273

Click here to load reader

EMCO Compact 5 CNC Basis Manual.pdf

Embed Size (px)

Citation preview

  • \ . . ,{ f

    ( }

    1. COMPACT 5 CNC - Introduction

    ' ' .

    Description of machine Positions of tool holder The right hand side tool Working data Transmission steps_ Cutting values

    1.1 - 1.5 1. 6 1. 7 1. 8 1. 9 1. 10-1. 11

    I

  • l )

    ' \ )

    Main Elements of the COMPACT 5 CNC

    Main motor - Spindle drive - Ammeter

    D.C. permanent magnetic rr~tor Variable speed range 1:7 Speed range Goo - 4ooo r . p .m. Input pO',;er (PI) Soo N Output p

  • Drive for range of rev~!:!tlons l\CI_, AC2, AC3

    Frott ~~tor pulley l\ to main spindle pul ley C.

    Tne Idler pulley r uns iQlc .

    ~~~~2~.!~~-~~!~-~~!~~~~i Loosen hexa~on nut (I).

    - Lift rrotor up - Put belt onto desired pulley - Push do.n ootor and tigh ten hexagonal

    sere ... ' .

    The main spindle - R.P. M.-display

    Range of revolutions: So - 32oo r.p.n. Spindl e nose : E!~CO standard Hole through spndle: 16 ~~ Inside spindle taper: MT 2

    Cla~ping devices on cain spindle:

    - 3-jaw chuck Bo ~~ - Independent chuck ~ 9o rr~

    Hounting plate 9o mm - Col l et holder for collets ESX 25

    ~~ounting instructions, chucking capa-city, revers ing of jaws, safety instruc-tions - please refer to instructi on bool< co::pact 5.

    PERFORATED DISC AND LIGHT BARRIER

  • Description of machine

    Drive of slides

    St ep rJOt ors - Re-circulating ball screws

    THE STEP ~:OTORS

    'l'echnical Data:

    Single step 5 'l'orque o , So Nm

    As t he name says , a revolution of the motor is divided int o s teps.

    A revolution of the Co::pact S CIIC step rr~tors is divided into 72 steps, i .e. one step= angle of 5 (36o0 +72 =5).

    The limitation of tho traverse paths (the Tack-Tack sound) If you move the slides to t he l i oi t po-sitions or against a s t op, you wil l hear a tack-tack sound. The step motor rece i ves i mpulses for further ~ove~ent, but cannot move any further . Tnat ~eans overload on spindl es , nuts and guide -ways of t he slides.

    'rhus you have to stop the feed ,;hen you ";ork on "hand11 operation. You have to interrupt the program when you run on "C!IC" operation .

    Longitudinal- and cross slides

    Technical Data:

    \ 1 - Traverse speed for longitudinal and cross slides: Rapid traverse speed 7oo rr~/mi n variable feed ra t es (hand-operation) l o - l oo r::m/ min Prograrr.mabl c feed rates (Cr;c-opera-tion) to - 499 ~/min

    - Smal l cstpossible traverse path : o , ol30 r_.,

    - Traverse path longitudinal s l ide 3oo rr.'ll

    - Traverse path cross slide So rrm

    - I ndication on digital read-out i n ' o , o l '""

    - Feed pcuer on slides approx . I ooo N

    1. 3

    Ball screws - Prel oaded n~

    Longitudinal and cross slides are dri -ven via ball scre~s. The scre-...s run play- free in the nu ts (no backlash).

  • Reduc tion step motor - feed screws

    Smallest slide moveme11t (for longi tudi -na l and cross slides)

    ~nen the step ~otor turns by so (with the s mallest step the slide wi ll Eove o , o138 r..m).

