39
Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

Embed Size (px)

Citation preview

Page 1: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

Electronics in High Energy PhysicsIntroduction to electronics in HEP

Electrical Circuits(based on P.Farthoaut lecture at Cern)

Page 2: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

2

Electrical Circuits

Generators Thevenin / Norton representation Power Components Sinusoidal signal Laplace transform Impedance Transfer function Bode diagram RC-CR networks Quadrupole

Page 3: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

3

Sources

Voltage Generator

vr

R+

-

I

rR

VI

R

VIthenRr

cter

VIthenRr Current Generator

Page 4: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

4

Thevenin theorem (1)

Any two-terminal network of resistors and sources is equivalent to a single resistor with a single voltage source

Vth = open-circuit voltage Rth = Vth / Ishort

A

B

VthRth

A

B

Page 5: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

5

Thevenin theorem (2)

Voltage divider

VR1

R2+

-

AR1//R2

A

2R1R

2RV

2R//1R2R1R

2R1R

Ishort

VthRth

1R

VinIshort

2R1R

2RVinVthVopen

Page 6: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

6

Norton representation

Any voltage source followed by an impedance can be represented by a current source with a resistor in parallel

B

A

RnoInoVthRth

A

B

RthRno.e.iVthRnoInoRth

VthIshortIno

Page 7: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

7

Power transfer

Power in the load R

Power in the load

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R/r

Po

wer

vr

R+

-

I

P is maximum for R = r

222

rR

RVRIP

Page 8: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

8

Sinusoidal regime

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10

Time

Am

pli

tud

e

f2;AmplitudeV)tcos(V)t(V

shiftphase')'tcos(V)t('V

delayais

tVtVtV

'

'cos)'cos()('

Page 9: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

9

Complex notation

Signal : v1(t) = V cos( t + )

v2(t) = V sin( t + )

v(t) = v1 + j v2 = V e j( t + ) = V ej ej t = S ej t

Interest:– S = V ej contains only phase and amplitude– ej t contains time and frequency

Real signal = R [ S ej t ]

In case of several signals of same only complex amplitude are significant and one can forget ej t – One can separate phase and time

Page 10: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

10

Complex impedance

In a linear network with v(t) and i(t), the instantaneous ratio v/i is often meaningless as it changes during a period

To i(t) and v(t) one can associate J ej t and S ej t

S / J is now independent of the time and characterizes the linear network– Z = S / J is the complex impedance of the network

Z = R + j X = z ej – R is the resistance, X the reactance– z is the module, is the phase– z, R and X are in Ohms

Examples of impedances:– Resistor Z = R– Capacitance (perfect) Z = -j / C; Phase = - /2

» 100 pF at 1MHz 1600 Ohms » 100 pF at 100 MHz 16 Ohms

– Inductance (perfect) Z = jL; Phase = + /2» 100 nH at 1 MHz 0.63 Ohms» 100 nH at 100 MHz 63 Ohms

Page 11: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

11

Power in sinusoidal regime

i = IM cos t in an impedance Z = R + j X = z ej

v = z IM cos( t + ) = R IM cos t - X IM sin t

p = v i = R IM2 cos2t – X IM

2 cost sin t = R IM

2 /2 (1+cos2t ) - X IM2 /2 sin2 t

p = P (1+cos2 t ) - Pq sin2 t = pa + pq

– pa is the active power (Watts); pa = P (1+ cos2t)» Mean value > 0; R IM

2 /2

– pq is the reactive power (volt-ampere); pq = Pq sin2t » Mean value = 0» Pq = X IM

2 /2 » In an inductance X = L ; Pq > 0 : the inductance absorbs some reactive energy» In a capacitance X = -1/C; Pq < 0 : the capacitance gives some reactive energy

Page 12: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

12

Real capacitance

A perfect capacitance does not absorb any active power– it exchanges reactive power with the source Pq = - IM

