Em636165

Embed Size (px)

Citation preview

  • 7/27/2019 Em636165

    1/75

    E t r o n T ec h EM636165

    Etron Technology, Inc.

    No. 6, Technology Road V, Science-Based Industrial Park, Hsinchu, Taiwan 30077, R.O.C.TEL: (886)-3-5782345 FAX: (886)-3-5778671

    1Mega x 16 Synchronous DRAM (SDRAM)Preliminary (Rev. 1.8, 11/2001)

    FeaturesFast access time: 4.5/5/5/5.5/6.5/7.5 nsFast clock rate: 200/183/166/143/125/100 MHzSelf refresh mode: standard and low powerFully synchronous operation Internal pipelined architecture512K x 16 bit x 2-bankProgrammable Mode registers

    - CAS# Latency: 1, 2, or 3

    - Burst Length: 1, 2, 4, 8, or full page

    - Burst Type: interleaved or linear burst

    - Burst stop function Individual byte controlled by LDQM and UDQMAuto Refresh and Self Refresh4096 refresh cycles/64msCKE power down modeSingle +3.3V0.3V power supply Interface: LVTTL50-pin 400 mil plastic TSOP II package60-Ball, 6.4 mm x 10.1 mm VFBGA package

    (Max total package height=1.0 mm)

    Pin Assignment (Top View)

    Key SpecificationsEM636165 -5/55/6/7/7L/8/10

    tCK3Clock Cycle time(min.) 5/5.5/6/7/7/8/10 ns

    tRASRow Active time(max.) 30/32/36/42/42/48/60 ns

    tAC3Access time from CLK(max.) 4.5/5/5/5.5/5.5/6.5/7.5 ns

    tRC Row Cycle time(min.) 48/48/54/63/63/72/90 ns

    Ordering Information

    1. Operating temperature : 0~70C

    Part Number Frequency Package

    EM636165TS/VE-5 200MHz TSOP II ,VFBGAEM636165TS/VE-55 183MHz TSOP II ,VFBGA

    EM636165TS/VE -6 166MHz TSOP II ,VFBGA

    EM636165TS/VE -7 143MHz TSOP II ,VFBGA

    EM636165TS/VE-7L 143MHz TSOP II,VFBGA

    EM636165TS/VE -8 125MHz TSOP II,VFBGA

    EM636165TS/VE -10 100MHz TSOP II,VFBGA

    2. Industrial Operating temperature : -40~85C

    Part Number Frequency Package

    EM636165TS/VE -10I 100MHz TSOP II,VFBGA

    VDDDQ 0DQ 1VS SQDQ 2DQ 3VDDQDQ 4DQ 5VS SQDQ 6DQ 7VDDQ

    LDQMWE#

    CA S#RA S#

    CS #A 1 1A 1 0

    A 0A 1A 2A 3VDD

    VssDQ15DQ14V SSQDQ13DQ12V DDQDQ11DQ10V SSQDQ 9DQ 8V DDQ

    NCUDQMCL KCKENCA 9A 8A 7A 6A 5A 4Vss

    1234567891 01 11 21 3

    1 41 51 61 71 81 92 02 12 22 32 42 5

    5 04 94 84 74 64 54 44 34 24 14 03 93 8

    3 73 63 53 43 33 23 13 02 92 82 72 6

    A

    B

    C

    D

    E

    F

    G

    H

    V DD

    NC

    A 5

    A7

    VS S

    A8

    DQ 6

    DQ 7

    CL K

    DQ 8

    DQ 9

    DQ 3

    DQ 1

    NC

    D Q 1 5

    D Q 1 4

    D Q 1 2

    V D D Q

    DQ 4

    V D D Q

    D Q 1 1

    V D D Q

    DQ 5V S S Q

    U D Q M

    V S S Q

    D Q 1 0

    V S S Q

    A6

    VD D

    CK E

    A9

    A 0 A 1 0

    NC NC

    V S S Q

    D Q 1 3

    NC

    NC

    NC

    A1 1

    V S S A 4

    NC

    NC

    V D D Q

    DQ 2

    NC

    NC

    NC

    L D Q M W E #

    C A S #R A S #

    CS #

    A3

    A 2 A 1

    J

    K

    L

    M

    N

    P

    R

    1 2 3 4 5 6 7

    DQ 0

  • 7/27/2019 Em636165

    2/75

    E t r o n T ec h 1M x 16 SDRAM EM636165Overview

    The EM636165 SDRAM is a high-speed CMOS synchronous DRAM containing 16 Mbits. It is internally configuredas a dual 512K x 16 bit DRAM with a synchronous interface (all signals are registered on the positive edge of the clocksignal, CLK). Each of the 512K x 16 bit bank is organized as 2048 rows by 256 columns by 16 bits. Read and writeaccesses to the SDRAM are burst oriented; accesses start at a selected location and continue for a programmed numberof locations in a programmed sequence.

    The EM636165 provides for programmable Read or Write burst lengths of 1, 2, 4, 8, or full page, with a bursttermination option. An auto precharge function may be enabled to provide a self-timed row precharge that is initiated atthe end of the burst sequence. The refresh functions, either Auto or Self Refresh are easy to use. By having aprogrammable mode register, the system can choose the most suitable modes to maximize its performance. Thesedevices are well suited for applications requiring high memory bandwidth and particularly well suited to high performancePC applications.

    Block Diagram

    REFRESH

    COUNTER

    COLUMN

    COUNTER

    ADDRESS

    BUFFER

    A0

    A11

    CONTROL

    SIGNAL

    GENERATOR

    LDQMUDQM

    CLOCK

    BUFFER

    COMMAND

    DECODER

    Column Decoder

    Sense Amplifier

    Row

    Decoder

    2048 X 256 X 16

    CELL ARRAY

    (BANK #0)

    Sense Amplifier

    Column Decoder

    Row

    Decoder

    2048 X 256 X 16

    CELL ARRAY

    (BANK #1)

    CLK

    CKE

    CS#RAS#

    CAS#

    WE#

    DQ0

    D

    DQ15

    DQs Buffer

    MODE

    REGISTER

  • 7/27/2019 Em636165

    3/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Pin DescriptionsTable 1. Pin Details of EM636165

    Symbol Type Description

    CLK Input Clock: CLK is driven by the system clock. All SDRAM input signals are sampledon the positive edge of CLK. CLK also increments the internal burst counter andcontrols the output registers.

    CKE Input Clock Enable: CKE activates(HIGH) and deactivates(LOW) the CLK signal. IfCKE goes low synchronously with clock(set-up and hold time same as otherinputs), the internal clock is suspended from the next clock cycle and the state ofoutput and burst address is frozen as long as the CKE remains low. When bothbanks are in the idle state, deactivating the clock controls the entry to the PowerDown and Self Refresh modes. CKE is synchronous except after the deviceenters Power Down and Self Refresh modes, where CKE becomesasynchronous until exiting the same mode. The input buffers, including CLK, aredisabled during Power Down and Self Refresh modes, providing low standby

    power.A11 Input Bank Select: A11(BS) defines to which bank the BankActivate, Read, Write, or

    BankPrecharge command is being applied.

    A0-A10 Input Address Inputs: A0-A10 are sampled during the BankActivate command (rowaddress A0-A10) and Read/Write command (column address A0-A7 with A10defining Auto Precharge) to select one location out of the 256K available in therespective bank. During a Precharge command, A10 is sampled to determine ifboth banks are to be precharged (A10 = HIGH). The address inputs also providethe op-code during a Mode Register Set command.

    CS# Input Chip Select: CS# enables (sampled LOW) and disables (sampled HIGH) thecommand decoder. All commands are masked when CS# is sampled HIGH.

    CS# provides for external bank selection on systems with multiple banks. It isconsidered part of the command code.

    RAS# Input Row Address Strobe: The RAS# signal defines the operation commands inconjunction with the CAS# and WE# signals and is latched at the positive edgesof CLK. When RAS# and CS# are asserted "LOW" and CAS# is asserted"HIGH," either the BankActivate command or the Precharge command isselected by the WE# signal. When the WE# is asserted "HIGH," theBankActivate command is selected and the bank designated by BS is turned onto the active state. When the WE# is asserted "LOW," the Precharge commandis selected and the bank designated by BS is switched to the idle state after theprecharge operation.

    CAS# Input Column Address Strobe: The CAS# signal defines the operation commands in

    conjunction with the RAS# and WE# signals and is latched at the positive edgesof CLK. When RAS# is held "HIGH" and CS# is asserted "LOW," the columnaccess is started by asserting CAS# "LOW." Then, the Read or Write commandis selected by asserting WE# "LOW" or "HIGH."

    WE# Input Write Enable: The WE# signal defines the operation commands in conjunctionwith the RAS# and CAS# signals and is latched at the positive edges of CLK.The WE# input is used to select the BankActivate or Precharge command andRead or Write command.

    LDQM,

    UDQM

    Input Data Input/Output Mask: LDQM and UDQM are byte specific, nonpersistentI/O buffer controls. The I/O buffers are placed in a high-z state whenLDQM/UDQM is sampled HIGH. Input data is masked when LDQM/UDQM issampled HIGH during a write cycle. Output data is masked (two-clock latency)when LDQM/UDQM is sampled HIGH during a read cycle. UDQM masks DQ15-DQ8, and LDQM masks DQ7-DQ0.

  • 7/27/2019 Em636165

    4/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    DQ0-DQ15 Input/Output Data I/O: The DQ0-15 input and output data are synchronized with the positiveedges of CLK. The I/Os are byte-maskable during Reads and Writes.

    NC - No Connect: These pins should be left unconnected.

    VDDQ Supply DQ Power: Provide isolated power to DQs for improved noise immunity.

    ( 3.3V 0.3V )

    VSSQ Supply DQ Ground: Provide isolated ground to DQs for improved noise immunity.

    ( 0 V )

    VDD Supply Power Supply: +3.3V 0.3V

    VSS Supply Ground

  • 7/27/2019 Em636165

    5/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Operation Mode

    Fully synchronous operations are performed to latch the commands at the positive edges of CLK.Table 2 shows the truth table for the operation commands.

