g 632 mmol) and dry THF (15 mL) under an argon atmosphere The suspension was

stirred at room temperature for 24 h The reaction mixture was taken up into ice-cold water and the

residual THF was removed using a rotary evaporator A solid separated during removal of the THF that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N]+ salts during

the next step An aqueous solution of [Et4N]Cl (261 g 1580 mmol) was added to the clear solution and

then a colourless precipitate was formed The solid was isolated by filtration through a fine glass frit

and dried in a vacuum overnight Yield of 0259 g [Et4N][7-Me-nido-78-C2B9H11] (093 mmol 591)

[Et4N][7-Me-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 166 (s 1-H

C8H) 188 (s 1-H B9H) 179 (s 1-H B11H) 161 (s 1-H B3H) 136 (s 3-H C7CH3) 133 (s 1-

H B2H or B6H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 111 (s 2-H

B4H+B2H or B6H) 103 (s 1-H B5H) 043 (s 1-H B1H) -004 (s 1-H B10H) ndash272 (m 1-H

BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash102 (d 1-B 1J(11B1H) = overlapped B11) ndash111 (d 1-B 1J(11B1H) = overlapped B9) ndash135 (d 1-B 1J(11B1H) = 1561 Hz B3) ndash180 (d 2-B 1J(11B1H) =

overlapped B2+B6) ndash189 (d 1-B 1J(11B1H) = overlapped B5) ndash225 (d 1-B 1J(11B1H) = 1475

Hz) ndash338 (dd 1-B 1J(11B1H) = 1284 Hz 1J(11B1Hmicro) = 397 Hz B10) ndash371 (d 1-B 1J(11B1H) =

1377 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5497 (brq 1-C 1J(13C11B) = 348 Hz C7CH3) 5308 (t 4-

C 1J(14N13C) = 31 Hz [Et4N]+) 4955 (brq 1-C 1J(13C11B) = 348 Hz C8H) 2548 (s 1-C C7CH3)

769 (s 4-C [Et4N]+) ppm

[Et4N][7-Ph-nido-78-C2B9H11] The reaction was performed as outlined for the preparation of [Et4N]4

1-Ph-12-dicarba-closo-dodecaborane (0300 g 136 mmol) [Me4N]F (0509 g 545 mmol) [Et4N]Cl

(225 g 1360 mmol) and THF (20 mL) were employed as starting materials Yield of 0254 g [Et4N][1-

Ph-nido-78-C2B9H11] (075 mmol 550)

[Et4N][1-Ph-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 721 (m 2-H PhH) 713 (m 2-H PhH) 704 (m 1-H

PhH) 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 228 (s 1-H C8H) 207 (s 2-H B9+11H) 177 (s

19

1-H B3H) 172 (s 1-H B2H) 123 (s 3-H B4+5+6H) 119 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 065 (s 1-H B1H) 015 (s 1-H B10H) ndash246 (s 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash88 (d 1-B 1J(11B1H) = 1386 Hz B11) ndash104 (d 1-B 1J(11B1H) = 1367 Hz B9) ndash137 (d 1-B 1J(11B1H) = 1594 Hz B3) ndash169 (d 1-B 1J(11B1H) =

overlapped B5) ndash181 (d 1-B 1J(11B1H) = overlapped B6) ndash198 (d 1-B 1J(11B1H) = 1489 Hz

B2) ndash227 (d 1-B 1J(11B1H) = 1507 Hz B4) ndash329 (dd 1-B 1J(11B1H) = 1334 Hz 1J(11B1Hmicro) =

394 Hz B10) ndash361 (d 1-B 1J(11B1H) = 1422 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 1467 (s 1-C CPh) 12845 (s 2-C CPh) 12757 (s 2-C CPh)

12565 (s 1-C CPh) 6317 (brq 1 C 1J(13C11B) = 342 Hz C7Ph) 5307 (t 4-C 1J(14N13C) = 31 Hz

[Et4N]+) 4632 (brq 1-C 1J(13C11B) = 342 Hz C8H) 768 (s 4-C [Et4N]+) ppm

References

1 R K Harris E D Becker S M Cabral de Menezes R Goodfellow P Granger Pure Appl Chem 2001 73 1795ndash1818

2 G R Fulmer A J M Miller N H Sherden H E Gottlieb A Nudelman B M Stoltz J E Bercaw K I Goldberg Organometallics 2010 29 2176ndash2179

