28
Embedding spanning subgraphs of small bandwidth Embedding spanning subgraphs of small bandwidth Julia B ¨ ottcher Technische Universit¨ at M ¨ unchen EUROCOMB, September 11–15, 2007, Sevilla (joint work with Mathias Schacht & Anusch Taraz) Julia B ¨ ottcher TU M¨ unchen Sevilla ’07

Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Embedding spanning subgraphs of small bandwidth

Julia Bottcher

Technische Universitat Munchen

EUROCOMB, September 11–15, 2007, Sevilla

(joint work with Mathias Schacht & Anusch Taraz)

Julia Bottcher TU Munchen Sevilla ’07

Page 2: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Sufficient degree conditions for H ⊆ G

Theorem (Turan 1941)

If d(G) > r−2r−1n ⇒ Kr ⊆ G.

Julia Bottcher TU Munchen Sevilla ’07

Page 3: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Sufficient degree conditions for H ⊆ G

Theorem (Turan 1941)

If d(G) > r−2r−1n ⇒ Kr ⊆ G.

Theorem (Erdos, Stone 1946)

If d(G) ≥(

χ(H)−2χ(H)−1 + o(1)

)

n ⇒ H ⊆ G.

Julia Bottcher TU Munchen Sevilla ’07

Page 4: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Sufficient degree conditions for H ⊆ G

Theorem (Turan 1941)

If d(G) > r−2r−1n ⇒ Kr ⊆ G.

Theorem (Erdos, Stone 1946)

If d(G) ≥(

χ(H)−2χ(H)−1 + o(1)

)

n ⇒ H ⊆ G.

Question: What about spanning subgraphs?

Which minimum degree δ(G) ensures that every graph G contains a givenspanning graph H?

Julia Bottcher TU Munchen Sevilla ’07

Page 5: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Sufficient degree conditions for H ⊆ G

Theorem (Dirac 1952)

δ(G) ≥ 12n ⇒ Ham ⊆ G

Question: What about spanning subgraphs?

Which minimum degree δ(G) ensures that every graph G contains a givenspanning graph H?

Julia Bottcher TU Munchen Sevilla ’07

Page 6: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Sufficient degree conditions for H ⊆ G

Theorem (Dirac 1952)

δ(G) ≥ 12n ⇒ Ham ⊆ G

Theorem (Hajnal,Szemeredi 1969)

δ(G) ≥ r−1r n ⇒ ⌊n

r ⌋ disj. copies of Kr ⊆ G.

Question: What about spanning subgraphs?

Which minimum degree δ(G) ensures that every graph G contains a givenspanning graph H?

Julia Bottcher TU Munchen Sevilla ’07

Page 7: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Sufficient degree conditions for H ⊆ G

Theorem (Dirac 1952)

δ(G) ≥ 12n ⇒ Ham ⊆ G

Theorem (Hajnal,Szemeredi 1969)

δ(G) ≥ 23n ⇒ ⊆ G

Question: What about spanning subgraphs?

Which minimum degree δ(G) ensures that every graph G contains a givenspanning graph H?

Julia Bottcher TU Munchen Sevilla ’07

Page 8: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Conjecture of Bollobas and Komlos

Theorem

H

χ(H) = k

G

δ(G) ≥ ( k−1k + γ)n

=⇒ G contains H.

Julia Bottcher TU Munchen Sevilla ’07

Page 9: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Conjecture of Bollobas and Komlos

Theorem

H

χ(H) = k

∆(H) ≤ ∆

G

δ(G) ≥ ( k−1k + γ)n

=⇒ G contains H.

Julia Bottcher TU Munchen Sevilla ’07

Page 10: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Conjecture of Bollobas and Komlos

Theorem

H

χ(H) = k

∆(H) ≤ ∆

bw(H) ≤ βn

G

δ(G) ≥ ( k−1k + γ)n

=⇒ G contains H.

Julia Bottcher TU Munchen Sevilla ’07

Page 11: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Conjecture of Bollobas and Komlos

Theorem

For all k , ∆ ≥ 1, and γ > 0 exists n0 and β > 0 s.t.