    Table 2. Truth Table (Note (1), (2) )

    Command State CKEn-1CKEn DQM(6) A11 A10 A0-9 CS# RAS# CAS# WE#

    BankActivate Idle(3) H X X V V V L L H H

    BankPrecharge Any H X X V L X L L H L

    PrechargeAll Any H X X X H X L L H L

    Write Active(3) H X X V L V L H L L

    Write and AutoPrecharge Active(3) H X X V H V L H L L

    Read Active(3) H X X V L V L H L H

    Read and Autoprecharge Active(3) H X X V H V L H L H

    Mode Register Set Idle H X X V V V L L L LNo-Operation Any H X X X X X L H H H

    Burst Stop Active(4) H X X X X X L H H L

    Device Deselect Any H X X X X X H X X X

    AutoRefresh Idle H H X X X X L L L H

    SelfRefresh Entry Idle H L X X X X L L L H

    SelfRefresh Exit Idle L H X X X X H X X X

    (SelfRefresh) L H H H

    Clock Suspend Mode Entry Active H L X X X X X X X X

    Power Down Mode Entry Any(5) H L X X X X H X X X

    L H H H

    Clock Suspend Mode Exit Active L H X X X X X X X X

    Power Down Mode Exit Any L H X X X X H X X X

    (PowerDown) L H H H

    Data Write/Output Enable Active H X L X X X X X X X

    Data Mask/Output Disable Active H X H X X X X X X X

    Note: 1. V=Valid X=Don't Care L=Low level H=High level2. CKEn signal is input level when commands are provided.

    CKEn-1 signal is input level one clock cycle before the commands are provided.

    3. These are states of bank designated by BS signal.4. Device state is 1, 2, 4, 8, and full page burst operation.5. Power Down Mode can not enter in the burst operation.

    When this command is asserted in the burst cycle, device state is clock suspend mode.6. LDQM and UDQM

  • 7/27/2019 Em636165

    6/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Commands

    1 BankPrecharge command

    (RAS# = "L", CAS# = "H", WE# = "L", A11 = V, A10 = "L", A0-A9 = Don't care)The BankPrecharge command precharges the bank disignated by A11 signal. The precharged

    bank is switched from the active state to the idle state. This command can be asserted anytime aftertRAS(min.) is satisfied from the BankActivate command in the desired bank. The maximum time anybank can be active is specified by tRAS(max.). Therefore, the precharge function must be performedin any active bank within tRAS(max.). At the end of precharge, the precharged bank is still in the idlestate and is ready to be activated again.

    2 PrechargeAll command

    (RAS# = "L", CAS# = "H", WE# = "L", A11 = Don't care, A10 = "H", A0-A9 = Don't care)The PrechargeAll command precharges both banks simultaneously and can be issued even if

    both banks are not in the active state. Both banks are then switched to the idle state.

    3 Read command

    (RAS# = "H", CAS# = "L", WE# = "H", A11= V, A9 = "L", A0-A7 = Column Address)The Read command is used to read a burst of data on consecutive clock cycles from an active

    row in an active bank. The bank must be active for at least t RCD(min.) before the Read command isissued. During read bursts, the valid data-out element from the starting column address will beavailable following the CAS# latency after the issue of the Read command. Each subsequent data-out element will be valid by the next positive clock edge (refer to the following figure). The DQs gointo high-impedance at the end of the burst unless other command is initiated. The burst length,burst sequence, and CAS# latency are determined by the mode register, which is alreadyprogrammed. A full-page burst will continue until terminated (at the end of the page it will wrap tocolumn 0 and continue).

    CLK

    COMMAND

    CAS# latency=1

    tCK1, DQ's

    CAS# latency=2

    tCK2, DQ's

    CAS# latency=3

    tCK3, DQ's

    T0 T 1 T2 T3 T4 T5 T6 T7 T8

    READ A NOP NOP NOP NOP NOP NOP NOP NOP

    DOUT A0 DOUT A1 DOUT A2 DOUT A3

    DOUT A0 DOUT A1 DOUT A2 DOUT A3

    DOUT A0 DOUT A1 DOUT A2 DOUT A3

    Burst Read Operation(Burst Length = 4, CAS# Latency = 1, 2, 3)

  • 7/27/2019 Em636165

    7/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    The read data appears on the DQs subject to the values on the LDQM/UDQM inputs two clocksearlier (i.e. LDQM/UDQM latency is two clocks for output buffers). A read burst without the autoprecharge function may be interrupted by a subsequent Read or Write command to the same bankor the other active bank before the end of the burst length. It may be interrupted by a

    BankPrecharge/ PrechargeAll command to the same bank too. The interrupt coming from the Readcommand can occur on any clock cycle following a previous Read command (refer to the followingfigure).

    CLK

    COMMAND

    CAS# latency=1

    tCK1, DQ's

    CAS# latency=2tCK2, DQ's

    CAS# latency=3

    tCK3, DQ's

    T0 T 1 T2 T3 T4 T5 T6 T7 T8

    READ A READ B NOP NOP NOP NOP NOP NOP NOP

    DOUT A0 DOUT B0 DOUT B1 DOUT B2 DOUT B3

    DOUT A0 DOUT B0 DOUT B1 DOUT B2 DOUT B3

    DOUT A0 DOUT B0 DOUT B1 DOUT B2 DOUT B3

    Read Interrupted by a Read (Burst Length = 4, CAS# Latency = 1, 2, 3)

    The LDQM/UDQM inputs are used to avoid I/O contention on the DQ pins when the interruptcomes from a Write command. The LDQM/UDQM must be asserted (HIGH) at least two clocks priorto the Write command to suppress data-out on the DQ pins. To guarantee the DQ pins against I/Ocontention, a single cycle with high-impedance on the DQ pins must occur between the last read

    data and the Write command (refer to the following three figures). If the data output of the burst readoccurs at the second clock of the burst write, the LDQM/UDQM must be asserted (HIGH) at leastone clock prior to the Write command to avoid internal bus contention.

    READ A NOP NOP NOP NOP WRITE B NOP NOP

    CLK

    DQM

    COMMAND

    DQ's

    T0 T 1 T2 T3 T4 T5 T6 T7 T8

    NOP

    DOUT A0 DINB0DINB1 DINB2

    Must be Hi-Z before

    the Write Command

    : "H" or "L"

    Read to Write Interval (Burst Length 4, CAS# Latency = 3)

  • 7/27/2019 Em636165

    8/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    CLK

    DQM

    COMMAND

    CAS# latency=1

    tCK1, DQ's

    T0 T 1 T2 T3 T4 T5 T6 T7 T8

    NOP NOP NOP READ A WRITE A NOP NOP NOPBANKA

    ACTIVATE

    DIN A0 DIN A1 DIN A2 DIN A3

    DIN A0 DIN A1 DIN A2 DIN A3

    Must be Hi-Z before

    the Write Command

    1 Clk Interval

    CAS# latency=2

    tCK2, DQ's

    : "H" or "L"

    Read to Write Interval (Burst Length 4, CAS# Latency = 1, 2)

    CLK

    DQM

    COMMAND

    CAS# latency=1

    tCK1, DQ's

    T0 T 1 T2 T3 T4 T5 T6 T7 T8

    NOP READ A NOP WRITE B NOP NOP NOP

    DIN B0 DIN B1 DIN B2 DIN B3

    DIN B0 DIN B1 DIN B2 DIN B3

    Must be Hi-Z before

    the Write CommandCAS# latency=2

    tCK2, DQ's

    NOP NOP

    DOUT A0

    : "H" or "L"

    Read to Write Interval (Burst Length 4, CAS# Latency = 1, 2)

    A read burst without the auto precharge function may be interrupted by a BankPrecharge/PrechargeAll command to the same bank. The following figure shows the optimum time thatBankPrecharge/ PrechargeAll command is issued in different CAS# latency.

    CLK

    COMMAND

    CAS# latency=2

    tCK2, DQ's

    T0 T 1 T2 T3 T4 T5 T6 T7 T8

    READ A NOP NOP NOP NOP Activate NOPNOP Precharge

    CAS# latency=3

    tCK3, DQ's

    DOUT A0 DOUT A1 DOUT A2 DOUT A3

    DOUT A0 DOUT A1 DOUT A2 DOUT A3

    DOUT A0 DOUT A1 DOUT A2 DOUT A3

    ADDRESS

    CAS# latency=1

    tCK1, DQ's

    tRP

    Bank,Col A

    Bank(s)Bank,Row

    Read to Precharge (CAS# Latency = 1, 2, 3)

  • 7/27/2019 Em636165

    9/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    4 Read and AutoPrecharge command

    (RAS# = "H", CAS# = "L", WE# = "H", A11 = V, A10 = "H", A0-A7 = Column Address)The Read and AutoPrecharge command automatically performs the precharge operation after

    the read operation. Once this command is given, any subsequent command cannot occur within a

    time delay of {tRP(min.) + burst length}. At full-page burst, only the read operation is performed in thiscommand and the auto precharge function is ignored.

    5 Write command

    (RAS# = "H", CAS# = "L", WE# = "L", A11 = V, A10 = "L", A0-A7 = Column Address)The Write command is used to write a burst of data on consecutive clock cycles from an active

    row in an active bank. The bank must be active for at least t RCD(min.) before the Write command isissued. During write bursts, the first valid data-in element will be registered coincident with the Writecommand. Subsequent data elements will be registered on each successive positive clock edge(refer to the following figure). The DQs remain with high-impedance at the end of the burst unlessanother command is initiated. The burst length and burst sequence are determined by the moderegister, which is already programmed. A full-page burst will continue until terminated (at the end of

    the page it will wrap to column 0 and continue).

    CLK

    COMMAND

    T0 T 1 T2 T3 T4 T5 T6 T7 T8

    DIN A3

    NOP WRITE A NOP NOP NOP NOP NOPNOP NOP

    DIN A0 DIN A1 DIN A2DQ0 - DQ3

    The first data element and the write

    are registered on the same clock edge.Extra data is masked.

    don't care

    Burst Write Operation (Burst Length = 4, CAS# Latency = 1, 2, 3)

    A write burst without the auto precharge function may be interrupted by a subsequent Write,BankPrecharge/PrechargeAll, or Read command before the end of the burst length. An interruptcoming from Write command can occur on any clock cycle following the previous Write command(refer to the following figure).

    CLK

    COMMAND

    T0 T 1 T2 T3 T4 T5 T6 T7 T8

    DIN B2

    NOP WRITE A NOP NOP NOP NOP NOPWRITE B NOP

    DIN A0 DIN B0 DIN B1DQ's DIN B3

    1 Clk Interval

    Write Interrupted by a Write (Burst Length = 4, CAS# Latency = 1, 2, 3)

  • 7/27/2019 Em636165

    10/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    The Read command that interrupts a write burst without auto precharge function should beissued one cycle after the clock edge in which the last data-in element is registered. In order to avoiddata contention, input data must be removed from the DQs at least one clock cycle before the firstread data appears on the outputs (refer to the following figure). Once the Read command is

    registered, the data inputs will be ignored and writes will not be executed.