2 /2C In reality it does absorb an active power P Loss coefficient

– tg = |P/Pq|

Equivalent circuit– Resistor in series or in parallel

– tg = RsCs

– tg = 1/RpCp

Cs

Rp

Rs

Cp

Page 13: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

13

Real inductance

Similarly a quality coefficient is defined– Q = Pq/P

Equivalent circuit– Resistor in series or in parallel

– Q = Ls/Rs

– Q = Rp/Lp

Ls

Rp

Rs

Lp

Page 14: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

14

Laplace Transform (1)

v = f(i) integro-differential relations In sinusoidal regime, one can use the complex notation and the complex

impedance– V = Z I

Laplace transform allows to extend it to any kind of signals

Two important functions– Heaviside (t)

» = 0 for t < 0 » = 1 for t 0

– Dirac impulsion (t) = ’(t) » = 0 for t 0

»

0

1dt)t(

Page 15: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

15

Laplace Transform (2)

0

pt dte)t(h)p(F)t(f)t()t(h

)p(Fe)at(h);p(F)t(h

)ap(F)t(he);p(F)t(h

p

)p(Fdt)t(h);p(F)t(h

)p(pF)t('h);p(F)t(h

)p(bF)p(aF)t(bh)t(ah

ptsin)t(

ap

1e)t(

p

1)t(

1)t(

ap

at

2121

22

at

Examples»

Linearity

Derivation, Integration

Translation

Page 16: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

16

Laplace Transform (3)

Change of time scale

Derivation, Integration of the Laplace transform

Initial and final value

)t(flim)p(pFlim

)t(flim)p(pFlim

t

)t(hdp)p(F

)t(th)p('F

)ap(aF)a

t(h);p(F)t(h

0tp

t0p

Page 17: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

17

Impedances

Network v(t), I(t)

V(p)Z(p)

I(p)

Generalisation– V(p) = Z(p) I(p)

I(p) Lp V(p):Inductance–

I(p) Cp1

V(p) i.e I(p) C1

V(p)p :Capacitor–

I(p) R V(p):Resistor–

transform Laplace the Applyingdtdi

L v(t) :Inductance–

i(t) C1

dtdv

:Capacitor–

i(t) R v(t) :Resistor–

i(t) and v(t) between Relation

v(t)Z

i(t)

Page 18: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

18

Transfer Functions

Input V1, I1; Output V2, I2

Voltage gain V2(p) / V1(p)

Current gain I1(p) / I2(p)

Transadmittance I2(p) / V1(p)

Transimpedance V2(p) / I1(p)

Transfer function Out(p) = F(p) In(p)– Convolution in time domain:

V1 V2

I2I1

TransferFunction

d)t(F)(In)t(F*)t(In)t(Out

Page 19: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

19

Bode diagram (1)

Replacing p with j in F(p), one obtains the imaginary form of the function transfer– F(j) = |F| ej()

(Pole) Zero also is (Pi*) *Zi complex, (Pi) Zi if

)Pp)...(Pp)(Pp(

)Zp)...(Zp)(Zp(K)p(F

n21

n21

0db

2

0db

V

Vlog20V;

R

VP

P

Plog10P:Power

|PjPj|log20|ZjZj|log20|Pj|log20|Zj|log20Klog20 *ii

*iiii

ja2b

1)j(F;ja2b)j(F

aj

1)j(F;aj)j(F

22422

3

21

Logarithmic unit: Decibel

In decibel the module |F| will be

The phase of each separate functions add Functions to be studied

Page 20: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

20

Bode diagram (2)

0

20

40

60

80

100

120

1 10 100 1000 10000 100000

|F|dB

[rad/s] 0

5

10

15

20

25

30

35

40

45

1 10 100

20 dB per decade 6 dB per octavea

3 dB error

F(p) = p + a ; |F1|db= 20 log | j + a|

Bode diagram = asymptotic diagram

< a, |F1| approximated with A = 20 log(a)

> a, |F1| approximated with A = 20 log()

»6 dB per octave (20 log2) or 20 dB per decade (20 log10)

Maximum error when = a

–20 log| j a + a| - 20 log(a) = 20 log (21/2) = 3 dB

ap)p(F;aj)j(F 11

Page 21: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

21

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

1 10 100

-120

-100

-80

-60

-40

-20

0

1 10 100 1000 10000 100000

|F|dB

[rad/s]