    Tr averse path indication on digital read-out - slide movement

    The traverse path will be i nd i cated on the d i gital read-out in o , ol rr.~

    Steps (angl e motors )

    l. Step (50) 2. Step (loo) 3. Step (1 5) 4 . Step ( 2o0) 5 . Step (25) 6. Step (3o0 ) 7. Step (35) 8 . Step (4o0 ) 9 . Step ( 45)

    of step Traverse Read- out path (mm) 1/loo lr.fll

    o , o138 I o ,o277 3 o ,o416 4 o , o555 6 o,o694 7 o , o833 8 o ,o972 lo o , Ill II

    0 , 125 12

    The tool holder

    ~ne tool holder can be fixed in a front or bac~ position on t he cross slide . Ranges of diame t er, please refer to page 1.6.

    Hax. tool section : 12x 12 u.rn

    Positioning of tool bi t at center height:

    1. Hount tool bit in tool holder

    2. ~:ount tool holder in tool holder block.

    1. 4

    3. Turn nut (1) un t i l tool bit r eaches center height. Use center for posi-tioning of tool bit at cent er he i ght. Tighten screw (2) and tool holder with f ixing screw (3) .

    Positioning of tool holder at required angle:

    With pre-setting gauge : Refer to chapter on tool pre- setting.

    Wi thout pre- setting gauge: Toolholder to be c l amped paralle l t o cross slide .

    ,.. )

    \ )

    \ )

  • )

    ( I

    The tailstock

    The tailstock serves to support tile .

  • Position of tool holder

    Positions of Toolholder

    Tne toolholder can be c l amped in front position a nd in back position.

    Front position

    Outside diameter 0 to Bo mm

    I nterior diameter 14 to loo rr.m

    Outside diameter 2o to I 2o mm

    Back position

    I nterior diameter So to I 3o rr .,

    Please clamp the toolholder in the front position for our prograromin9 exercises.

    1. 6

    )

    \

    )

  • )

  • ( )

    ( l

    ' )

    u

    Page 1.7/8.5-8.1:/Toolingof COMPACT 5CNC

    Tooling of COMPACT SCNC

    Tne prograuming exercises are based on the right hand side. On the pages 8 . 5 to 8.15 the data and the tool geometry and possibilities for the respective tool are shown.

    For instance right hand side tool

    a

    Clearance angl e of tool bit ;II. =93 0

    with tool shank mounted at 90 to turning axis.

    a

    Be aware of the max. cutting depth of the respective tools

    Sxample: Right hand side tool (T01) Find max. cutting depth "a" for facing

    Page 1.7/8.5-8.15

    1 = .275" 11= . 236"

    .. J> a SlOCV = -

    11 a = 11 X Sin .,e

    .236" x .o52"

    . o12" approx.

    So max. cutting depth for fa-cing with 'r i ght hand side tool i s .o12" (o, 3 rrc'll).

    ( )

    ( )

    \ )

    j

  • \ )

    The right hand side tool

    The Right Hand Side Tool (T01) Dimensions - Applications

    The exercises make it possible to use the r i ght hand side tool for all pro-qral!J!Iing work, part I . Furt her t ools are explained in part 2 of the progra~ing exercises.

    Exampl es of appl ication:

    Cl earance angle ~ = 93

    I. LOngitudinal turning, facing and ---~~~!~-~~~~~~~: _____ ____________ _

    up to ot- = max. 9o0 T"ne depth of cut "a" with facing must not be bigger than o , 3 mm , otherwise the chip f l cN is bad.

    - --,--.----

    --8

    a

  • Working data

    Working Data

    1. Culling speed (Vs)

    lvs (m/ min) = d ( l!l::l) X II' X S (U/min)

    looo

    Vs = Cutting speed d = Dia . of ~>orkpiece s = Speed of main spindle

    Tne max. acceptable cutting s peed depends on : -

    =-~~~~:~~!-~!-~~:~e~~~~~ Tne hi gher the s t rength o f the material, the laoer the cutti ng speed .

    - 1-!ater i al of tool: Carbide tools all~h for a higher cutting speed than HSS tools.

    - Feed: The larger the f eed the l o;:er the cu t -t ing speed.