    CLK

    COMMAND

    T0 T 1 T2 T3 T4 T5 T6 T7 T8

    DOUT B2

    NOP WRITE A NOP NOP NOP NOP NOPREAD B NOP

    DIN A0

    DOUT B0 DOUT B1CAS# latency=1

    tCK1, DQ'sDOUT B3

    don't care

    DIN A0

    DOUT B2DOUT B0 DOUT B1 DOUT B3

    DIN A0 don't care don't care DOUT B2DOUT B0 DOUT B1 DOUT B3

    Input data for the write is masked.

    Input data must be removed from the DQ's at least one clock

    cycle before the Read data appears on the outputs to avoid

    data contention.

    CAS# latency=2

    tCK2, DQ's

    CAS# latency=3

    tCK3, DQ's

    Write Interrupted by a Read (Burst Length = 4, CAS# Latency = 1, 2, 3)

    The BankPrecharge/PrechargeAll command that interrupts a write burst without the autoprecharge function should be issued m cycles after the clock edge in which the last data-in elementis registered, where m equals tWR/tCK rounded up to the next whole number. In addition, theLDQM/UDQM signals must be used to mask input data, starting with the clock edge following the

    last data-in element and ending with the clock edge on which the BankPrecharge/PrechargeAllcommand is entered (refer to the following figure).

    CLK

    T0 T 1 T2 T3 T4 T5 T6

    WRITECOMMAND

    BANK (S) ROW

    NOP NOPPrecharge NOP NOP Activate

    BANKCOL n

    DIN

    n

    DIN

    n + 1

    DQM

    ADDRESS

    DQ

    tWR

    tRP

    : don't care

    Note: The LDQM/UDQM can remain low in this example if the length of the write burst is 1 or 2.

    Write to Precharge

  • 7/27/2019 Em636165

    11/75

    E t r o n T ec h 1M x 16 SDRAM EM6361656 Write and AutoPrecharge command (refer to the following figure)

    (RAS# = "H", CAS# = "L", WE# = "L", A11 = V, A10 = "H", A0-A7 = Column Address)The Write and AutoPrecharge command performs the precharge operation automatically after

    the write operation. Once this command is given, any subsequent command can not occur within atime delay of {(burst length -1) + tWR + tRP(min.)}. At full-page burst, only the write operation is

    performed in this command and the auto precharge function is ignored.

    CLK

    COMMAND

    T0 T 1 T2 T3 T4 T5 T6 T7 T8

    NOP NOP NOP NOP NOPNOP NOP

    DIN A0 DIN A1CAS# latency=1

    tCK1, DQ's

    CAS# latency=2

    tCK2, DQ's

    CAS# latency=3

    tCK3

    , DQ's

    DIN A0 DIN A1

    DIN A0 DIN A1

    tDAL

    *

    *

    *tDAL= tWR + tRP * Begin AutoPrechargeBank can be reactivated at completion of tDAL

    Bank AActivate

    Write AAutoPrecharge

    tDAL

    tDAL

    Burst Write with Auto-Precharge (Burst Length = 2, CAS# Latency = 1, 2, 3)

    7 Mode Register Set command

    (RAS# = "L", CAS# = "L", WE# = "L", A11 = V, A10 = V, A0-A9 = Register Data)The mode register stores the data for controlling the various operating modes of SDRAM. The

    Mode Register Set command programs the values of CAS# latency, Addressing Mode and BurstLength in the Mode register to make SDRAM useful for a variety of different applications. The defaultvalues of the Mode Register after power-up are undefined; therefore this command must be issuedat the power-up sequence. The state of pins A0~A9 and A11 in the same cycle is the data written tothe mode register. One clock cycle is required to complete the write in the mode register (refer to thefollowing figure). The contents of the mode register can be changed using the same command andthe clock cycle requirements during operation as long as both banks are in the idle state.

  • 7/27/2019 Em636165

    12/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    RAS#

    T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10

    CLK

    CKE

    CS#

    CAS#

    WE#

    A11

    A10

    A0-A9

    DQM

    DQ

    tCK2

    Clock min.

    Address Key

    tRPHi-Z

    PrechargeAll Mode Register

    Set CommandAny

    Command

    Mode Register Set Cycle (CAS# Latency = 1, 2, 3)

    The mode register is divided into various fields depending on functionality.

    Burst Length Field (A2~A0)

    This field specifies the data length of column access using the A2~A0 pins and selects theBurst Length to be 1, 2, 4, 8, or full page.

    A2 A1 A0 Burst Length

    0 0 0 1

    0 0 1 2

    0 1 0 4

    0 1 1 8

    1 0 0 Reserved

    1 0 1 Reserved

    1 1 0 Reserved

    1 1 1 Full Page

  • 7/27/2019 Em636165

    13/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Addressing Mode Select Field (A3)

    The Addressing Mode can be one of two modes, Interleave Mode or Sequential Mode.Sequential Mode supports burst length of 1, 2, 4, 8, or full page, but Interleave Mode onlysupports burst length of 4 and 8.

    A3 Addressing Mode

    0 Sequential

    1 Interleave

    --- Addressing Sequence of Sequential Mode

    An internal column address is performed by increasing the address from the columnaddress which is input to the device. The internal column address is varied by the BurstLength as shown in the following table. When the value of column address, (n + m), inthe table is larger than 255, only the least significant 8 bits are effective.

    Data n 0 1 2 3 4 5 6 7 - 255 256 257 -

    Column Address n n+1 n+2 n+3 n+4 n+5 n+6 n+7 - n+255 n n+1 -

    2 words:

    Burst Length 4 words:

    8 words:

    Full Page: Column address is repeated until terminated.

    --- Addressing Sequence of Interleave Mode

    A column access is started in the input column address and is performed by invertingthe address bits in the sequence shown in the following table.

    Data n Column Address Burst Length

    Data 0 A7 A6 A5 A4 A3 A2 A1 A0Data 1 A7 A6 A5 A4 A3 A2 A1 A0# 4 words

    Data 2 A7 A6 A5 A4 A3 A2 A1# A0

    Data 3 A7 A6 A5 A4 A3 A2 A1# A0# 8 words

    Data 4 A7 A6 A5 A4 A3 A2# A1 A0

    Data 5 A7 A6 A5 A4 A3 A2# A1 A0#

    Data 6 A7 A6 A5 A4 A3 A2# A1# A0

    Data 7 A7 A6 A5 A4 A3 A2# A1# A0#

    CAS# Latency Field (A6~A4)

    This field specifies the number of clock cycles from the assertion of the Read command tothe first read data. The minimum whole value of CAS# Latency depends on the frequencyof CLK. The minimum whole value satisfying the following formula must be programmed

    into this field. tCAC(min) CAS# Latency X tCK

    A6 A5 A4 CAS# Latency

    0 0 0 Reserved

    0 0 1 1 clock

    0 1 0 2 clocks

    0 1 1 3 clocks

    1 X X Reserved

  • 7/27/2019 Em636165

    14/75

    E t r o n T ec h 1M x 16 SDRAM EM636165 Test Mode field (A8~A7)

    These two bits are used to enter the test mode and must be programmed to "00" in normaloperation.

    A8 A7 Test Mode

    0 0 normal mode

    0 1 Vendor Use Only

    1 X Vendor Use Only

    Single Write Mode (A9)

    This bit is used to select the write mode. When the BS bit is "0", the Burst-Read-Burst-Write mode is selected. When the BS bit is "1", the Burst-Read-Single-Write mode isselected.

    A9 Single Write Mode

    0 Burst-Read-Burst-Write

    1 Burst-Read-Single-Write

    Note: A10 and A11 should stay L during mode set cycle.

    8 No-Operation command

    (RAS# = "H", CAS# = "H", WE# = "H")

    The No-Operation command is used to perform a NOP to the SDRAM which is selected (CS#

    is Low). This prevents unwanted commands from being registered during idle or wait states.

    9 Burst Stop command

    (RAS# = "H", CAS# = "H", WE# = "L")The Burst Stop command is used to terminate either fixed-length or full-page bursts. This

    command is only effective in a read/write burst without the auto precharge function. The terminatedread burst ends after a delay equal to the CAS# latency (refer to the following figure). Thetermination of a write burst is shown in the following figure.

    CLK

    COMMAND

    T0 T 1 T2 T3 T4 T5 T6 T7 T8

    READ A NOP NOP NOP NOP NOP NOPNOP Burst Stop

    DOUT A0 DOUT A1 DOUT A2 DOUT A3CAS# latency=1

    tCK1, DQ's

    CAS# latency=2

    tCK2, DQ's

    CAS# latency=3

    tCK3, DQ's

    DOUT A0 DOUT A1 DOUT A2 DOUT A3

    DOUT A0 DOUT A1 DOUT A2 DOUT A3

    The burst ends after a delay equal to the CAS# latency.

    Termination of a Burst Read Operation (Burst Length 4, CAS# Latency = 1, 2, 3)

  • 7/27/2019 Em636165

    15/75

  • 7/27/2019 Em636165

    16/75

    E t r o n T ec h 1M x 16 SDRAM EM63616514 Clock Suspend Mode Entry / PowerDown Mode Entry command (refer to Figures 6, 7, and 8 in

    Timing Waveforms)

    (CKE = "L")When the SDRAM is operating the burst cycle, the internal CLK is suspended(masked) from the

    subsequent cycle by issuing this command (asserting CKE "LOW"). The device operation is held

    intact while CLK is suspended. On the other hand, when both banks are in the idle state, thiscommand performs entry into the PowerDown mode. All input and output buffers (except the CKEbuffer) are turned off in the PowerDown mode. The device may not remain in the Clock Suspend orPowerDown state longer than the refresh period (64ms) since the command does not perform anyrefresh operations.

    15 Clock Suspend Mode Exit / PowerDown Mode Exit command (refer to Figures 6, 7, and 8 in TimingWaveforms, CKE= "H")

    When the internal CLK has been suspended, the operation of the internal CLK is reinitiatedfrom the subsequent cycle by providing this command (asserting CKE "HIGH"). When the device isin the PowerDown mode, the device exits this mode and all disabled buffers are turned on to theactive state. tPDE(min.) is required when the device exits from the PowerDown mode. Anysubsequent commands can be issued after one clock cycle from the end of this command.

    16 Data Write / Output Enable, Data Mask / Output Disable command (LDQM/UDQM = "L", "H")

    During a write cycle, the LDQM/UDQM signal functions as a Data Mask and can control everyword of the input data. During a read cycle, the LDQM/UDQM functions as the controller of outputbuffers. LDQM/UDQM is also used for device selection, byte selection and bus control in a memorysystem. LDQM controls DQ0 to DQ7, UDQM controls DQ8 to DQ15.

