Electrospray - Wikipedia, The Free Encyclopedia

Embed Size (px)

Citation preview

  • 7/29/2019 Electrospray - Wikipedia, The Free Encyclopedia

    1/5

    ElectrosprayFrom Wikipedia, the free encyclopedia

    The name electrospray is used for a device that employs electricity to disperse a liquid or for the fine aerosol

    resulting from this process. The method is sometimes improperly called electrohydrodynamic atomization. High

    voltage is applied to a liquid supplied through an emitter (usually a glass or metallic capillary). Ideally the liquid

    reaching the emitter tip forms a Taylor cone, which emits a liquid jet through its apex. Varicose waves on the

    surface of the jet lead to the formation of small and highly charged liquid droplets, which are radially dispersed

    due to Coulomb repulsion.

    An electrospray device

    taken at the Nottingham

    University.

    A close-up of an

    electrospray device

    taken at the Nottingham

    University, the jet of

    ionised spray is visible

    within the image.

    Contents

    1 History

    2 Mechanism

    2.1 Effect of small electric fields on liquid menisci

    2.2 The Taylor cone

    2.3 Singularity development

    2.4 Closing the electrical circuit

    3 Applications

    3.1 Electrospray ionization

    3.2 Electrospinning

    3.3 Colloid thrusters

    3.4 Deposition of particles for nanostructures

    3.5 Air purifiers

    3.6 Liquid Metal Ion Sourcing

    4 References

    History

    http://en.wikipedia.org/wiki/Electrospray#Referenceshttp://en.wikipedia.org/wiki/Electrospray#Liquid_Metal_Ion_Sourcinghttp://en.wikipedia.org/wiki/Electrospray#Air_purifiershttp://en.wikipedia.org/wiki/Electrospray#Deposition_of_particles_for_nanostructureshttp://en.wikipedia.org/wiki/Electrospray#Electrospray_ionizationhttp://en.wikipedia.org/wiki/Taylor_conehttp://en.wikipedia.org/wiki/Electrospray#cite_note-gilbert-1http://en.wikipedia.org/wiki/Electrospray#Referenceshttp://en.wikipedia.org/wiki/Electrospray#Liquid_Metal_Ion_Sourcinghttp://en.wikipedia.org/wiki/Electrospray#Air_purifiershttp://en.wikipedia.org/wiki/Electrospray#Deposition_of_particles_for_nanostructureshttp://en.wikipedia.org/wiki/Electrospray#Colloid_thrustershttp://en.wikipedia.org/wiki/Electrospray#Electrospinninghttp://en.wikipedia.org/wiki/Electrospray#Electrospray_ionizationhttp://en.wikipedia.org/wiki/Electrospray#Applicationshttp://en.wikipedia.org/wiki/Electrospray#Closing_the_electrical_circuithttp://en.wikipedia.org/wiki/Electrospray#Singularity_developmenthttp://en.wikipedia.org/wiki/Electrospray#The_Taylor_conehttp://en.wikipedia.org/wiki/Electrospray#Effect_of_small_electric_fields_on_liquid_meniscihttp://en.wikipedia.org/wiki/Electrospray#Mechanismhttp://en.wikipedia.org/wiki/Electrospray#Historyhttp://en.wikipedia.org/wiki/Taylor_conehttp://en.wikipedia.org/wiki/Electrohydrodynamic
  • 7/29/2019 Electrospray - Wikipedia, The Free Encyclopedia

    2/5

    In the late 16th century William Gilbert[1] set out to describe the behaviour of magnetic and electrostatic

    phenomena. He observed that, in the presence of a charged piece of amber, a drop of water deformed into a

    cone. This effect is clearly related to electrosprays, even though Gilbert did not record any observation related

    to liquid dispersion under the effect of the electric field.

