26
Electropermeabilization Jean-Michel Escoffre [email protected] Professionnal Master Vectorology, Gene Therapy, Vaccinology 2006-2007

Electropermeabilization - M2P VTV - Univ. P. Sabatier

Embed Size (px)

Citation preview

Electropermeabilization

Jean-Michel Escoffre

[email protected]

Professionnal MasterVectorology, Gene Therapy, Vaccinology

2006-2007

Summary

� Plasma membrane

� Electropermeabilization

� Electrogenetransfer

� Applications:

– Electrochemotherapy

– RNA interference

– Skeletal muscles

– Secretion of therapeutic proteins

– Genetic vaccine

Summary

� Plasma membrane

� Electropermeabilization

� Electrogenetransfer

� Applications:

– Electrochemotherapy

– RNA interference

– Skeletal muscles

– Secretion of therapeutic proteins

– Genetic vaccine

Plasma membrane:a too selective barrier !

Membrane destabilisation is required� Electropermeabilization

Therapeutic molecules(DNA, siRNA, anti-tumoral molecules)

Targets(Nucleus…)

Summary

� Plasma membrane

� Electropermeabilization

� Electrogenetransfer

� Applications:

– Electrochemotherapy

– RNA interference

– Skeletal muscles

– Secretion of therapeutic proteins

– Genetic vaccine

Electropermeabilization

∆Ψi = |f r E cos(θ) |

| ∆Ψ0+ ∆Ψi | = 200-300 mV

Transient Permeant StructuresEscoffre et al., Mol. Biotechnol., 2008

Summary

� Plasma membrane

� Electropermeabilization

� Electrogenetransfer

� Applications:

– Electrochemotherapy

– RNA interference

– Skeletal muscles

– Secretion of therapeutic proteins

– Genetic vaccine

Electrogenetransfer

Escoffre et al., Mol. Biotechnol., 2008

Summary

� Plasma membrane

� Electropermeabilization

� Electrogenetransfer

� Applications:

– Electrochemotherapy

– RNA interference

– Skeletal muscles

– Secretion of therapeutic proteins

– Genetic vaccine

Electrochemotherapy (I)Introduction

Sersa et al., EJSO, 2008

Electrochemotherapy (II)Applications

Before

After

IT: Cisplatin + IL-12

Before

After

IV: BleomycinRols et al. Melanoma Res., 2001 Rols et al. Bioelectrochem. (2002)

Summary

� Plasma membrane

� Electropermeabilization

� Electrogenetransfer

� Applications:

– Electrochemotherapy

– RNA interference

– Skeletal muscles

– Secretion of therapeutic proteins

– Genetic vaccine

RNA interference (I)Introduction

Advantages:• Specificity• Efficiency• Stable inhibition

Limits• Resistance• Transfection:

• Physical methods• Chemical methods• Viral methods

Agami et al, Curr.Opin. Chem. Biol., 2002

RNA interference (II)Applications

� siRNA:

– Mitf � Melanoma: Nakai et al., 2007

– TNF-α � Arthritis: Inoue et al., 2005– X11-α and X11-β � Alzheimer disease: Xie et al., 2005

� shRNA:

– PnNOS � Erectile dysfunctionnement: Magee et al., 2007

– β-catenin/HIF-1α� Melanoma: Takahashi et al., 2006

– Myostatin � Myopathies: Magee et al., 2006

Summary

� Plasma membrane

� Electropermeabilization

� Electrogenetransfer

� Applications:

– Electrochemotherapy

– RNA interference

– Skeletal muscles

– Secretion of therapeutic proteins

– Genetic vaccine

Skeletal muscles

� Easy access

� High vascularization � Secretion of therapeutic proteins

� Quiescent fibers with long life � Long lasting gene expression

� Polynucleated structures � High level of gene expression

Aihara et al., Nature Biotechnol., 1998 ; Mir et al., PNAS, 1999

Summary

� Plasma membrane

� Electropermeabilization

� Electrogenetransfer

� Applications:

– Electrochemotherapy

– RNA interference

– Skeletal muscles

– Secretion of therapeutic proteins

– Genetic vaccine

Therapeutic proteins (I)Introduction

Therapeutic proteins (II)Applications

� BMP4 � Demineralization of bone matrix : Kotajima et al.,

2006

� hTNFαR � Uveitis : Bloquel et al., 2006

� FVIII � Hemophilia A : Long et al., 2005

� Pro-opiomelanocortin � Chronic Constriction Injury : Wu et

al., 2004

� Plasminogen K5 � Corneal neovascularization induced by

alkalin burns : Yu et al., 2003

Summary

� Plasma membrane

� Electropermeabilization

� Electrogenetransfer

� Applications:

– Electrochemotherapy

– RNA interference

– Skeletal muscles

– Secretion of therapeutic proteins

– Genetic vaccine

Genetic vaccines (I)Introduction

� Principle: Injection of plasmid encoding vaccinal protein under the control of eukaryotic promoter

� Comparison with gene therapy:

– Low gene expression in few cells

– Transient gene expression

Genetic vaccine (II)Th-1 and Th-2 responses

Genetic vaccine (III)Plasmid vector

� Composition:

– Double stand DNA

– supercoiled structure

� Sequences:

– Bacterial replication origin

– Resistance gene

– Antigen gene

– Regulation sequences of gene expression (Promoter, enhancer…)

– Immunostimulations sequences (CpG, cytokine gene, costimulation

molecules gene, T-helpers epitopes…)

� Administration ways:

– Intraveinous, intramuscular

– Cutaneaous, mucosal, oral

Genetic vaccine (IV)Stimulation and orientation of IR

� ISS sequences (such as CpG):

– Adjuvant role: Maturation and activation of DC

– Th-1 response

– Stimulation of innate immunity

– Production of IL-6, IL-12 and IFN

� Cytokines and costimulation molecules (IL-2, IFN-γ):– Intensity of immune response

– Th-1 and/or Th-2 responses

� Intensity of immune response:

– Efficiency of antigen presentation

– Long lasting antigen expression

– Adjuvant effects of CpG

Genetic vaccine (V)Applications

� Intramuscular delivery:

– HA and NA of H9N2 virus: Qiu et al., 2006

– Ag85A and ESAT-6 of Mycobacterium Tuberculosis: Li et al.,

2006

– L-HDAg and S-HDAg of HDV virus: Shiau et al., 2006

– PcrV andPilA of Pseudomonas Aeruginosa: Saha et al., 2006

� Intradermal delivery:

– HBsAg of HBV virus: Medi et al., 2005

– VEGF-165: Pedron-Mazoyer et al., 2007

– PSA of prostate cancer: Roos et al., 2006

Bibliographic work

� Read 5 scientific publications

� Oral presentation of publications

– 2 or 3 students per publication

– 10 min per publication

� The presentation is evaluated on 20 points