  • 7/27/2019 Em636165

    17/75

    E t r o n T ec h 1M x 16 SDRAM EM636165Absolute Maximum Rating

    Symbol Item Rating Unit Note

    -5/55/6/7/7L/8/10 -10I

    VIN, VOUT Input, Output Voltage - 1.0 ~ 4.6 V 1

    VDD, VDDQ Power Supply Voltage -1.0 ~ 4.6 V 1

    TOPR Operating Temperature 0 ~ 70 -40 ~ 85 C 1

    TSTG Storage Temperature - 55 ~ 125 C 1

    PD Power Dissipation 1 0.6 W 1

    IOUT Short Circuit Output Current 50 mA 1

    Recommended D.C. Operating Conditions (Ta = -40~85C)

    Symbol Parameter Min. Typ. Max. Unit Note

    VDD Power Supply Voltage 3.0 3.3 3.6 V 2

    VDDQ Power Supply Voltage(for I/O Buffer) 3.0 3.3 3.6 V 2VIH LVTTL Input High Voltage 2.0 VDDQ+0.3 V 2

    VIL LVTTL Input Low Voltage - 0.3 0.8 V 2

    Capacitance (VDD = 3.3V, f = 1MHz, Ta = 25C)

    Symbol Parameter Min. Max. Unit

    CI Input Capacitance 2 5 pF

    CI/O Input/Output Capacitance 4 7 pF

    Note: These parameters are periodically sampled and are not 100% tested.

    Recommended D.C. Operating Conditions (VDD = 3.3V 0.3V)1. Ta = 0~70C

    - 5/55/6/7/8/10 - 7LDescription/Test condition Symbol

    Max. Unit Note

    Operating Current

    tRC tRC(min), Outputs Open, Inputsignal one transition per one cycle

    1 bankoperation IDD1

    130/125/115/100/95 /85 40 3

    Precharge Standby Current in non-power down mode

    tCK = tCK(min), CS# VIH, CKE = VIHInput signals are changed once during 30ns.

    IDD2N115/110/90/85/75/60 15 3

    Precharge Standby Current in power down mode

    tCK = tCK(min), CKE VIL(max) IDD2P2 0.8

    3Precharge Standby Current in power down mode

    tCK = - CKE VIL(max) IDD2PS2 0.8

    Active Standby Current in power down mode

    CKE VIL(max), tCK = tCK(min) IDD3P2 1.5

    mA

    3

    Active Standby Current in non-power down mode

    CKE VIH(min), tCK = tCK(min) IDD3N105/100/90/80/70/55 20

    Operating Current (Burst mode)tCK=tCK(min), Outputs Open, Multi-bank interleave,gapless data IDD4

    165/160/150/140/130/115 40 3, 4

    Refresh Current

    tRC tRC(min) IDD5115/110/100/90/90 /80 40 3

    Self Refresh Current

    VIH VDD - 0.2, 0V VIL 0.2V IDD62 0.5

  • 7/27/2019 Em636165

    18/75

    E t r o n T ec h 1M x 16 SDRAM EM6361652. Industrial Operating temperature : Ta = -40~85C

    EM636165-10IDescription/Test condition Symbol

    Max. Unit Note

    Operating Current

    tRC tRC(min), Outputs Open, Input

    signal one transition per one cycle

    1 bank operation IDD1 80 3

    Precharge Standby Current in non-power down mode

    tCK = tCK(min), CS# VIH, CKE = VIHInput signals are changed once during 30ns.

    IDD2N 35 3

    Precharge Standby Current in power down mode

    tCK = tCK(min), CKE VIL(max)IDD2P 3 3

    Precharge Standby Current in power down mode

    tCK = - CKE VIL(max)IDD2PS 2 mA

    Active Standby Current in power down mode

    CKE VIL(max), tCK = tCK(min)IDD3P 7 3

    Active Standby Current in non-power down mode

    CKE VIH(min), tCK = tCK(min)IDD3N 51

    Operating Current (Burst mode)tCK=tCK(min), Outputs Open, Multi-bank interleave,gapless data IDD4 100 3, 4

    Refresh Current

    tRC tRC(min)IDD5 80 3

    Self Refresh Current

    VIH VDD - 0.2, 0V VIL 0.2V IDD6 2

    Parameter Description Min. Max. Unit Note

    IIL Input Leakage Current

    ( 0V VIN VDD, All other pins not under test = 0V )- 10 10 A

    IOL Output Leakage CurrentOutput disable, 0V VOUT VDDQ)

    - 10 10 A

    VOH LVTTL Output "H" Level Voltage( IOUT = -2mA )

    2.4 V

    VOL LVTTL Output "L" Level Voltage( IOUT = 2mA )

    0.4 V

  • 7/27/2019 Em636165

    19/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Electrical Characteristics and Recommended A.C. Operating Conditions(VDD = 3.3V 0.3V, Ta = -40~85C) (Note: 5, 6, 7, 8)

    - 5/55/6/7/7L/8/10Symbol A.C. Parameter

    Min. Max. Unit NotetRC Row cycle time

    (same bank)48/48/54/63/63/72/90 9

    tRCD RAS# to CAS# delay

    (same bank)15/16/16/16/16/16/30 9

    tRP Precharge to refresh/row activatecommand (same bank)

    15/16/16/16/16/16/30 ns 9

    tRRD Row activate to row activate delay

    (different banks)10/11/12/14/14/16/20 9

    tRAS Row activate to precharge time

    (same bank)30/32/36/42/42/48/60 100,000

    tWR Write recovery time 1 Cycle

    tCK1 CL* = 1 -/19/20/20/20/20/30

    tCK2 Clock cycle time CL* = 2 -/7/7.5/8/8/8/15 10

    tCK3 CL* = 3 5/5.5/6/7/7/8/10

    tCH Clock high time 2/2/2/2.5/2.5/3/3.5 ns 11

    tCL Clock low time 2/2/2/2.5/2.5/3/3.5 11

    tAC1 Access time from CLK CL* = 1 -/7/8/13/13/18/27

    tAC2 (positive edge) CL* = 2 -/5.5/6/6.5/6.5/7/12 11

    tAC3 CL* = 3 4.5/5/5/5.5/5.5/6.5/7.5

    tCCD CAS# to CAS# Delay time 1 Cycle

    tOH Data output hold time 1.8/2/2/2/2/2/3 10

    tLZ Data output low impedance 1/1/1/1/1/2/2

    tHZ Data output high impedance 3/3.5/4/5/5/6/8 8

    tIS Data/Address/Control Input set-up time 2/2/2/2/2/2.5/3 ns 11

    tIH Data/Address/Control Input hold time 1 11

    tPDE PowerDown Exit set-up time 5/5.5/6/7/7/8/10

    tREF Refresh time 64 ms

    +

    CL is CAS# Latency.

    Note:

    1. Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to thedevice.

    2. All voltages are referenced to VSS.VIH(Max)=4.6 for pulse width5ns.VIL(Min)=-1.5Vfor pulse width5ns.

    3. These parameters depend on the cycle rate and these values are measured by the cycle rate under theminimum value of tCK and tRC. Input signals are changed one time during tCK.

    4. These parameters depend on the output loading. Specified values are obtained with the output open.

    5. Power-up sequence is described in Note 10.

  • 7/27/2019 Em636165

    20/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    6. A.C. Test Conditions

    LVTTL Interface

    Reference Level of Output Signals 1.4V / 1.4V

    Output Load Reference to the Under Output Load (B)

    Input Signal Levels 2.4V / 0.4V

    Transition Time (Rise and Fall) of Input Signals 1ns

    Reference Level of Input Signals 1.4V

    3.3V

    1.2k

    87 030pF

    Output

    1.4V

    50

    Output

    30pF

    50Z0=

    LVTTL D.C. Test Load (A) LVTTL A.C. Test Load (B)

    7. Transition times are measured between VIH and VIL. Transition(rise and fall) of input signals are in a fixedslope (1 ns).

    8. tHZ defines the time in which the outputs achieve the open circuit condition and are not at reference levels.

    9. These parameters account for the number of clock cycle and depend on the operating frequency of the

    clock as follows:

    the number of clock cycles = specified value of timing/Clock cycle time

    (count fractions as a whole number)

    10.If clock rising time is longer than 1 ns, ( tR / 2 -0.5) ns should be added to the parameter.

    11.Assumed input rise and fall time tT ( tR & tF ) = 1 ns

    If tR or tF is longer than 1 ns, transient time compensation should be considered, i.e.,

    12. Power up Sequence

    Power up must be performed in the following sequence.

    1) Power must be applied to VDD and VDDQ(simultaneously) when all input signals are held "NOP" state

    and both CKE = "H" and LDQM/UDQM = "H." The CLK signals must be started at the same time.

    2) After power-up, a pause of 200seconds minimum is required. Then, it is recommended that

    LDQM/UDQM is held "HIGH" (VDD levels) to ensure DQ output is in high impedance.

    3) Both banks must be precharged.

    4) Mode Register Set command must be asserted to initialize the Mode register.

    5) A minimum of 2 Auto-Refresh dummy cycles must be required to stabilize the internal circuitry of the

    device.