Bode diagram (3)

|F2|db= - 20 log | j + a| Bode diagram = asymptotic diagram

< a, |F2| approximated with A = - 20 log(a)

> a, |F2| approximated with A = - 20 log()

» - 6 dB per octave (20 log2) or - 20 dB per decade (20 log10)

Maximum error when = a– 20 log| j a + a| - 20 log(a) = 20 log (21/2) = 3 dB

- 20 dB per decade

-6 dB per octave

a

3 dB error

ap

1)p(F;

aj

1)j(F 22

Page 22: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

22

Bode diagram (4)

As before but:– Slope 6*n dB per octave (20*n dB per decade)

– Error at =a is 3*n dB

-250

-200

-150

-100

-50

0

1 10 100 1000 10000 100000

|F|dB

[rad/s]

-20 dB per decade

-40 dB per decade

Low pass filters

n2n )ap(

1)p(F;

aj

1)j(F

Page 23: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

23

Bode diagram (5)

Phase of F1(j ) = (j + a)

– tg = /a Asymptotic diagram

= 0 when < a = /4 when = a = /2 when > a

0102030405060708090100

0.1 1 10

/a

Ph

ase

[d

eg

re]

Page 24: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

24

Bode diagram (6)

Phase of F2(j ) = 1/(j + a)

– tg =- /a Asymptotic diagram

= 0 when < a = - /4 when = a = - /2 when > a

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0.1 1 10

/a

Ph

ase

[d

eg

re]

Page 25: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

25

0

50

100

150

200

250

1 10 100 1000 10000 100000

w [rad/s]

|F| d

B

-20-15-10-5051015202530

0.1 1 10

/b

|F| d

B

z=0.1

z=2

Bode diagram (7)

|F3|dB = 20 log|b2 - 2 + 2aj| Asymptotic diagram

--> 0 A = 40 log b --> ∞ A’ = 20 log 2 = 40 log – A = A’ for = b

Error depends on a and b– p2 + 2a p + b2 = b2[(p/b)2 + 2(a/b)(p/b) + 1]– Z = a/b U = /b

40 dB per decade

b

ap2b)p(F;ja2b)j(F 223

223

Page 26: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

26

-250

-200

-150

-100

-50

0

1 10 100 1000 10000 100000

w [rad/s]

|F| d

B

-30-25-20-15-10-505101520

0.1 1 10

/b

|F| d

B

z=0.1

z=2

Bode diagram (8)

|F4|dB = - 20 log|b2 - 2 + 2aj| Asymptotic diagram

--> 0 A = - 40 log b --> ∞ A’ = - 20 log 2 = - 40 log – A = A’ for = b

Error depends on a and b– Z = a/b U = /b

-40 dB per decade

b

ap2b

1)p(F;

ja2b

1)j(F

224224

Page 27: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

27

Bode diagram (9)

Phase of F3(j) = (b2 - 2 + 2aj) and F4(j) = 1/(b2 - 2 + 2aj)

– tg = 2a/ (b2 - 2) Asymptotic diagram

= 0 when < b = ± /2 when = b = ± when > b

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

0.1 1 10

/b

Ph

ase

[d

eg

re]

Z = 0.1

Z = 1

Page 28: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

28

RC-CR networks (1)

Integrator; RC = time constant

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

Dirac response

Heaviside response

t/RC

V

CR

V1 V2

RC

1p

1

RC

)p(V

Cp

1R

Cp

1

)p(V)p(V 112

RC

t

2

2

1

eRC

1)t()t(V

RC

1p

1

RC

1)p(V

1)p(VDirac

RC

t

2

2

1

e1)t()t(V

RC

1p

1

p

1

RC

1p

1

p

1

RC

1)p(V

p

1)p(VHeaviside

Page 29: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

29

RC-CR networks (2)

Low pass filter c = 1/RC

-70

-60

-50

-40

-30

-20

-10

0

0.1 1 10 100 1000

* RC

V d

BCR

V1 V2

RC

1p

1

RC

1)p(F

Page 30: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

30

RC-CR networks (3)