    In 1882, Lord Rayleigh theoretically estimated the maximum amount of charge a liquid droplet could carry;[2]

    this is now known as the "Rayleigh limit". His prediction that a droplet reaching this limit would throw out fine

    ets of liquid was confirmed experimentally more than 100 years later.[3]

    In 1914, John Zeleny published work on the behaviour of fluid droplets at the end of glass capillaries. [4] This

    report presents experimental evidence for several electrospray operating regimes (dripping, burst, pulsating, and

    cone-jet). A few years later, Zeleny captured the first time-lapse images of the dynamic liquid meniscus. [5]

    Between 1964 and 1969 Sir Geoffrey Ingram Taylor produced the theoretical underpinning of

    electrospraying.[6][7][8] Taylor modeled the shape of the cone formed by the fluid droplet under the effect of an

    electric field; this characteristic droplet shape is now known as the Taylor cone. He further worked with J. R.

    Melcher to develop the "leaky dielectric model" for conducting fluids.[9]

    Mechanism

    To simplify the discussion, the following paragraphs will address the case of a positive electrospray with the high

    voltage applied to a metallic emitter. A classical electrospray setup is considered, with the emitter situated at a

    distance from a grounded counter-electrode. The liquid being sprayed is characterized by its viscosity ,

    surface tension , conductivity , and relative permittivity .

    Effect of small electric fields on liquid menisci

    Under the effect of surface tension, the liquid meniscus assumes a semi-spherical shape at the tip of the emitter.

    Application of the positive voltage will induce the electric field:[10]

    where is the liquid radius of curvature. This field leads to liquid polarization: the negative/positive charge

    carriers migrate toward/away from the electrode where the voltage is applied. At voltages below a certain

    threshold, the liquid quickly reaches a new equilibrium geometry with a smaller radius of curvature.

    The Taylor cone

    Voltages above the threshold draw the liquid into a cone. Sir Geoffrey Ingram Taylor described the theoretical

    shape of this cone based on the assumptions that (1) the surface of the cone is an equipotential surface and (2)

    the cone exists in a steady state equilibrium.[6] To meet both of these criteria the electric field must have

    azimuthal symmetry and have dependence to balance the surface tension and produce the cone. The

    solution to this problem is:

    http://en.wikipedia.org/wiki/Azimuthhttp://en.wikipedia.org/wiki/Electrospray#cite_note-Taylor1964-6http://en.wikipedia.org/wiki/Geoffrey_Ingram_Taylorhttp://en.wikipedia.org/wiki/Electrospray#cite_note-10http://en.wikipedia.org/wiki/Electrospray#cite_note-MelcherTaylor-9http://en.wikipedia.org/wiki/Taylor_conehttp://en.wikipedia.org/wiki/Electrospray#cite_note-Taylor1969-8http://en.wikipedia.org/wiki/Electrospray#cite_note-Taylor1965-7http://en.wikipedia.org/wiki/Electrospray#cite_note-Taylor1964-6http://en.wikipedia.org/wiki/Geoffrey_Ingram_Taylorhttp://en.wikipedia.org/wiki/Electrospray#cite_note-5http://en.wikipedia.org/wiki/Electrospray#cite_note-4http://en.wikipedia.org/wiki/John_Zelenyhttp://en.wikipedia.org/wiki/Electrospray#cite_note-3http://en.wikipedia.org/wiki/Electrospray#cite_note-2http://en.wikipedia.org/wiki/John_Strutt,_3rd_Baron_Rayleighhttp://en.wikipedia.org/wiki/Electrospray#cite_note-gilbert-1http://en.wikipedia.org/wiki/William_Gilbert_(astronomer)
  • 7/29/2019 Electrospray - Wikipedia, The Free Encyclopedia

    3/5

    where (equipotential surface) exists at a value of (regardless of R) producing an equipotential

    cone. The magic angle necessary for for all R is a zero of the Legendre polynomial of order 1/2,

    . There is only one zero between 0 and at 130.7099, which is the complement of the

    Taylor's now famous 49.3 angle.

    Singularity development

    The apex of the conical meniscus cannot become infinitelly small. A singularity develops when the hydrodynamic

    relaxation time becomes larger than the charge relaxation time .[11] The undefined

    symbols stand for characteristic length and vacuum permittivity . Due to intrinsic varicose instability, the

    charged liquid jet ejected through the cone apex breaks into small charged droplets, which are radially dispersed

    by the space-charge.