  • 7/27/2019 Em636165

    21/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Timing Waveforms

    Figure 1. AC Parameters for Write Timing (Burst Length=4, CAS# Latency=2)

    A11

    T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    tCH tCL tCK2

    t IS

    tIS tIH

    Begin AutoPrechargeBank A

    Begin AutoPrechargeBank B

    t IS

    tIH

    tIS

    RAx RBx

    RBx CAx RBx CBx RAy

    RAy

    CAy

    RAz

    RAz RBy

    RBy

    tRCD tDALtRC tIS tIH

    tWR tRP tRRD

    Ax0 Ax1 Ax2 Ax3 Bx0 Bx1 Bx2 Bx3 Ay0 Ay1 Ay2 Ay3

    ActivateCommand

    Bank A

    Write withAutoPrecharge

    CommandBank A

    ActivateCommand

    Bank B

    Write withAutoPrecharge

    CommandBank B

    ActivateCommand

    Bank A

    WriteCommand

    Bank A

    PrechargeCommand

    Bank A

    ActivateCommandBank A

    ActivateCommand

    Bank B

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0-A9

    DQM

    DQ

    Hi-Z

  • 7/27/2019 Em636165

    22/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 2. AC Parameters for Read Timing (Burst Length=2, CAS# Latency=2)

    T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T 11 T12 T13

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A11

    A10

    A0-A9

    DQM

    DQ

    tCH tCL tCK2

    t IS

    t IS

    tIH

    Begin AutoPrechargeBank B

    tIH

    tIH

    tIS

    RAx

    RAx CAx RBx

    RBx

    CBx

    RAy

    RAy

    tRRDtRAS

    tRC

    tRCDtAC2tLZ

    tOH

    tHZ

    Ax0 Ax1 Bx0 Bx1

    tRP

    ActivateCommand

    Bank A

    ReadCommand

    Bank A

    ActivateCommand

    Bank B

    Read withAuto Precharge

    CommandBank B

    PrechargeCommand

    Bank A

    ActivateCommand

    Bank A

    Hi-Z

    tAC2

    tHZ

  • 7/27/2019 Em636165

    23/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 3. Auto Refresh (CBR) (Burst Length=4, CAS# Latency=2)

    T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A11

    A10

    A0-A9

    DQM

    DQ

    tCK2

    RAx

    RAx

    tRP tRC

    Ax0 Ax1 Ax2

    PrechargeAllCommand

    AutoRefreshCommand

    AutoRefreshCommand

    ActivateCommand

    Bank A

    ReadCommand

    Bank A

    tRC

    Ax3

    CAx

  • 7/27/2019 Em636165

    24/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 4. Power on Sequene and Auto Refresh (CBR)

    T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    BS

    A10

    A0-A9

    DQM

    DQ

    tCK2

    High level

    is reauiredMinimum of 2 Refresh Cycles are required

    Hi-ZtRP tRC

    Address Key

    Inputs must bestable for 200s

    PrechargeALLCommand

    1st AutoRefreshCommand

    2nd Auto RefreshCommand

    Mode RegisterSet Command

    AnyCommand

  • 7/27/2019 Em636165

    25/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 5. Self Refresh Entry & Exit Cycle

    CLK

    CKE

    CS#

    RAS#

    CAS#

    A11

    A0-A9

    WE#

    DQM

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

    DQ

    *Note 1

    *Note 2

    tIS

    *Note 3

    *Note 4 tRC(min) *Note 7

    *Note 5

    *Note 6

    *Note 8*Note 8

    Hi-Z Hi-Z

    Self Refresh Enter SelfRefresh Exit AutoRefresh

    tSRXtPDE

    Note: To Enter SelfRefresh Mode

    1. CS#, RAS# & CAS# with CKE should be low at the same clock cycle.2. After 1 clock cycle, all the inputs including the system clock can be don't care except for CKE.3. The device remains in SelfRefresh mode as long as CKE stays "low".

    Once the device enters SelfRefresh mode, minimum tRAS is required before exit from SelfRefresh.

    To Exit SelfRefresh Mode1. System clock restart and be stable before returning CKE high.2. Enable CKE and CKE should be set high for minimum time of tSRX.3. CS# starts from high.4. Minimum tRC is required after CKE going high to complete SelfRefresh exit.5. 2048 cycles of burst AutoRefresh is required before SelfRefresh entry and after SelfRefresh exit if the

    system uses burst refresh.

  • 7/27/2019 Em636165

    26/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 6.1. Clock Suspension During Burst Read (Using CKE)(Burst Length=4, CAS# Latency=1)

    T0 T 1 T2 T3 T4 T5 T6 T8 T9 T10 T11 T13 T14 T15 T16 T17 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A11

    A10

    A0-A9

    DQM

    DQ

    tCK1

    RAx

    RAx CAx

    Hi-ZAx0 Ax1 Ax2 Ax3

    ActivateCommand

    Bank ARead

    CommandBank A

    Clock Suspend1 Cycle

    Clock Suspend2 Cycles

    Clock Suspend3 Cycles

    tHZ

    T7 T12 T18

    Note: CKE to CLK disable/enable = 1 clock

  • 7/27/2019 Em636165

    27/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 6.2. Clock Suspension During Burst Read (Using CKE)(Burst Length=4, CAS# Latency=2)

    T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A11

    A10

    A0-A9

    DQM

    DQ

    tCK2

    RAx

    RAx CAx

    Hi-ZAx0 Ax1 Ax2 Ax3

    ActivateCommand

    Bank A

    ReadCommand

    Bank A

    Clock Suspend1 Cycle

    Clock Suspend2 Cycles

    Clock Suspend3 Cycles

    tHZ

    Note: CKE to CLK disable/enable = 1 clock

  • 7/27/2019 Em636165

    28/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 6.3. Clock Suspension During Burst Read (Using CKE)(Burst Length=4, CAS# Latency=3)

    T0 T 1 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A11

    A10

    A0-A9

    DQM

    DQ

    tCK3

    RAx

    RAx CAx

    Hi-ZAx0 Ax1 Ax2 Ax3

    ActivateCommand

    Bank A

    ReadCommand

    Bank A

    Clock Suspend1 Cycle

    Clock Suspend2 Cycles

    Clock Suspend3 Cycles

    tHZ

    T 2

    Note: CKE to CLK disable/enable = 1 clock

  • 7/27/2019 Em636165

    29/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 7.1. Clock Suspension During Burst Write (Using CKE)

    (Burst Length = 4, CAS# Latency = 1)

    T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A11

    A10

    A0-A8

    DQM

    DQ

    tCK1

    RAx

    RAx CAx

    Hi-ZDAx0

    ActivateCommand

    Bank A

    WriteCommand

    Bank A

    Clock Suspend2 Cycles

    Clock Suspend3 Cycles

    DAx1 DAx2 DAx3

    Clock Suspend1 Cycle

    Note: CKE to CLK disable/enable = 1 clock

  • 7/27/2019 Em636165

    30/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 7.2. Clock Suspension During Burst Write (Using CKE)(Burst Length=4, CAS# Latency=2)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A11

    A10

    A0-A9

    DQM

    DQ

    tCK2

    RAx

    RAx CAx

    Hi-ZDAx0

    ActivateCommandBank A

    WriteCommand

    Bank A

    Clock Suspend2 Cycles

    Clock Suspend3 Cycles

    DAx1 DAx2 DAx3

    Clock Suspend1 Cycle

    T22

    Note: CKE to CLK disable/enable = 1 clock

  • 7/27/2019 Em636165

    31/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 7.3. Clock Suspension During Burst Write (Using CKE)(Burst Length=4, CAS# Latency=3)

    T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A11

    A10

    A0-A9

    DQM

    DQDAx1 DAx2 DAx3

    tCK3

    RAx

    RAx CAx

    Hi-Z

    ActivateCommand

    Bank A WriteCommand

    Bank A

    Clock Suspend2 Cycles

    Clock Suspend3 Cycles

    Clock Suspend1 Cycle

    DAx0

    Note: CKE to CLK disable/enable = 1 clock

  • 7/27/2019 Em636165

    32/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 8. Power Down Mode and Clock Mask (Burst Lenght=4, CAS# Latency=2)

    T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A11

    A10

    A0~A8

    DQM

    DQ

    tCK2 tIS tPDE

    RAx

    RAx CAx

    tHZ

    Ax3Ax2Ax1Ax0

    ActivateCommandBank A

    Power DownMode Entry

    Power DownMode Exit

    ReadCommand

    Bank A

    Clock MaskStart

    Clock MaskEnd

    PrechargeCommandBank A

    Power DownMode Entry

    PRECHARGESTANDBY

    AnyCommand

    Power DownMode Exit

    Hi-Z

    Valid

    ACTIVESTANDBY

  • 7/27/2019 Em636165

    33/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 9.1. Random Column Read (Page within same Bank)(Burst Length=4, CAS# Latency=1)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A8

    DQM

    DQ

    A11

    tCK1

    ActivateCommand

    Bank A

    ReadCommand

    Bank A

    ReadCommand

    Bank A

    PrechargeCommand

    Bank A

    Aw0 Aw1 Aw2 Aw3 Ax0 Ax1 Ay0 Ay1 Ay2 Ay3

    RAw

    RAw CAw CAx CAy

    ReadCommand

    Bank A

    Hi-Z

    CAz

    Az0 Az1 Az2 Az3

    ReadCommand

    Bank A

    ActivateCommand

    Bank A

    RAz

    RAz

  • 7/27/2019 Em636165

    34/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 9.2. Random Column Read (Page within same Bank)(Burst Length=4, CAS# Latency=2)

    T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A8

    DQM

    DQ

    A11

    tCK2

    ActivateCommand

    Bank A

    ReadCommand

    Bank A

    ReadCommand

    Bank A

    PrechargeCommand

    Bank A

    Aw0 Aw1 Aw2 Aw3 Ax0 Ax1 Ay0 Ay1 Ay2 Ay3

    RAw

    RAw CAw CAx CAy

    ReadCommand

    Bank A

    Hi-Z

    CAz

    Az0 Az1 Az2 Az3

    ReadCommand

    Bank A

    ActivateCommand

    Bank A

    RAz

    RAz

  • 7/27/2019 Em636165

    35/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 9.3. Random Column Read (Page within same Bank)(Burst Length=4, CAS# Latency=3)

    T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A1

    1

    tCK3

    ActivateCommand

    Bank A

    ReadCommand

    Bank A

    ReadCommand

    Bank A

    PrechargeCommand

    Bank A

    Aw0 Aw1 Aw2 Aw3 Ax0 Ax1 Ay0 Ay1 Ay2 Ay3

    RAw

    RAw CAw CAx CAy

    ReadCommand

    Bank A

    Hi-Z

    CAz

    ReadCommand

    Bank A

    ActivateCommand

    Bank A

    RAz

    RAz

    Az0

  • 7/27/2019 Em636165

    36/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 10.1. Random Column Write (Page within same Bank)(Burst Length=4, CAS# Latency=1)

    T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK1

    ActivateCommand

    Bank A

    WriteCommand

    Bank A

    WriteCommand

    Bank B

    PrechargeCommand

    Bank B

    DBw0 DBw1 DBw2 DBw3 DBx0 DBx1 DBy0 DBy1 DBy2 DBy3

    RBw

    RBw CBw CBx CBy

    WriteCommand

    Bank B

    Hi-Z

    CBz

    DBz0 DBz1 DBz2 DBz3

    WriteCommand

    Bank B

    ActivateCommand

    Bank B

    RBz

    RBz

  • 7/27/2019 Em636165

    37/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 10.2. Random Column Write (Page within same Bank)(Burst Length=4, CAS# Latency=2)