    :}?~!?!:~-9!_ ~!:'!;~ The larger the depth o f cut the s~~ller the cutting speed .

    Data f or cutting sp eed and feed can be found in the var i ous tool brochures of the ma nufacturers . Tnese data are the technological basis for prograrr~ing .

    ~ttin9 s peed for pr29ramming exercises on the Colllpact 5 CNC

    Wo~kp~ece mate~ial: automatic aluminium Tool : ca~bide tips Cutting speed fo~ turning: l~o-2oo m/min Cutting speed for parting off: 6o-8o m/min Feed sil':e for turninq: o,o.2-o, 1 mm/r.ey. Feed si~z~ for pa~tinq off: o ,ol-o , o.2 rrm/r

    1.8

    2. Calculation of spindle speed (S) The cutting s peed and the workpiece dia. enable you to cal culate the speed o f the main spind l e .

    r s (rev/min) = Vs ( rr~/min) x looo d ( mm) x 7f

    3. Calculation of feed (F) On the Cor:pact 5 Ct-.'C you program the f,/ ) in mm/ mi n Conversion : -.----------

    ~~~~/oin) = s (rev/min) x F (rrro/rev) I F (~m/min) = Feed i n mm per minu te S = Speed of main spindl e F ( ~/rev) = Feed in ~" per revolution

    !calculation of feed

    The charts on the follo-..:ing page save the calculation work.

    )

    I I

  • Pa ge 1 .a; Worklng data

    l ) Working Data ()

    1 c ttl . u ng spee d (V ) s 3 . Calculation of feed (F) o Spindl e speed On the Compact 5 CNC you program the fe o Cutting speed speed (F21

  • ()

    ( )

    ()

    u

    Page 1.1o/Cuttlngvalues

    Finding the Cutting Values

    1. Finding the R. P.M.

    You kn the chart you can select the r ._p.m.

    Example:

    Diameter of workpiece: 1.6" Cutting speed: SOO feet/minute Therefore: 1200 rpm. approximately

    . Diameter of workpieceQnch)

    1.10

    ( )

    ( }

    ( )

    )

  • Spindle speed

    Selection of Transmission Steps on COMPACT 5 CNC

    ~he performance curve of a direct current rr~tor depends on the nur.her of revolu-tions. Choose the transmi ssion step of the pulley drive such that the revoluti-ons of the co tor are within a n optimum efficienc y range (blue field ) .

    Exa mple:

    llu.rrber of revolutions for rough cuts: 6oo rpm. Nu~er of revoluti ons for f i ne cut s: aoo rp::> . Opticum transmission step: ACI

    Ni th pulley posi tion AC2 you would come into a n unfavourable performance range .

    BC1 BC2 BC3 Belt position

    1. 9

    R . P .!L o f rr.otor

    AC1 AC2 AC3

  • Cutting values

    ......

    c e > f --

    :E 0. a:

    3000

    20 00

    1200

    10 00

    500

    200

    100 5

    "

    "

    ' '\.

    "

    '\,

    " '\

    '\,

    -

    "

    Finding the Cutting Values

    1. Finding the R.P.M. You knCY,., - Diatteter of ~orkpiece - Suggested cutting speed

    Fro~ the chart you can select the r.p.m.

    Example: Diameter of workpiece: 4o mm Cutting speed: I So rn/rnin 'lllerefo1:e: 12oo rp;;;,m;... ___ __.

    "' -

    .

    r'\. -

    " (\~ .