    Closing the electrical circuit

    The charged liquid is ejected through the cone apex and captured on the counter electrode as charged dropletsor positive ions. To balance the charge loss, the excess negative charge is neutralized electrochemically at the

    emitter. Imbalances between the amount of charge generated electrochemically and the amount of charge lost at

    the cone apex can lead to several electrospray operating regimes. For cone-jet electrosprays, the potential at

    the metal/liquid interface self-regulates to generate the same amount of charge as that lost through the cone

    apex.[12]

    Applications

    Electrospray ionization

    see also the main article on Electrospray ionization

    Electrospray became widely used as ionization source for mass spectrometry after the Fenn group successfully

    demonstrated its use as ion source for the analysis of large biomolecules.[13]

    Electrospinning

    see also the main article on Electrospinning

    Similarly to the standard electrospray, the application of high voltage to a polymer solution can result in the

    formation of a cone-jet geometry. If the jet turns into very fine fibers instead of breaking into small droplets, the

    process is known as electrospinning .

    Colloid thrusters

    see also the main article on Colloid thrusters

    Electrospray techniques are used to control satellites, since the fine-controllable particle ejection allows precise

    and effective thrusts.

    Deposition of particles for nanostructures

    http://en.wikipedia.org/wiki/Satellitehttp://en.wikipedia.org/wiki/Colloid_thrusterhttp://en.wikipedia.org/wiki/Electrospinninghttp://en.wikipedia.org/wiki/Electrospray#cite_note-13http://en.wikipedia.org/wiki/Electrospray_ionizationhttp://en.wikipedia.org/wiki/Electrospray#cite_note-12http://en.wikipedia.org/wiki/Electrospray#cite_note-11http://en.wikipedia.org/wiki/Relaxation_timehttp://en.wikipedia.org/wiki/Relaxation_timehttp://en.wikipedia.org/wiki/Legendre_polynomial
  • 7/29/2019 Electrospray - Wikipedia, The Free Encyclopedia

    4/5

    Electrospray may be used in nanotechnology,[14] for example to deposit single particles on surfaces. This is

    done by spraying colloids on average containing only one particle per droplet. The solvent evaporates, leaving

    an aerosol stream of single particles of the desired type. The ionizing property of the process is not crucial for

    the application but may be used in electrostatic precipitation of the particles.

    Air purifiers

    see also the main article on Air purifiers

    Particulates suspended in air can be charged by the aerosol generated by an electrospray, manipulated by an

    electric field and collected on a grounded electrode. This approach minimizes the production of ozone which is

    common to other types of air purifiers.

    Liquid Metal Ion Sourcing

    see also the main article on Liquid metal ion source

    Liquid metals can be used to create ion sources for ion implantation techniques and focused ion beaminstruments.

    References

    1. ^ Gilbert, W. (1628) De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure (On the Magnet

    and Magnetic Bodies, and on That Great Magnet the Earth), London, Peter Short

    2. ^ Rayleigh, L. (1882). "On the Equilibrium of Liquid Conducting Masses charged with Electricity".

    Philosophical Magazine14: 184186.

    3. ^ Gomez, A & Tang, K (1994). "Charge and fission of droplets in electrostatic sprays.". Physics of Fluids6(1): 404414. Bibcode 1994PhFl....6..404G (http://adsabs.harvard.edu/abs/1994PhFl....6..404G) .

    doi:10.1063/1.868037 (http://dx.doi.org/10.1063%2F1.868037) .

    4. ^ Zeleny, J. (1914). "The electrical discharge from liquid points, and a hydrostatic method of measuring the

    electric intensity at their surfaces.". Physical Review3 (2): 69. Bibcode 1914PhRv....3...69Z

    (http://adsabs.harvard.edu/abs/1914PhRv....3...69Z) . doi:10.1103/PhysRev.3.69

    (http://dx.doi.org/10.1103%2FPhysRev.3.69) .