    T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A8

    DQM

    DQ

    A11

    tCK2

    ActivateCommand

    Bank A

    WriteCommand

    Bank B

    WriteCommand

    Bank B

    PrechargeCommand

    Bank B

    DBw0 DBw1 DBw2 DBw3 DBx0 DBx1 DBy0 DBy1 DBy2 DBy3

    RBw

    RBw CBw CBx CBy

    WriteCommand

    Bank B

    Hi-Z

    CBz

    DBz0 DBz1 DBz2 DBz3

    WriteCommand

    Bank B

    ActivateCommand

    Bank B

    RBz

    RBz

  • 7/27/2019 Em636165

    38/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 10.3. Random Column Write (Page within same Bank)(Burst Length=4, CAS# Latency=3)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK3

    ActivateCommand

    Bank A

    WriteCommand

    Bank B

    WriteCommand

    Bank B

    PrechargeCommand

    Bank B

    DBw0 DBw1 DBw2 DBw3 DBx0 DBx1 DBy0 DBy1 DBy2 DBy3

    RBw

    RBw CBw CBx CBy

    WriteCommand

    Bank B

    Hi-Z

    CBz

    DBz0 DBz1

    WriteCommand

    Bank B

    ActivateCommand

    Bank B

    RBz

    RBz

    DBz2

  • 7/27/2019 Em636165

    39/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 11.1. Random Row Read (Interleaving Banks)(Burst Length=8, CAS# Latency=1)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK1

    ActivateCommand

    Bank B

    ActivateCommand

    Bank A

    PrechargeCommand

    Bank B

    Bx0 Bx1 Bx2 Bx3 Bx4 Bx5 Bx6 Bx7 Ax0 Ax1

    RBx

    RBx RBy

    ReadCommand

    Bank B

    Hi-Z

    CBy

    ReadCommand

    Bank B

    PrechargeCommand

    Bank A

    High

    RAx

    ReadCommand

    Bank A

    ActivateCommand

    Bank B

    By0 By1 By2Ax2 Ax3 Ax4 Ax5 Ax6 Ax7

    CBx CAxRAx

    RBy

    tRCDtAC1 tRP

  • 7/27/2019 Em636165

    40/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 11.2. Random Row Read (Interleaving Banks)(Burst Length=8, CAS# Latency=2)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK2

    ActivateCommand

    Bank B

    ActivateCommand

    Bank A

    PrechargeCommand

    Bank B

    Bx0 Bx1 Bx2 Bx3 Bx4 Bx5 Bx6 Bx7 Ax0 Ax1

    RBx

    RBx RBy

    ReadCommand

    Bank B

    Hi-Z

    CBy

    ReadCommand

    Bank B

    High

    RAx

    ReadCommand

    Bank A

    ActivateCommand

    Bank B

    By0 By1Ax2 Ax3 Ax4 Ax5 Ax6 Ax7

    CBx CAxRAx

    RBy

    tRCD tAC2 tRP

  • 7/27/2019 Em636165

    41/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 11.3. Random Row Read (Interleaving Banks)(Burst Length=8, CAS# Latency=3)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK3

    ActivateCommand

    Bank B

    ActivateCommand

    Bank A

    PrechargeCommand

    Bank B

    Bx0 Bx1 Bx2 Bx3 Bx4 Bx5 Bx6 Bx7 Ax0 Ax1

    RBx

    RBx RBy

    ReadCommand

    Bank B

    Hi-Z

    CBy

    ReadCommand

    Bank B

    High

    RAx

    ReadCommand

    Bank A

    ActivateCommand

    Bank B

    Ax7 By0Ax2 Ax3 Ax4 Ax5 Ax6

    CBx CAxRAx

    RBy

    tRCD tAC3 tRP

    PrechargeCommand

    Bank A

  • 7/27/2019 Em636165

    42/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 12.1. Random Row Write (Interleaving Banks)(Burst Length=8, CAS# Latency=1)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK1

    ActivateCommand

    Bank A

    ActivateCommand

    Bank B

    PrechargeCommand

    Bank A

    DAx0 DAx1 DAx2 DAx3 DAx4 DAx5 DAx6 DAx7 DBx0 DBx1

    RAx

    RAx RAy

    WriteCommand

    Bank A

    Hi-Z

    CAy

    High

    RBx

    PrechargeCommand

    Bank B

    DBx7 DAy3DBx2 DBx3 DBx4 DBx5 DBx6

    CAx CBxRBx

    RAy

    tRCD

    DAy0 DAy1 DAy2

    WriteCommand

    Bank A

    WriteCommand

    Bank B

    ActivateCommand

    Bank A

    tRP tWR

  • 7/27/2019 Em636165

    43/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 12.2. Random Row Write (Interleaving Banks)(Burst Length=8, CAS# Latency=2)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A8

    DQM

    DQ

    A11

    tCK2

    ActivateCommand

    Bank A

    ActivateCommand

    Bank BPrechargeCommand

    Bank A

    DAx0 DAx1 DAx2 DAx3 DAx4 DAx5 DAx6 DAx7 DBx0 DBx1

    RAx

    RAx RAy

    WriteCommand

    Bank A

    Hi-Z

    CAy

    High

    RBx

    PrechargeCommand

    Bank B

    DBx7DBx2 DBx3 DBx4 DBx5 DBx6

    CAx CBxRBx

    RAy

    tRCD

    WriteCommand

    Bank A

    WriteCommand

    Bank B

    ActivateCommand

    Bank A

    DAy3DAy0 DAy1 DAy2 DAy4

    tWR* tRP tWR*

    * tWR > tWR(min.)

  • 7/27/2019 Em636165

    44/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 12.3. Random Row Write (Interleaving Banks)(Burst Length=8, CAS# Latency=3)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK3

    ActivateCommand

    Bank A

    ActivateCommand

    Bank B

    PrechargeCommand

    Bank A

    DAx0 DAx1 DAx2 DAx3 DAx4 DAx5 DAx6 DAx7 DBx0 DBx1

    RAx

    RAx RAy

    WriteCommand

    Bank A

    Hi-Z

    CAy

    High

    RBx

    PrechargeCommand

    Bank B

    DBx7DBx2 DBx3 DBx4 DBx5 DBx6

    CAx CBxRBx

    RAy

    tRCD

    WriteCommand

    Bank A

    WriteCommand

    Bank B

    ActivateCommand

    Bank A

    DAy3DAy0 DAy1 DAy2

    tWR* tRP tWR*

    * tWR > tWR(min.)

  • 7/27/2019 Em636165

    45/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 13.1. Read and Write Cycle (Burst Length=4, CAS# Latency=1)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK1

    ActivateCommand

    Bank A

    The Write Datais Masked with a

    Zero ClockLatency

    ReadCommand

    Bank A

    Ax0 Ax1 Ax2 Ax3 DAy0 DAy1Hi-Z

    PrechargeCommand

    Bank B

    Az3DAy3 Az0 Az1

    ReadCommand

    Bank A

    WriteCommand

    Bank A

    The Read Datais Masked with a

    Two ClockLatency

    RAx

    RAx CAx CAy CAz

  • 7/27/2019 Em636165

    46/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 13.2. Read and Write Cycle (Burst Length=4, CAS# Latency=2)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK2

    ActivateCommand

    Bank A

    The Write Datais Masked with a

    Zero ClockLatency

    ReadCommand

    Bank A

    Ax0 Ax1 Ax2 Ax3 DAy0 DAy1Hi-Z

    Az3DAy3 Az0 Az1

    ReadCommand

    Bank A

    WriteCommand

    Bank A

    The Read Datais Masked with a

    Two ClockLatency

    RAx

    RAx CAx CAy CAz

  • 7/27/2019 Em636165

    47/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 13.3. Read and Write Cycle (Burst Length=4, CAS# Latency=3)

    T0 T 1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK3

    ActivateCommand

    Bank A

    The Write Datais Masked with a

    Zero ClockLatency

    ReadCommand

    Bank A

    Ax0 Ax1 Ax2 Ax3 DAy0 DAy1Hi-Z

    Az3DAy3 Az0 Az1

    ReadCommand

    Bank A

    WriteCommand

    Bank A

    The Read Datais Masked with a

    Two ClockLatency

    RAx

    RAx CAx CAy CAz

  • 7/27/2019 Em636165

    48/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 14.1. Interleaving Column Read Cycle (Burst Length=4, CAS# Latency=1)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK1

    ActivateCommandBank A

    ReadCommand

    Bank B

    PrechargeCommandBank A

    Bw0 Bw1 Bx0 Bx1 By1 Ay0Hi-Z

    Bz0

    ReadCommand

    Bank A

    ReadCommand

    Bank A

    RAx

    RAx

    Ax0 Ax1 Ax2 Ax3 By0 Ay1 Bz1 Bz2 Bz3

    ActivateCommandBank B

    ReadCommand

    Bank B

    ReadCommand

    Bank B

    ReadCommandBank B

    PrechargeCommand

    Bank B

    tRCD tAC1

    RAx RBw

    RBw

    CBw CBx CBy CAy CBz

  • 7/27/2019 Em636165

    49/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 14.2. Interleaving Column Read Cycle (Burst Length=4, CAS# Latency=2)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK2

    ActivateCommand

    Bank A

    ReadCommand

    Bank B

    PrechargeCommand

    Bank A

    Bw0 Bw1 Bx0 Bx1 By1 Ay0Hi-Z

    Bz0

    ReadCommand

    Bank A

    ReadCommand

    Bank A

    RAx

    RAx

    Ax0 Ax1 Ax2 Ax3 By0 Ay1 Bz1 Bz2 Bz3

    ActivateCommand

    Bank B

    ReadCommand

    Bank B

    ReadCommand

    Bank B

    ReadCommand

    Bank B

    PrechargeCommand

    Bank B

    tRCD tAC2

    CAy RAx

    RAx

    CBw CBx CBy CAy CBz

  • 7/27/2019 Em636165

    50/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 14.3. Interleaved Column Read Cycle (Burst Length=4, CAS# Latency=3)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK3

    ActivateCommand

    Bank A

    PrechaergeCommand

    Bank B

    Bx0 Bx1 By0 By1 Bz1 Ay0Hi-Z

    Ay2

    ReadCommand

    Bank A

    ReadCommand

    Bank A

    RAx

    RAx

    Ax0 Ax1 Ax2 Ax3 Bz0 Ay1 Ay3

    ActivateCommand

    Bank B

    ReadCommand

    Bank B

    ReadCommand

    Bank B

    ReadCommand

    Bank B

    PrechargeCommand

    Bank A

    tRCD tAC3

    CAx RBx

    RBx

    CBx CBy CBz CAy

  • 7/27/2019 Em636165

    51/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 15.1. Interleaved Column Write Cycle (Burst Length=4, CAS# Latency=1)