3 (a) D C Finster W C Hutton R N Grimes J Am Chem Soc 1980 102 400ndash401 (b) I J Colquhoun W McFarlane J Chem Soc Dalton Trans 1981 2014ndash2016

4 (a) T L Venable W C Hutton R N Grimes J Am Chem Soc 1982 104 4716ndash4717 (b) T L Venable W C Hutton R N Grimes J Am Chem Soc 1984 106 29ndash37

5 W L F Armarego C L L Chai Purification of Laboratory Chemicals 5 ed Butterworth-Heinemann (Elsevier) 2003

6 D S Wilbur M-K Chyan D K Hamlin B B Kegley R Risler P M Pathare J Quinn R L Vessella C Foulon M Zalutsky T J Wedge M F Hawthorne Bioconjugate Chem 2004 15 203ndash223

7 M F Hawthorne T D Andrews P M Garrett F P Olsen M Reintjes F N Tebbe L F Warren P A Wegner D C Young Inorg Synth 1967 10 91ndash118

8 A S Batsanov M A Fox J A K Howard A K Hughes A L Johnson S J Martindale Acta Crystallogr 2003 C59 o74ndasho76

9 K O Christe W W Wilson R D Wilson R Bau J A Feng J Am Chem Soc 1990 112 7619ndash7625

10 W Kohn L J Sham Phys Rev A 1965 140 1133ndash1138 11 (a) A D Becke Phys Rev A 1988 38 3098ndash3100 (b) A D Becke J Chem Phys 1993 98

5648ndash5652 (c) C Lee W Yang R G Parr Phys Rev B 1988 37 785ndash789 12 M J Frisch G W Trucks H B Schlegel G E Scuseria M A Robb J R Cheeseman V

Barone B Mennucci G A Petersson H Nakatsuji M Caricato X Xi H P Hratchian A F Izmaylov J Bloino G Zheng J L Sonnenberg M Hada M Ehara K Toyota R Fukuda J Hasegawa M Ishida T Nakajima Y Honda O Kitao H Nakai T Vreven J J A Montgomery J E Peralta M B F Ogliaro J J Heyd E Brothers K N Kudin V N Staroverov R Kobayashi J Normand K Raghavachari A Rendell J C Burant S S Iyengar J Tomasi M Cossi N Rega J M Millam M Klene J E Knox J B Cross V Bakken C

20

Adamo J Jaramillo R Gomperts R E Stratmann O Yazyev A J Austin R Cammi C Pomelli J W Ochterski R L Martin K Morokuma V G Zakrzewski G A Voth P Salvador J J Dannenberg S Dapprich A D Daniels Ouml Farkas J B Foresman J V Ortiz J Cioslowski D J Fox Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA 2009

13 J C Rienstra-Kiracofe G S Tschumper H F Schaefer III S Nandi G B Ellison Chem Rev 2002 102 231ndash282

14 K Wolinski J F Hinton P Pulay J Am Chem Soc 1990 112 8251ndash8260 15 J D Kennedy in Multinuclear NMR (Ed J Mason) Plenum Press New York 1987 p 221 16 S Berger S Braun H-O Kalinowski NMR Spectroscopy of the Non-Metallic Elements John

Wiley amp Sons Ltd Chichester England 1997 17 (a) G M Sheldrick Acta Crystallogr 2008 A64 112ndash122 (b) G M Sheldrick SHELXS-97

Program for Crystal Structure Solution Universitaumlt Goumlttingen 1997 18 G M Sheldrick SHELXT Program for Crystal Structure Solution Universitaumlt Goumlttingen

2014 19 G M Sheldrick SHELXL-97 Program for Crystal Structure Refinement Universitaumlt

Goumlttingen 1997 20 C B Huumlbschle G M Sheldrick B Dittrich J Appl Crystallogr 2011 44 1281ndash1284 21 K Brandenburg Diamond 422 Crystal Impact GbR Bonn Germany 1997-2016

Page 18: Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

18

1-B 1J(11B1H) = 1324 Hz 1J(11B1Hmicro) = 393 Hz B10) ndash337 (d 1-B 1J(11B1H) = 1471 Hz