    1'.. "

    '\. ~/. ').9

    ~ ~- :~ o- C!>o--

    ~-~o ~- ~....-:

  • ()

    ()

    u

    Page 1. 11/Cuttlng values

    2. Finding the feed speed in mm/mln

    You knor,.; - Diameter of workpiece - Feed size in r p rn. From the chart you sel ec t the f eed i n l!lll1/ roi n

    Exrunple: Spi ndl e s peed: 1200 rpm . Feed: .0024" per revolu t i on Results in feed speed: 2 .8" per Hinut e approx imately

    Feed chart

    Conversion of feed(inch/rev into inch/min and vice-versa)

    F d h ee 1nc per minute

    (

    7 .:>~ ~~ ~

  • ;-------------------------------Cutting values

    ( )

    ~ )

    I )

    2. Finding the feed speed In mm/mln

    You knoo" - Dia~eter o f ~orkpiece - Feed size in rpm. From the chart you select the feed in II min.

    Example: Spindle s peed: 12oo r~. Feed: o,o6 mro{rev. Results i n feed speed: 7o ~~/min

    Feed chart

    Conversion of feed (mm/ref Into mm/mln and vlceversa)

    ee spee mmmn F d d( I I )

    ~0. ~0. ~ ~ 0. 0,2 {t 0. ~Q 0. ~ v. ~ ~o ... 0a 19.

    0,1 1\.

    """

    O,OS

    0 ,01 100

    ~fo "' "' "' "'

    " " " ' :\. :\. 1'\ '\. '\. ' " ~ " " ~ .

    ' "' -

    "" "" "' ""

    ["\. I"\.

    "" "" I\.

    "'

    "' ""

    "" '

    '200

    Spindle speed (rev/min)

    1. 11

    -

    1'-1'- I"

    f'o.. f'o.. "' i\. 1'-

    1\. "

    I'-

    " :'\._

    " i' 1\. ~ '\

    ""

    '\ l"\i' '\

    1'\ "' " "'

    ~ f\ ~ I'

    "" [\. !"\

    1\.

    ['\

    "" 1"- 1'\ i' 1\.. 1'\ ~ ~ ~ ~ ['\ i' 1'\

    1000 2000 3000

  • )

    I j

    I

    2. Hand Operation

    Operating elements Traverse indication The Plus-Minus-Sign Inching operation Switch over Input of traverse path Cutting-off power of step motors Positioning the tool

    2. 1 2.3 2.5 2. 7 2.9 2.11-2.13 2. 15 2.17 - 2.19

    I

  • J

    (

    (~.n~wwns) UOfleJadQ pueH SIUawa13 6uneJado

  • OPERATI ON EL~:ENTS - HAND-OPERATED

    ! !DUUU~[ff) COIIP.tCT S CIIC

    --

    t. L

    I. ~la i n swi tch

    Turn key to the right. Nachine and control system are c nergi z

  • )

    )

    )

    l )

    Page 2. 1b ./ 2.1c

    Operating Elements Hand Operation

    Select inch or metr i c progr~_rning be-fore switching on the machine. If you change inch to metric in mode hand ope-ration , the display does not change . If you change in CNC-operation, alarm Al3 will appear if' the memory is not empty.

    TO point 4 To adjust s peed within a range TO adjus t spind le speed of the machine ''ithin any given range simply t\trn the control knob until the spindle speed dis-p lay shohs the desired speed .

    To point 6 :

    Knob for setting feed tate . Infinit ely variable from lo-4oo roro/roin . tllat is . 4" to 16". The values on the front plat e sho.< the f eed i n rrm per minute.

    'iou will notict that the adjustrr.ent is calibrated in metric units (rr~/min) . To set a feed rate in i nches per min . mul t iply the desired value by 25 and set the ad-justment knob accordingly. For exampl e , to set a manual feed rate of 4 inches per minute; multiply 4x25= 100; and set the knob so that the ~~rk aligns with 100 on the scale.