    T0 T1 T2 T3 T4 T5 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK1

    ActivateCommandBank A

    WriteCommand

    Bank B

    DBw0 DBw1 DBx0 DBx1 DBy1 DAy0Hi-Z

    WriteCommand

    Bank A

    PrechargeCommand

    Bank A

    RAx

    RAx

    DAx0 DAx1 DAx2 DAx3 DBy0 DAy1 DBz0

    ActivateCommand

    Bank B

    WriteCommandBank B

    WriteCommandBank B

    WriteCommandBank A

    PrechargeCommand

    Bank B

    tRCD

    CAx RBw

    RBw

    CBw CBx CBy CAy

    DBz1 DBz2 DBz3

    WriteCommand

    Bank B

    tRRD

    tRP

    tWR tRP

    CBz

    T6

  • 7/27/2019 Em636165

    52/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 15.2. Interleaved Column Write Cycle (Burst Length=4, CAS# Latency=2)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK2

    ActivateCommand

    Bank A

    WriteCommandBank B

    DBw0 DBw1 DBx0 DBx1 DBy1 DAy0Hi-Z

    WriteCommand

    Bank APrechargeCommand

    Bank A

    RAx

    RAx

    DAx0 DAx1 DAx2 DAx3 DBy0 DAy1 DBz0

    ActivateCommand

    Bank B

    WriteCommand

    Bank B

    WriteCommand

    Bank B

    WriteCommand

    Bank A

    PrechargeCommand

    Bank B

    tRCD

    CAx RBw

    RBw

    CBw CBx CBy CAy

    DBz1 DBz2 DBz3

    WriteCommand

    Bank B

    tRRD

    tRP tWR tRP

    CBz

    WE#

  • 7/27/2019 Em636165

    53/75

  • 7/27/2019 Em636165

    54/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 16.1. Auto Precharge after Read Burst (Burst Length=4, CAS# Latency=1)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK1

    ActivateCommand

    Bank A

    ActivateCommand

    Bank B

    Bx0 Bx1 Bx2 Bx3 Ay1 Ay2Hi-Z

    ReadCommand

    Bank A

    RAx

    RAx

    RBx

    Ax0 Ax1 Ax2 Ax3 Ay0 Ay3 By0

    ActivateCommand

    Bank B

    ActivateCommand

    Bank B

    RBx CBx CAy RBy CBy

    By1 By2 By3

    RBz

    High

    Bz0 Bz1 Bz2 Bz3

    Read withAuto Precharge

    CommandBank B

    Read withAuto Precharge

    CommandBank A

    Read withAuto Precharge

    CommandBank B Read with

    Auto PrechargeCommand

    Bank B

    CAx

    RBy RBz

    CBz

  • 7/27/2019 Em636165

    55/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 16.2. Auto Precharge after Read Burst (Burst Length=4, CAS# Latency=2)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK2

    ActivateCommand

    Bank A

    ActivateCommand

    Bank A

    Bx0 Bx1 Bx2 Bx3 Ay1 Ay2Hi-Z

    ReadCommand

    Bank A

    RAx

    RAx

    RBx

    Ax0 Ax1 Ax2 Ax3 Ay0 Ay3 By0

    ActivateCommand

    Bank B

    ActivateCommand

    Bank B

    RBx CBx RByRAy CBy

    By1 By2 By3

    High

    Az0 Az1 Az2

    Read withAuto Precharge

    CommandBank B

    Read withAuto Precharge

    CommandBank A

    Read withAuto Precharge

    CommandBank B

    Read withAuto Precharge

    CommandBank A

    CAx

    RBy RAz

    CAzRAz

  • 7/27/2019 Em636165

    56/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 16.3. Auto Precharge after Read Burst (Burst Length=4, CAS# Latency=3)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK3

    ActivateCommand

    Bank A

    Bx0 Bx1 Bx2 Bx3 Ay1 Ay2Hi-Z

    ReadCommand

    Bank A

    RAx

    RAx

    RBx

    Ax0 Ax1 Ax2 Ax3 Ay0 Ay3 By0

    ActivateCommand

    Bank B

    ActivateCommand

    Bank B

    RBx CBx

    By1 By2 By3

    High

    Read withAuto Precharge

    CommandBank B Read with

    Auto PrechargeCommand

    Bank A

    Read withAuto Precharge

    CommandBank B

    CAx

    RBy

    CByRByCAy

    WE#

  • 7/27/2019 Em636165

    57/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 17.1. Auto Precharge after Write Burst (Burst Length=4, CAS# Latency=1)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK1

    ActivateCommand

    Bank A

    DBx0 DBx1 DBx2 DBx3 DAy1 DAy2Hi-Z

    WriteCommand

    Bank A

    RAx

    RAx

    RBx

    DAx0 DAx1 DAx2 DAx3 DAy0 DAy3 DBy0

    ActivateCommand

    Bank B

    ActivateCommand

    Bank B

    CBx CAy

    DBy1 DBy2 DBy3

    High

    Write withAuto Precharge

    CommandBank B Write with

    Auto PrechargeCommand

    Bank A

    Write withAuto Precharge

    CommandBank B

    RBy

    CAzCByRBy

    DAz0 DAz0

    ActivateCommand

    Bank A

    Write withAuto Precharge

    CommandBank A

    DAz0 DAz0

    CAx RBx

    RAz

    RAz

    T11

  • 7/27/2019 Em636165

    58/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 17.2. Auto Precharge after Write Burst (Burst Length=4, CAS# Latency=2)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK2

    ActivateCommand

    Bank A

    DBx0 DBx1 DBx2 DBx3 DAy1 DAy2Hi-Z

    WriteCommand

    Bank A

    RAx

    RAx

    RBx

    DAx0 DAx1 DAx2 DAx3 DAy0 DAy3 DBy0

    ActivateCommand

    Bank B

    ActivateCommand

    Bank B

    CBx CAy

    DBy1 DBy2 DBy3

    High

    Write withAuto Precharge

    CommandBank B

    Write withAuto Precharge

    CommandBank A

    Write withAuto Precharge

    CommandBank B

    RBy

    CByRBy

    DAz0 DAz1

    ActivateCommand

    Bank A

    Write withAuto Precharge

    CommandBank A

    DAz2 DAz3

    CAx RBx CAz

    RAz

    RAz

    WE#

  • 7/27/2019 Em636165

    59/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 17.3. Auto Precharge after Write Burst (Burst Length=4, CAS# Latency=3)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A9

    A0~A9

    DQM

    DQ

    A11

    tCK3

    ActivateCommand

    Bank A

    DBx0 DBx1 DBx2 DBx3 DAy1 DAy2Hi-Z

    WriteCommand

    Bank A

    RAx

    RAx

    RBx

    DAx0 DAx1 DAx2 DAx3 DAy0 DAy3 DBy0

    ActivateCommand

    Bank B

    ActivateCommand

    Bank B

    CBx

    DBy1 DBy2 DBy3

    High

    Write withAuto Precharge

    CommandBank B

    Write withAuto Precharge

    CommandBank A

    Write withAuto Precharge

    CommandBank B

    CAyCAx RBx CBy

    RBy

    RBy

    `

  • 7/27/2019 Em636165

    60/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 18.1. Full Page Read Cycle (Burst Length=Full Page, CAS# Latency=1)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    ActivateCommand

    Bank A

    Ax Ax+1 Bx Bx+1 Bx+3 Bx+4Hi-Z

    ReadCommand

    Bank A

    RAx

    RAx

    RBx

    Ax+1 Ax+2 Ax-2 Ax-1 Bx+2 Bx+5

    ActivateCommand

    Bank B

    Burst StopCommand

    CBx

    High

    ReadCommand

    Bank B

    PrechargeCommand

    Bank B

    CAx RBx RBy

    RBy

    Ax Bx+6 Bx+7

    The burst counter wrapsfrom the highest orderpage address back to zeroduring this time interval

    Full Page burst operation does notterminate when the burst length is satisfied;the burst counter increments and continuesbursting beginning with the starting address.

    ActivateCommand

    Bank B

    tCK1

    tRRD tRP

  • 7/27/2019 Em636165

    61/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 18.2. Full Page Read Cycle (Burst Length=Full Page, CAS# Latency=2)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    ActivateCommand

    Bank A

    Ax Ax+1 Bx Bx+1 Bx+3 Bx+4Hi-Z

    ReadCommandBank A

    RAx

    RAx

    Ax+1 Ax+2 Ax-2 Ax-1 Bx+2 Bx+5

    ActivateCommand

    Bank B

    Burst StopCommand

    CBx

    High

    ReadCommandBank B

    PrechargeCommand

    Bank B

    RBxCAx RBy

    RBy

    Ax Bx+6

    The burst counter wrapsfrom the highest orderpage address back to zeroduring this time interval

    Full Page burst operation does notterminate when the burst length is satisfied;the burst counter increments and continuesbursting beginning with the starting address.

    ActivateCommand

    Bank B

    tCK2

    tRP

    RBx

  • 7/27/2019 Em636165

    62/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 18.3. Full Page Read Cycle (Burst Length=Full Page, CAS# Latency=3)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    ActivateCommand

    Bank A

    Ax Ax+1 Bx Bx+1 Bx+3 Bx+4Hi-Z

    ReadCommand

    Bank A

    RAx

    RAx

    Ax+1 Ax+2 Ax-2 Ax-1 Bx+2 Bx+5

    ActivateCommand

    Bank B

    Burst StopCommand

    CBx

    High

    ReadCommand

    Bank B

    PrechargeCommand

    Bank B

    RBxCAx RBy

    RBy

    Ax

    The burst counter wrapsfrom the highest orderpage address back to zeroduring this time interval

    Full Page burst operation does notterminate when the burst length issatisfied; the burst counterincrements and continuesbursting beginning with thestarting address.

    ActivateCommand

    Bank B

    tCK3

    tRP

    RBx

  • 7/27/2019 Em636165

    63/75

  • 7/27/2019 Em636165

    64/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 19.2. Full Page Write Cycle (Burst Length=Full Page, CAS# Latency=2)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    DAx+1DAx

    ActivateCommand

    Bank A

    Hi-Z

    ActivateCommand

    Bank B

    RAx

    RAx

    Burst StopCommand

    CBx

    High

    WriteCommand

    Bank B

    PrechargeCommand

    Bank B

    RBxCAx RBy

    RBy

    The burst counter wrapsfrom the highest orderpage address back to zeroduring this time interval

    Full Page burst operation doesnot terminate when the burstlength is satisfied; the burst counterincrements and continues burstingbeginning with the starting address.