B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 531 (t 4-C 1J(14N13C) = 3 Hz [NEt4]+) 427 (brq 2-C 1J(13C11B) = 346 Hz C7+8 ) 76 (s 4-C [NEt4]+) ppm

[Et4N][7-Me-nido-78-C2B9H11] A 100 mL glass tube equipped with a magnetic stirring bar was

charged with 1-Me-12-dicarba-closo-dodecaborane (0250 g 158 mmol) 4 equivalents of anhydrous

[Me4N]F (0590 g 632 mmol) and dry THF (15 mL) under an argon atmosphere The suspension was

stirred at room temperature for 24 h The reaction mixture was taken up into ice-cold water and the

residual THF was removed using a rotary evaporator A solid separated during removal of the THF that

was redissolved by addition of a few drops of acetone to prevent co-precipitation of [Me4N]+ salts during

the next step An aqueous solution of [Et4N]Cl (261 g 1580 mmol) was added to the clear solution and

then a colourless precipitate was formed The solid was isolated by filtration through a fine glass frit

and dried in a vacuum overnight Yield of 0259 g [Et4N][7-Me-nido-78-C2B9H11] (093 mmol 591)

[Et4N][7-Me-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 166 (s 1-H

C8H) 188 (s 1-H B9H) 179 (s 1-H B11H) 161 (s 1-H B3H) 136 (s 3-H C7CH3) 133 (s 1-

H B2H or B6H) 121 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 111 (s 2-H

B4H+B2H or B6H) 103 (s 1-H B5H) 043 (s 1-H B1H) -004 (s 1-H B10H) ndash272 (m 1-H

BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash102 (d 1-B 1J(11B1H) = overlapped B11) ndash111 (d 1-B 1J(11B1H) = overlapped B9) ndash135 (d 1-B 1J(11B1H) = 1561 Hz B3) ndash180 (d 2-B 1J(11B1H) =

overlapped B2+B6) ndash189 (d 1-B 1J(11B1H) = overlapped B5) ndash225 (d 1-B 1J(11B1H) = 1475

Hz) ndash338 (dd 1-B 1J(11B1H) = 1284 Hz 1J(11B1Hmicro) = 397 Hz B10) ndash371 (d 1-B 1J(11B1H) =

1377 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 5497 (brq 1-C 1J(13C11B) = 348 Hz C7CH3) 5308 (t 4-

C 1J(14N13C) = 31 Hz [Et4N]+) 4955 (brq 1-C 1J(13C11B) = 348 Hz C8H) 2548 (s 1-C C7CH3)

769 (s 4-C [Et4N]+) ppm

[Et4N][7-Ph-nido-78-C2B9H11] The reaction was performed as outlined for the preparation of [Et4N]4

1-Ph-12-dicarba-closo-dodecaborane (0300 g 136 mmol) [Me4N]F (0509 g 545 mmol) [Et4N]Cl

(225 g 1360 mmol) and THF (20 mL) were employed as starting materials Yield of 0254 g [Et4N][1-

Ph-nido-78-C2B9H11] (075 mmol 550)

[Et4N][1-Ph-nido-78-C2B9H11] 1H11B NMR (50013 MHz CD3CN) δ = 721 (m 2-H PhH) 713 (m 2-H PhH) 704 (m 1-H

PhH) 314 (q 8-H 3J(1H1H) = 73 Hz [Et4N]+) 228 (s 1-H C8H) 207 (s 2-H B9+11H) 177 (s

19

1-H B3H) 172 (s 1-H B2H) 123 (s 3-H B4+5+6H) 119 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 065 (s 1-H B1H) 015 (s 1-H B10H) ndash246 (s 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash88 (d 1-B 1J(11B1H) = 1386 Hz B11) ndash104 (d 1-B 1J(11B1H) = 1367 Hz B9) ndash137 (d 1-B 1J(11B1H) = 1594 Hz B3) ndash169 (d 1-B 1J(11B1H) =

overlapped B5) ndash181 (d 1-B 1J(11B1H) = overlapped B6) ndash198 (d 1-B 1J(11B1H) = 1489 Hz