H

χ(H) = k

∆(H) ≤ ∆

bw(H) ≤ βn

G

δ(G) ≥ ( k−1k + γ)n

=⇒ G contains H.

Julia Bottcher TU Munchen Sevilla ’07

Page 12: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Conjecture of Bollobas and Komlos

Theorem

For all k , ∆ ≥ 1, and γ > 0 exists n0 and β > 0 s.t.

H

χ(H) = k

∆(H) ≤ ∆

bw(H) ≤ βn

G

δ(G) ≥ ( k−1k + γ)n

=⇒ G contains H.

Bandwidth:

bw(H) ≤ b if there is a labelling of V (H) by 1, . . . , ns.t. for all {i, j} ∈ E(H) we have |i − j | ≤ b.

i jJulia Bottcher TU Munchen Sevilla ’07

Page 13: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Conjecture of Bollobas and Komlos

Theorem

For all k , ∆ ≥ 1, and γ > 0 exists n0 and β > 0 s.t.

H

χ(H) = k

∆(H) ≤ ∆

bw(H) ≤ βn

G

δ(G) ≥ ( k−1k + γ)n

=⇒ G contains H.

Examples for H:

Hamiltonian cycles (bandwidth 2)

bounded degree planar graphs (bandwidth O(n/ log∆ n))

bounded degree graphs of sublinear tree width

Julia Bottcher TU Munchen Sevilla ’07

Page 14: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

The bandwidth condition is necessary

χ(H) =k , ∆(H) ≤ ∆ ,bw(H) ≤ βn

δ(G) ≥ ( k−1k + γ)n =⇒ G contains H

Julia Bottcher TU Munchen Sevilla ’07

Page 15: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

The bandwidth condition is necessary

χ(H) =2, ∆(H) ≤ ∆

δ(G) ≥ (2−12 + γ)n =⇒ G contains H

Julia Bottcher TU Munchen Sevilla ’07

Page 16: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

The bandwidth condition is necessary

χ(H) =2, ∆(H) ≤ ∆

δ(G) ≥ (3−13 + γ)n =⇒ G contains H

Counterexample:

H ′ : random bipartite graph on n4 + n

4 vertices with ∆(H) ≤ ∆3 .

H

H ′H ′H ′

n4

n4

n4

n4

G

n3

n3

n3

Julia Bottcher TU Munchen Sevilla ’07

Page 17: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

The bandwidth condition is necessary

χ(H) =2, ∆(H) ≤ ∆

δ(G) ≥ (3−13 + γ)n =⇒ G contains H

Counterexample:

H ′ : random bipartite graph on n4 + n

4 vertices with ∆(H) ≤ ∆3 .

H

H ′H ′H ′

n4

n4

n4

n4

G

n3

n3

n3

Julia Bottcher TU Munchen Sevilla ’07

Page 18: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

The bandwidth condition is necessary

χ(H) =2, ∆(H) ≤ ∆

δ(G) ≥ (3−13 + γ)n =⇒ G contains H

Counterexample:

H ′ : random bipartite graph on n4 + n

4 vertices with ∆(H) ≤ ∆3 .

H

H ′H ′H ′

n4

n4

n4

n4

G

n3

n3

n3

Reason: G has big subsets A and B with e(A, B) empty.

Julia Bottcher TU Munchen Sevilla ’07

Page 19: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Thw role of the chromatic number

Theorem (Hajnal,Szemeredi 1969)

If δ(G) ≥ r−1r n ⇒ ⌊n

r ⌋ disj. copies of Kr ⊆ G.

Julia Bottcher TU Munchen Sevilla ’07

Page 20: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Thw role of the chromatic number

Theorem (Komlos, Sarkozy, and Szemeredi 2001)

If δ(G) ≥ χ(H)−1χ(H)

n ⇒ ⌊ n|H|

⌋ disj. copies of H ⊆ G .

Julia Bottcher TU Munchen Sevilla ’07

Page 21: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Thw role of the chromatic number

Theorem (Komlos, Sarkozy, and Szemeredi 2001)

If δ(G) ≥ χ(H)−1χ(H)

n ⇒ ⌊ n|H|

⌋ disj. copies of H ⊆ G .