Derivator; RC = time constant

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

Dirac response

Heaviside response

RC = 1

t/RC

V

C RV1 V2

RC

1p

p)p(V

Cp

1R

R)p(V)p(V 112

RC

t

2

2

1

eRC

11)t()t(V

RC

1p

1

RC

11

RC

1p

p)p(V

1)p(VDirac

RC

t

2

2

1

e)t()t(V

RC

1p

1)p(V

p

1)p(VHeaviside

Page 31: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

31

RC-CR networks (4)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12

Dirac response

Heaviside response

RiCi = RC

t/RC

V

V1C1

R1 V2

R2C2

;CR;CR;CR 123222111

21321

21

12

1111pp

p)p(V)p(V

)tsinh(e1

)t()t(V

ap

1)p(V

1;p

1)p(VHeaviside

at2

222

i1

)tsinh(2

3)tcosh(e

1)t()t(V

ap

a

ap

ap

ap

p

1p3p

p)p(V

1;1)p(VDirac

at2

22222222

i1

Page 32: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

32

RC-CR networks (5)

Band pass filter

V1C1

R1 V2

R2C2

0

10

20

30

40

50

60

70

80

90

1 10 100 1000 10000 100000 1000000

1E+07 1E+08

rad/s

dB

22ap

p)p(F

22a )alog(20 22

Page 33: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

33

Time or frequency analysis (1)

A signal x(t) has a spectral representation |X(f)|; X(f) = Fourier transform of x(t)

dte)t(x)f(X ft2j

The transfer function of a circuit has also a Fourier transform F(f)

The transformation of a signal when applied to this circuit can be looked at in time or frequency domain

x(t)

X(f)

y(t) = x(t) * f(t)

Y(f) = X(f) F(f)

f(t)

F(f)

Page 34: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

34

Time or frequency analysis (2)

The 2 types of analysis are useful Simple example: Pulse signal (100 ns width)

– (1) What happens when going through a R-C network?» Time analysis

– (2) How can we avoid to distort it?» Frequency analysis

0

2

4

6

8

10

12

-30 -20 -10 0 10 20 30

time (*10 ns)

x(t)

Page 35: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

35

Time or frequency analysis (3)

Time analysis

CR

X(t) Y(t)

)e1)(100t()e1)(t()t(y

RC1

p

1

RC

1)p(x)p(y

ep

1

p

1)p(x

)100t()t()t(x

RC

)100t(

RC

t

p100

RC = 20 ns

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300

Amplitude

Tim

e (n

s)

0

2

4

6

8

10

12

-30 -20 -10 0 10 20 30

time (*10 ns)

x(t)

Page 36: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

36

Time or frequency analysis (4)

Contains all frequencies Most of the signal within 10 MHz To avoid huge distortion the minimum bandwidth is 10-20 MHz Used to define the optimum filter to increase signal-to-noise ratio

0

2

4

6

8

10

12

-30 -20 -10 0 10 20 30

time (*10 ns)

x(t)

-40

-20

0

20

40

60

80

100

120

-50 -40 -30 -20 -10 0 10 20 30 40 50

Frequency (MHz)

X(f

)

Page 37: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

37

Quadrupole

Passive– Network of R, C and L

Active– Internal linked sources

Parameters– V1, V2, I1, I2

– Matrix representation

B'

A'

x4x3

x2x1

B

A

V1 V2

I1 I2

Page 38: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

38

Parameters

Impedances

Admittances

Hybrids

I2

I1

Z22Z21

Z12Z11

V2

V1

V2

V1

Y22Y21

Y12Y11

I2

I1

V2

I1

h22h21

h12h11

I2

V1

Page 39: Electronics in High Energy Physics Introduction to electronics in HEP Electrical Circuits (based on P.Farthoaut lecture at Cern)

39

Input and output impedances

Input impedance: as seen when output loaded – Zin = Z11 - (Z12 Z21 / (Z22 + Zu))

– Zin = h11 - (h12 h21 / (h22 + 1/Zu)) Output impedance: as seen from output when input loaded with the

output impedance of the previous stage– Zout = Z22 - (Z12 Z21 / (Z11 + Zg))

– 1/Zout = h22 - (h12 h21 / (h11+ Zg))