B2) ndash227 (d 1-B 1J(11B1H) = 1507 Hz B4) ndash329 (dd 1-B 1J(11B1H) = 1334 Hz 1J(11B1Hmicro) =

394 Hz B10) ndash361 (d 1-B 1J(11B1H) = 1422 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 1467 (s 1-C CPh) 12845 (s 2-C CPh) 12757 (s 2-C CPh)

12565 (s 1-C CPh) 6317 (brq 1 C 1J(13C11B) = 342 Hz C7Ph) 5307 (t 4-C 1J(14N13C) = 31 Hz

[Et4N]+) 4632 (brq 1-C 1J(13C11B) = 342 Hz C8H) 768 (s 4-C [Et4N]+) ppm

References

1 R K Harris E D Becker S M Cabral de Menezes R Goodfellow P Granger Pure Appl Chem 2001 73 1795ndash1818

2 G R Fulmer A J M Miller N H Sherden H E Gottlieb A Nudelman B M Stoltz J E Bercaw K I Goldberg Organometallics 2010 29 2176ndash2179

3 (a) D C Finster W C Hutton R N Grimes J Am Chem Soc 1980 102 400ndash401 (b) I J Colquhoun W McFarlane J Chem Soc Dalton Trans 1981 2014ndash2016

4 (a) T L Venable W C Hutton R N Grimes J Am Chem Soc 1982 104 4716ndash4717 (b) T L Venable W C Hutton R N Grimes J Am Chem Soc 1984 106 29ndash37

5 W L F Armarego C L L Chai Purification of Laboratory Chemicals 5 ed Butterworth-Heinemann (Elsevier) 2003

6 D S Wilbur M-K Chyan D K Hamlin B B Kegley R Risler P M Pathare J Quinn R L Vessella C Foulon M Zalutsky T J Wedge M F Hawthorne Bioconjugate Chem 2004 15 203ndash223

7 M F Hawthorne T D Andrews P M Garrett F P Olsen M Reintjes F N Tebbe L F Warren P A Wegner D C Young Inorg Synth 1967 10 91ndash118

8 A S Batsanov M A Fox J A K Howard A K Hughes A L Johnson S J Martindale Acta Crystallogr 2003 C59 o74ndasho76

9 K O Christe W W Wilson R D Wilson R Bau J A Feng J Am Chem Soc 1990 112 7619ndash7625

10 W Kohn L J Sham Phys Rev A 1965 140 1133ndash1138 11 (a) A D Becke Phys Rev A 1988 38 3098ndash3100 (b) A D Becke J Chem Phys 1993 98

5648ndash5652 (c) C Lee W Yang R G Parr Phys Rev B 1988 37 785ndash789 12 M J Frisch G W Trucks H B Schlegel G E Scuseria M A Robb J R Cheeseman V

Barone B Mennucci G A Petersson H Nakatsuji M Caricato X Xi H P Hratchian A F Izmaylov J Bloino G Zheng J L Sonnenberg M Hada M Ehara K Toyota R Fukuda J Hasegawa M Ishida T Nakajima Y Honda O Kitao H Nakai T Vreven J J A Montgomery J E Peralta M B F Ogliaro J J Heyd E Brothers K N Kudin V N Staroverov R Kobayashi J Normand K Raghavachari A Rendell J C Burant S S Iyengar J Tomasi M Cossi N Rega J M Millam M Klene J E Knox J B Cross V Bakken C

20

Adamo J Jaramillo R Gomperts R E Stratmann O Yazyev A J Austin R Cammi C Pomelli J W Ochterski R L Martin K Morokuma V G Zakrzewski G A Voth P Salvador J J Dannenberg S Dapprich A D Daniels Ouml Farkas J B Foresman J V Ortiz J Cioslowski D J Fox Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA 2009

13 J C Rienstra-Kiracofe G S Tschumper H F Schaefer III S Nandi G B Ellison Chem Rev 2002 102 231ndash282

14 K Wolinski J F Hinton P Pulay J Am Chem Soc 1990 112 8251ndash8260 15 J D Kennedy in Multinuclear NMR (Ed J Mason) Plenum Press New York 1987 p 221 16 S Berger S Braun H-O Kalinowski NMR Spectroscopy of the Non-Metallic Elements John