    5. ^ Zeleny, J. (1917). "Instability of electrified liquid surfaces.". Physical Review10 (1): 16. Bibcode

    1917PhRv...10....1Z (http://adsabs.harvard.edu/abs/1917PhRv...10....1Z) . doi:10.1103/PhysRev.10.1

    (http://dx.doi.org/10.1103%2FPhysRev.10.1) .

    6. ^ ab Sir Geoffrey Taylor (1964). "Disintegration of Water Droplets in an Electric Field". Proc. Roy. Soc.

    London. Ser. A280 (1382): 383. Bibcode 1964RSPSA.280..383T(http://adsabs.harvard.edu/abs/1964RSPSA.280..383T) . doi:10.1098/rspa.1964.0151

    (http://dx.doi.org/10.1098%2Frspa.1964.0151) . JSTOR 2415876 (http://www.jstor.org/stable/2415876) .

    7. ^ Taylor, G. (1965) The force exerted by an electric field on a long cylindrical conductor. Proceedings of the

    Royal Society of London A: Mathematical, Physical & Engineering Sciences, 291, 145-158

    8. ^ Taylor, G. (1969) Electrically Driven Jets. Proceedings of the Royal Society of London A: Mathematical,

    Physical & Engineering Sciences, 313, 453-475

    9. ^ Melcher, J. R. & Taylor, G. (1969) Electrohydrodynamics: A Review of the Role of Interfacial Shear

    Stresses. Annual Review of Fluid Mechanics, 1, 111-146

    10. ^ L. B. Loeb, A. F. Kip, G. G. Hudson, W. H. Bennett (1941). "Pulses in negative point-to-plane corona".

    Physical Review60 (10): 714722. Bibcode 1941PhRv...60..714L

    (http://adsabs.harvard.edu/abs/1941PhRv...60..714L) . doi:10.1103/PhysRev.60.714

    (http://dx.doi.org/10.1103%2FPhysRev.60.714) .

    11. ^ Fernndez de la Mora, J.; Loscertales, I. G. (1994). "The current emitted by highly conductive Taylor

    cones.".Journal of Fluid Mechanics260: 155184. Bibcode 1994JFM...260..155D

    (http://adsabs.harvard.edu/abs/1994JFM...260..155D) . doi:10.1017/S0022112094003472

    http://dx.doi.org/10.1017%2FS0022112094003472http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/1994JFM...260..155Dhttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Journal_of_Fluid_Mechanicshttp://en.wikipedia.org/wiki/Electrospray#cite_ref-11http://dx.doi.org/10.1103%2FPhysRev.60.714http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/1941PhRv...60..714Lhttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Physical_Reviewhttp://en.wikipedia.org/wiki/Electrospray#cite_ref-10http://en.wikipedia.org/wiki/Electrospray#cite_ref-MelcherTaylor_9-0http://en.wikipedia.org/wiki/Electrospray#cite_ref-Taylor1969_8-0http://en.wikipedia.org/wiki/Electrospray#cite_ref-Taylor1965_7-0http://www.jstor.org/stable/2415876http://en.wikipedia.org/wiki/JSTORhttp://dx.doi.org/10.1098%2Frspa.1964.0151http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/1964RSPSA.280..383Thttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Proceedings_of_the_Royal_Society_A#Proceedings_of_the_Royal_Society_Ahttp://en.wikipedia.org/wiki/Electrospray#cite_ref-Taylor1964_6-1http://en.wikipedia.org/wiki/Electrospray#cite_ref-Taylor1964_6-0http://dx.doi.org/10.1103%2FPhysRev.10.1http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/1917PhRv...10....1Zhttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Physical_Reviewhttp://en.wikipedia.org/wiki/Electrospray#cite_ref-5http://dx.doi.org/10.1103%2FPhysRev.3.69http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/1914PhRv....3...69Zhttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Physical_Reviewhttp://en.wikipedia.org/wiki/Electrospray#cite_ref-4http://dx.doi.org/10.1063%2F1.868037http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/1994PhFl....6..404Ghttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Physics_of_Fluidshttp://en.wikipedia.org/wiki/Electrospray#cite_ref-3http://en.wikipedia.org/wiki/Philosophical_Magazinehttp://en.wikipedia.org/wiki/Electrospray#cite_ref-2http://en.wikipedia.org/wiki/Electrospray#cite_ref-gilbert_1-0http://en.wikipedia.org/wiki/Liquid_metal_ion_sourcehttp://en.wikipedia.org/wiki/Ozonehttp://en.wikipedia.org/wiki/Air_purifierhttp://en.wikipedia.org/wiki/Electrostatic_precipitatorhttp://en.wikipedia.org/wiki/Aerosolhttp://en.wikipedia.org/wiki/Colloidshttp://en.wikipedia.org/wiki/Electrospray#cite_note-14http://en.wikipedia.org/wiki/Nanotechnology
  • 7/29/2019 Electrospray - Wikipedia, The Free Encyclopedia