    ActivateCommand

    Bank B

    tCK2

    DAx+2DAx+3 DAx-1 DAx DAx+1 DBx DBx+1 DBx+2 DBx+3 DBx+4 DBx+5 DBx+6

    WriteCommand

    Bank A

    Data is ignored

    RBx

  • 7/27/2019 Em636165

    65/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 19.3. Full Page Write Cycle (Burst Length=Full Page, CAS# Latency=3)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    DAx+1DAx

    ActivateCommand

    Bank A

    Hi-Z

    ActivateCommand

    Bank B

    RAx

    RAx

    Burst StopCommand

    CBx

    High

    RBxCAx

    WriteCommand

    Bank B

    PrechargeCommand

    Bank B

    RBy

    RBy

    The burst counter wrapsfrom the highest orderpage address back to zeroduring this time interval

    Full Page burst operation doesnot terminate when the burstlength is satisfied; the burst counterincrements and continues burstingbeginning with the starting address.

    ActivateCommand

    Bank B

    tCK3

    RBx

    DAx+2 DAx+3 DAx-1 DAx DAx+1 DBx DBx+1 DBx+2 DBx+3 DBx+4 DBx+5

    WriteCommand

    Bank A

    Data is ignored

  • 7/27/2019 Em636165

    66/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 20. Byte Write Operation (Burst Length=4, CAS# Latency=2)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    LDQM

    UDQM

    A11

    RAx

    RAx CAy

    High

    CAx

    tCK2

    CAz

    ActivateCommandBank A

    ReadCommandBank A

    Upper 3 Bytesare masked WriteCommandBank A

    Upper 3 Bytesare masked ReadCommandBank A

    Lower Byteis masked Lower Byteis masked Lower Byteis masked

    Ax0 Ax1 Ax2

    Ax1 Ax2 Ax3

    DAy1 DAy2

    DAy0 DAy1 DAy3

    Az1 Az2

    Az1 Az2Az0 Az3

    DQ0 - DQ7

    DQ8 - DQ15

  • 7/27/2019 Em636165

    67/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 21. Random Row Read (Interleaving Banks)

    (Burst Length=2, CAS# Latency=1)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A8

    DQM

    DQ

    A11

    High

    tCK1

    Bu0 Bu1 Au0 Au1 Bv0 Bv1 Av0 Av1 Bw0 Bw1 Aw0 Aw1 Bx0 Bx1 Ax0 Ax1 By0 By1 Ay0 Ay1 Bz0

    ActivateCommand

    Bank B

    ReadBank B

    with AutoPrecharge

    ActivateCommand

    Bank A

    ReadBank A

    with AutoPrecharge

    ActivateCommand

    Bank B

    ReadBank B

    with AutoPrecharge

    ActivateCommand

    Bank A

    ReadBank A

    with AutoPrecharge

    ActivateCommand

    Bank B

    ReadBank B

    with AutoPrecharge

    ActivateCommand

    Bank A

    ReadBank A

    with AutoPrecharge

    ActivateCommand

    Bank B

    ReadBank B

    with AutoPrecharge

    ActivateCommand

    Bank A

    ReadBank A

    with AutoPrecharge

    ActivateCommand

    Bank B

    ReadBank B

    with AutoPrecharge

    ActivateCommand

    Bank A

    ReadBank A

    with AutoPrecharge

    ActivateCommand

    Bank B

    ReadBank B

    with AutoPrecharge

    ActivateCommandBank A

    RBu

    RBu CBu

    RAu

    RAu CAu

    RBv

    RBv CBv

    RAv

    RAv CAv

    RBw

    RBw CBw

    RAw

    RAw CAw

    RBx

    RBx CBx

    RAx

    RAx CAx

    RBy

    RBy CBy

    RAy

    RAy CAy

    RBz

    RBz CBz

    RAz

    RAz

    tRP tRP tRP tRP tRP tRP tRP tRP tRP tRP

    Begin AutoPrecharge

    Bank B

    Begin AutoPrecharge

    Bank A

    Begin AutoPrechargeBank B

    Begin AutoPrecharge

    Bank A

    Begin AutoPrechargeBank B

    Begin AutoPrecharge

    Bank A

    Begin AutoPrechargeBank B

    Begin AutoPrecharge

    Bank A

    Begin AutoPrechargeBank B

    Begin AutoPrecharge

    Bank A

  • 7/27/2019 Em636165

    68/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 22. Full Page Random Column Read (Burst Length=Full Page, CAS# Latency=2)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A8

    DQM

    DQ

    A11

    tCK2

    Ax0 Bx0 Ay0 Ay1 By0 By1 Az0 Az1 Az2 Bz0 Bz1 Bz2

    ActivateCommandBank A

    ReadCommandBank A

    ActivateCommand

    Bank B

    ReadCommandBank B

    ReadCommand

    Bank B

    ReadCommand

    Bank A

    ReadCommandBank B

    PrechargeCommand Bank B

    (Precharge Temination)

    tRP

    ReadCommand

    Bank A

    ActivateCommandBank B

    tRRD tRCD

    RAx

    RAx

    RBx

    RBx CAx CBx CAy CBy CAz CBz

    RBw

    RBw

  • 7/27/2019 Em636165

    69/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 23. Full Page Random Column Write (Burst Length=Full Page, CAS# Latency=2)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK2

    DAx0 DBx0 DAy0 DAy1 DBy0 DBy1 DAz0 DAz1 DAz2 DBz0 DBz1 DBz2

    ActivateCommand

    Bank AWrite

    CommandBank A

    ActivateCommand

    Bank B

    WriteCommand

    Bank B

    WriteCommand

    Bank B

    WriteCommand

    Bank A

    WriteCommand

    Bank B

    PrechargeCommand Bank B

    (Precharge Temination)

    tRP

    WriteCommand

    Bank A

    ActivateCommand

    Bank B

    tRRD tRCD

    RAx

    RAx

    RBx

    RBx CAx CBx CAy CBy CAz CBz

    RBw

    RBw

    tWR

    Write Datais masked

  • 7/27/2019 Em636165

    70/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 24.1. Precharge Termination of a Burst (Burst Length=Full Page, CAS# Latency=1)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK1

    DAx0 DAx1 DAx2 DAx3 DAx4 Ay0 Ay1 Ay2 DAz3DAz2DAz0

    ActivateCommand

    Bank AWrite

    CommandBank A

    PrechargeCommand

    Bank A

    ReadCommand

    Bank A

    PrechargeCommand

    Bank A

    WriteCommand

    Bank A

    RAx

    RAx

    RAy

    CAx RAy CAy RAz

    DAz1 DAz4 DAz5 DAz6 DAz7

    Precharge Terminationof a Write Burst.

    Write data is masked.Activate

    CommandBank A

    ActivateCommand

    Bank A

    tWR tRP tRP PrechargeTermination ofa Read Burst.

    RAz

    CAz

  • 7/27/2019 Em636165

    71/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 24.2. Precharge Termination of a Burst(Burst Length=8 or Full Page, CAS# Latency=2)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A8

    DQM

    DQ

    A11

    tCK2

    DAx0 DAx1 DAx2 DAx3 Ay2Ay0 Ay1

    ActivateCommand

    Bank A

    WriteCommand

    Bank A

    PrechargeCommand

    Bank A

    ReadCommand

    Bank A

    PrechargeCommand

    Bank A

    ActivateCommand

    Bank A

    RAx

    RAx

    RAy

    CAx RAy CAy

    Az0 Az1 Az2

    Precharge Terminationof a Write Burst.

    Write data is masked.

    ActivateCommand

    Bank A

    tWR tRP tRP

    RAz

    CAz

    High

    ReadCommand

    Bank A

    PrechargeCommand

    Bank A

    Precharge Terminationof a Read Burst

    tRPRAz

  • 7/27/2019 Em636165

    72/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    Figure 24.3. Precharge Termination of a Burst(Burst Length=4, 8 or Full Page, CAS# Latency=3)

    T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

    CLK

    CKE

    CS#

    RAS#

    CAS#

    WE#

    A10

    A0~A9

    DQM

    DQ

    A11

    tCK3

    DAx0 Ay0 Ay1 Ay2

    ActivateCommand

    Bank A

    WriteCommand

    Bank A

    Precharge Terminationof a Write Burst

    ReadCommand

    Bank A

    PrechargeCommand

    Bank A

    RAx

    RAx

    RAy

    CAx RAy CAy

    Write Datais masked

    ActivateCommand

    Bank A

    tWR tRP tRP

    RAz

    RAz

    High

    ActivateCommand

    Bank A

    PrechargeCommand

    Bank A

    Precharge Terminationof a Read Burst

    DAx1

  • 7/27/2019 Em636165

    73/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    50 Pin TSOP II Package Outline Drawing Information

    y

    50

    1D

    E HE

    0.2

    54

    L

    L1

    A

    A1

    A2

    S B e L L1

    C

    25

    26

    Symbol Dimension in inch Dimension in mm

    Min Normal Max Min Normal Max

    A 0.048 1.20

    A1 0.002 0.005 0.008 0.05 0.125 0.20

    A2 0.037 0.042 0.94 1.07

    B 0.012 0.015 0.018 0.3 0.375 0.45

    c 0.006 0.155

    D 0.82 0.825 0.83 20.82 20.95 21.08

    E 0.395 0.400 0.405 10.03 10.16 10.29

    e 0.031 0.80

    HE 0.455 0.463 0.471 11.56 11.76 11.96L 0.016 0.020 0.024 0.40 0.50 0.60

    L1 0.0315 0.80

    S 0.035 0.88

    y 0.004 0.10

    0 5 0 5Notes :

    1. Dimension D&E do not include interiead flash.2. Dimension B does not include dambar protrusion/intrusion.3. Dimension S includes end flash.4. Controlling dimension : mm

  • 7/27/2019 Em636165

    74/75

    E t r o n T ec h 1M x 16 SDRAM EM636165

    ]

    7 6 5 4 3 21 2 3 4 5 6

    TOP V IEWA 1 C O R N E R

    BOTTOM VIEW

    = 0.300.16

    0.08

    M

    M C

    C A B

    A 1 C O R N E R

    0.65

    3.90

    A

    B

    0.10(4X)

    SEAT IN G PL AN E0.10

    17

    J

    K

    L

    M

    N

    P

    R

    J

    K

    L

    M

    N

    P

    R

    C

    C

    1Mx16 SDRAM Pack age Diagrams

    60-Ball (6.4m m x 10.1mm )VFBGA

    Units in m m

    C

  • 7/27/2019 Em636165

    75/75

    This datasheet has been downloaded from:

    www.DatasheetCatalog.com

    Datasheets for electronic components.

    http://www.datasheetcatalog.com/http://www.datasheetcatalog.com/