Wiley amp Sons Ltd Chichester England 1997 17 (a) G M Sheldrick Acta Crystallogr 2008 A64 112ndash122 (b) G M Sheldrick SHELXS-97

Program for Crystal Structure Solution Universitaumlt Goumlttingen 1997 18 G M Sheldrick SHELXT Program for Crystal Structure Solution Universitaumlt Goumlttingen

2014 19 G M Sheldrick SHELXL-97 Program for Crystal Structure Refinement Universitaumlt

Goumlttingen 1997 20 C B Huumlbschle G M Sheldrick B Dittrich J Appl Crystallogr 2011 44 1281ndash1284 21 K Brandenburg Diamond 422 Crystal Impact GbR Bonn Germany 1997-2016

Page 19: Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

19

1-H B3H) 172 (s 1-H B2H) 123 (s 3-H B4+5+6H) 119 (tt 12-H 3J(14N1H) = 19 Hz 3J(1H1H) = 74 Hz [NEt4]+) 065 (s 1-H B1H) 015 (s 1-H B10H) ndash246 (s 1-H BHmicro) ppm 11B NMR (16046 MHz CD3CN) δ = ndash88 (d 1-B 1J(11B1H) = 1386 Hz B11) ndash104 (d 1-B 1J(11B1H) = 1367 Hz B9) ndash137 (d 1-B 1J(11B1H) = 1594 Hz B3) ndash169 (d 1-B 1J(11B1H) =

overlapped B5) ndash181 (d 1-B 1J(11B1H) = overlapped B6) ndash198 (d 1-B 1J(11B1H) = 1489 Hz

B2) ndash227 (d 1-B 1J(11B1H) = 1507 Hz B4) ndash329 (dd 1-B 1J(11B1H) = 1334 Hz 1J(11B1Hmicro) =

394 Hz B10) ndash361 (d 1-B 1J(11B1H) = 1422 Hz B1) ppm 13C1H NMR (12576 MHz CD3CN) δ = 1467 (s 1-C CPh) 12845 (s 2-C CPh) 12757 (s 2-C CPh)

12565 (s 1-C CPh) 6317 (brq 1 C 1J(13C11B) = 342 Hz C7Ph) 5307 (t 4-C 1J(14N13C) = 31 Hz

[Et4N]+) 4632 (brq 1-C 1J(13C11B) = 342 Hz C8H) 768 (s 4-C [Et4N]+) ppm

References

1 R K Harris E D Becker S M Cabral de Menezes R Goodfellow P Granger Pure Appl Chem 2001 73 1795ndash1818

2 G R Fulmer A J M Miller N H Sherden H E Gottlieb A Nudelman B M Stoltz J E Bercaw K I Goldberg Organometallics 2010 29 2176ndash2179

3 (a) D C Finster W C Hutton R N Grimes J Am Chem Soc 1980 102 400ndash401 (b) I J Colquhoun W McFarlane J Chem Soc Dalton Trans 1981 2014ndash2016

4 (a) T L Venable W C Hutton R N Grimes J Am Chem Soc 1982 104 4716ndash4717 (b) T L Venable W C Hutton R N Grimes J Am Chem Soc 1984 106 29ndash37

5 W L F Armarego C L L Chai Purification of Laboratory Chemicals 5 ed Butterworth-Heinemann (Elsevier) 2003

6 D S Wilbur M-K Chyan D K Hamlin B B Kegley R Risler P M Pathare J Quinn R L Vessella C Foulon M Zalutsky T J Wedge M F Hawthorne Bioconjugate Chem 2004 15 203ndash223

7 M F Hawthorne T D Andrews P M Garrett F P Olsen M Reintjes F N Tebbe L F Warren P A Wegner D C Young Inorg Synth 1967 10 91ndash118

8 A S Batsanov M A Fox J A K Howard A K Hughes A L Johnson S J Martindale Acta Crystallogr 2003 C59 o74ndasho76

9 K O Christe W W Wilson R D Wilson R Bau J A Feng J Am Chem Soc 1990 112 7619ndash7625

10 W Kohn L J Sham Phys Rev A 1965 140 1133ndash1138 11 (a) A D Becke Phys Rev A 1988 38 3098ndash3100 (b) A D Becke J Chem Phys 1993 98