    5/5

    (http://dx.doi.org/10.1017%2FS0022112094003472) .

    12. ^ Van Berkel, G. J.; Zhou, F. M. (1995). "Characterization of an electrospray ion source as a controlled-current

    electrolytic cell".Analytical Chemistry67 (17): 29162923. doi:10.1021/ac00113a028

    (http://dx.doi.org/10.1021%2Fac00113a028) .

    13. ^ Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. (2007). "Electrospray ionization for

    mass spectrometry of large biomolecules.". Science246 (4926): 6471. Bibcode 1989Sci...246...64F

    (http://adsabs.harvard.edu/abs/1989Sci...246...64F) . doi:10.1126/science.2675315

    (http://dx.doi.org/10.1126%2Fscience.2675315) . PMID 2675315 (//www.ncbi.nlm.nih.gov/pubmed/2675315)

    .14. ^ Salata, O.V. (2005). "Tools of nanotechnology: Electrospray". Current Nanoscience1: 2533. Bibcode

    2005CNan....1...25S (http://adsabs.harvard.edu/abs/2005CNan....1...25S) . doi:10.2174/1573413052953192

    (http://dx.doi.org/10.2174%2F1573413052953192) .

    Retrieved from "http://en.wikipedia.org/w/index.php?title=Electrospray&oldid=525722555"

    Categories: Electric and magnetic fields in matter Equipment Aerosols

    This page was last modified on 30 November 2012 at 16:44.

    Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may

    apply. See Terms of Use for details.

    Wikipedia is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

    http://www.wikimediafoundation.org/http://wikimediafoundation.org/wiki/Terms_of_Usehttp://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_Licensehttp://en.wikipedia.org/wiki/Help:Categorieshttp://en.wikipedia.org/w/index.php?title=Electrospray&oldid=525722555http://dx.doi.org/10.2174%2F1573413052953192http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/2005CNan....1...25Shttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Electrospray#cite_ref-14http://www.ncbi.nlm.nih.gov/pubmed/2675315http://en.wikipedia.org/wiki/PubMed_Identifierhttp://dx.doi.org/10.1126%2Fscience.2675315http://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/1989Sci...246...64Fhttp://en.wikipedia.org/wiki/Bibcodehttp://en.wikipedia.org/wiki/Science_(journal)http://en.wikipedia.org/wiki/Electrospray#cite_ref-13http://dx.doi.org/10.1021%2Fac00113a028http://en.wikipedia.org/wiki/Digital_object_identifierhttp://en.wikipedia.org/wiki/Analytical_Chemistry_(journal)http://en.wikipedia.org/wiki/Electrospray#cite_ref-12http://dx.doi.org/10.1017%2FS0022112094003472http://en.wikipedia.org/wiki/Category:Aerosolshttp://en.wikipedia.org/wiki/Category:Equipmenthttp://en.wikipedia.org/wiki/Category:Electric_and_magnetic_fields_in_matter