Theorem (Komlos 2000)

If χ(H) is replaced by the chritical chromatic number χcr (H)

⇒ ⌊n−εn|H|

⌋ disj. copies of H ⊆ G.

Julia Bottcher TU Munchen Sevilla ’07

Page 22: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Thw role of the chromatic number

Theorem (Komlos, Sarkozy, and Szemeredi 2001)

If δ(G) ≥ χ(H)−1χ(H)

n ⇒ ⌊ n|H|

⌋ disj. copies of H ⊆ G .

Theorem (Komlos 2000)

If χ(H) is replaced by the chritical chromatic number χcr (H)

⇒ ⌊n−εn|H|

⌋ disj. copies of H ⊆ G.

Chritical chromatic number:

σ := mincol. of H |smallest colour class|

χcr (H) := (χ(H) − 1)|H|

|H|−σ

it follows that χ(H) − 1 ≤ χcr (H) ≤ χ(H)

Julia Bottcher TU Munchen Sevilla ’07

Page 23: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Thw role of the chromatic number

Theorem

For all k , ∆ ≥ 1, and γ > 0 exists n0 and β > 0 s.t.

H has a (k + 1)-colouring that colours ≤ βn vertices with 0 and is(8kβn, 4kβn)-zero free, ∆(H) ≤ ∆, bw(H) ≤ βn

δ(G) ≥ ( k−1k + γ)n

=⇒ G contains H

Julia Bottcher TU Munchen Sevilla ’07

Page 24: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Thw role of the chromatic number

Theorem

For all k , ∆ ≥ 1, and γ > 0 exists n0 and β > 0 s.t.

H has a (k + 1)-colouring that colours ≤ βn vertices with 0 and is(8kβn, 4kβn)-zero free, ∆(H) ≤ ∆, bw(H) ≤ βn

δ(G) ≥ ( k−1k + γ)n

=⇒ G contains H

Assume V (G) is labelled with [n].

A (k + 1)-colouring is (x , y)-zero free if for all t ∈ [n] there is t ′ ∈ [t , t + x ]

s.t. no vertex in [t ′, t ′ + y ] is coloured 0. (colours {0, . . . , k })

Julia Bottcher TU Munchen Sevilla ’07

Page 25: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Concluding remarks

Theorem

χ(H) = k, ∆(H) ≤ ∆, bw(H) ≤ βn

δ(G) ≥ ( k−1k + γ)n =⇒ G contains H

Julia Bottcher TU Munchen Sevilla ’07

Page 26: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Concluding remarks

Theorem

χ(H) = k, ∆(H) ≤ ∆, bw(H) ≤ βn

δ(G) ≥ ( k−1k + γ)n =⇒ G contains H

When can the chromatic number be replaced by the chriticalchromatic number? SEE KUHN, OSTHUS 2007+

Julia Bottcher TU Munchen Sevilla ’07

Page 27: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Concluding remarks

Theorem

χ(H) = k, ∆(H) ≤ ∆, bw(H) ≤ βn

δ(G) ≥ ( k−1k + γ)n =⇒ G contains H

When can the chromatic number be replaced by the chriticalchromatic number? SEE KUHN, OSTHUS 2007+

What about spanning graphs H of non-constant max. degree?

Julia Bottcher TU Munchen Sevilla ’07

Page 28: Embedding spanning subgraphs of small bandwidth · Embedding spanning subgraphs of small bandwidth Sufficient degree conditions for H ⊆ G Theorem (Turan 1941)´ If d(G) > r−2

Embedding spanning subgraphs of small bandwidth

Concluding remarks

Theorem

χ(H) = k, ∆(H) ≤ ∆, bw(H) ≤ βn

δ(G) ≥ ( k−1k + γ)n =⇒ G contains H

When can the chromatic number be replaced by the chriticalchromatic number? SEE KUHN, OSTHUS 2007+

What about spanning graphs H of non-constant max. degree?

Which further restrictions on G allow us to ommit the bandwidthrestriction on H?

Julia Bottcher TU Munchen Sevilla ’07