5648ndash5652 (c) C Lee W Yang R G Parr Phys Rev B 1988 37 785ndash789 12 M J Frisch G W Trucks H B Schlegel G E Scuseria M A Robb J R Cheeseman V

Barone B Mennucci G A Petersson H Nakatsuji M Caricato X Xi H P Hratchian A F Izmaylov J Bloino G Zheng J L Sonnenberg M Hada M Ehara K Toyota R Fukuda J Hasegawa M Ishida T Nakajima Y Honda O Kitao H Nakai T Vreven J J A Montgomery J E Peralta M B F Ogliaro J J Heyd E Brothers K N Kudin V N Staroverov R Kobayashi J Normand K Raghavachari A Rendell J C Burant S S Iyengar J Tomasi M Cossi N Rega J M Millam M Klene J E Knox J B Cross V Bakken C

20

Adamo J Jaramillo R Gomperts R E Stratmann O Yazyev A J Austin R Cammi C Pomelli J W Ochterski R L Martin K Morokuma V G Zakrzewski G A Voth P Salvador J J Dannenberg S Dapprich A D Daniels Ouml Farkas J B Foresman J V Ortiz J Cioslowski D J Fox Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA 2009

13 J C Rienstra-Kiracofe G S Tschumper H F Schaefer III S Nandi G B Ellison Chem Rev 2002 102 231ndash282

14 K Wolinski J F Hinton P Pulay J Am Chem Soc 1990 112 8251ndash8260 15 J D Kennedy in Multinuclear NMR (Ed J Mason) Plenum Press New York 1987 p 221 16 S Berger S Braun H-O Kalinowski NMR Spectroscopy of the Non-Metallic Elements John

Wiley amp Sons Ltd Chichester England 1997 17 (a) G M Sheldrick Acta Crystallogr 2008 A64 112ndash122 (b) G M Sheldrick SHELXS-97

Program for Crystal Structure Solution Universitaumlt Goumlttingen 1997 18 G M Sheldrick SHELXT Program for Crystal Structure Solution Universitaumlt Goumlttingen

2014 19 G M Sheldrick SHELXL-97 Program for Crystal Structure Refinement Universitaumlt

Goumlttingen 1997 20 C B Huumlbschle G M Sheldrick B Dittrich J Appl Crystallogr 2011 44 1281ndash1284 21 K Brandenburg Diamond 422 Crystal Impact GbR Bonn Germany 1997-2016

Page 20: Electronic Supplementary Information - rsc.org · – anion in [Me 4N]1 and the H atom of the non-disordered crystallographically independent anion [1-HF 2B-9,12-I 2-closo-1,2-C 2B

20

Adamo J Jaramillo R Gomperts R E Stratmann O Yazyev A J Austin R Cammi C Pomelli J W Ochterski R L Martin K Morokuma V G Zakrzewski G A Voth P Salvador J J Dannenberg S Dapprich A D Daniels Ouml Farkas J B Foresman J V Ortiz J Cioslowski D J Fox Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA 2009

13 J C Rienstra-Kiracofe G S Tschumper H F Schaefer III S Nandi G B Ellison Chem Rev 2002 102 231ndash282

14 K Wolinski J F Hinton P Pulay J Am Chem Soc 1990 112 8251ndash8260 15 J D Kennedy in Multinuclear NMR (Ed J Mason) Plenum Press New York 1987 p 221 16 S Berger S Braun H-O Kalinowski NMR Spectroscopy of the Non-Metallic Elements John

Wiley amp Sons Ltd Chichester England 1997 17 (a) G M Sheldrick Acta Crystallogr 2008 A64 112ndash122 (b) G M Sheldrick SHELXS-97

Program for Crystal Structure Solution Universitaumlt Goumlttingen 1997 18 G M Sheldrick SHELXT Program for Crystal Structure Solution Universitaumlt Goumlttingen

2014 19 G M Sheldrick SHELXL-97 Program for Crystal Structure Refinement Universitaumlt

Goumlttingen 1997 20 C B Huumlbschle G M Sheldrick B Dittrich J Appl Crystallogr 2011 44 1281ndash1284 21 K Brandenburg Diamond 422 Crystal Impact GbR Bonn Germany 1997-2016