    ~nen usi ng the manual operating mode to touch off on the stock for setting reference points it is advisable to keep the manual feed rate set fa irl y slow . A rate of I to 2 in./min (25 to So on t he scale} will allow you to move in slo,.,ly to approach the workpiece . This will lessen the risk of overshoot ing your mark a nd cutting too deply into the .orkpiece. Conversion for inch feeds "hand-opera-tion:

    mm/ min Inch/mi n lo 0 ,4 2S I So 2

    l oo 4 2oo a 3oo 12 4oo 16

    2 . 1b/2 .1 c

    ()

    ( )

    ()

    ()

  • ()

    ()

    ( )

    u

    Steps

    To point 8:

    Tip opera t ion: if you just tip the x or Z keys s lightly, t he relative s lide will move by 0.000546 .

    Calculation of actual traverse paths:

    ~!etric t raverse pa th:

    NUJ:'.ber of s t eps 72 traverse path in mm

    Inch traverse path:

    Nu.mer of steps 72 : 25,4 ~

    (angle of Traverse path

    Traverse path in inch

    Indication/read-

    Page 2.1b/2.1c

    s t .ep motor I in inch out in 1/looo inch

    I. path (50) o;oooS46 1 2. path ( lov) o,oo1o9 I 3. path ( 151ll o oo164 2 4. path (2o") o,oo218 2 5. path (25 ) o,oo273 ) 6. pat h (3ov) o,oo328 J

    .

    .

    .

    To point 9:

    Rapid traverse feed 2.75 inch/minute

    To point lo:

    Display shows the paths I n inch mode the :!: x and z paths are shc:Y,..n in thousandth of inch . (0.001'? The minus sign comes as a point on the display.

    324 = - . 324"

    To point 12:

    liith loo- 115 V machines the current conswoption should not exceed 4 kl-peres. For overload protection of t he ~otor , the PJer consumption is cut wi th a Aloperes .

    2 . 1b/2 .1c

    (

    ( )

    ( J

    l J

  • )

    )

    5 4

    lo. Display shCY

  • )

    ~ )

    ( )

    \ )

    Traverse Indication

    Hand Operation

    H G I l ,- A -" 0 0 0 0 0 0 ~ -~ 9 o.~::o I I o 8 000!31 00G8 n:3

    B-B 0000 ! El G0EJB El

    H G Jt Z f A ...... ,. 0 0 0 0 0 0 ~ -~ 9 o.~:B I I o 8 00013 El 00GEJ ~'3

    @) " EJ 000 0 !> El G0EJB B

    NGi lF A .......... 0 0 0 0 0 0 ~ ~ 9

    o .. ~:EJ I I o -8 00013 El

    . EJ0G8 ~,3 B-8 CD000 !

    El GGEJB B

    With hand-operation you can carry out longitudinal turning and facing. The feed ra te can be set by using the knob.

    TRAVERSE ~:OVEMENT OF SLIDES

    Press key +Z, -z, +X, - X. Tne slides move in the indicated direction with the given feed rate.

    RAPID TRAVERSE OF SLIDES

    I f you press the direction key and the rapid traverse key at the same time , the slide will rrove with rapid traverse speed. Test it.

    Traverse indication on read-out

    N G X Z F A 000000 9 I ol o

    II G X Z F A 000000 9

    0

    - w~en you switch on the machine , on the digital read-out appears 0 .

    - If you traverse in ~Z-direction, the read-out darkens , the Z- l amp lights up.

    2.3 J

  • ---- --- - -- ---

    ( )

    llG X ZF A 0 00 0 00

    9 sool o

    "'""' 1/GX Z F A 000 0 00

    9 1oool o

    Page 2. 5/Pius-Minus sign

    - If you t ake your finger off the Z-keys, you see on the read-out the traverse path i ndicated in thousandth of inch (with .5" traverse path you see the n~bcr 5oo indicated).

    - If you press one of the )(-keys , the lights jumps t o ')(. The traverse path appears after you release the key (with X I" the read-out indicates looo)

    2.5

    }

  • ~--------------------------------------------------------------P--Iu __ s-Minuss~

    )

    )

    \ )

    N G X Z F A 000000 9

    sool o

    "" II G X Z F A 0000 00 9

    1000!o

    - If you take your finger off the Z-keys, you see on the read-out the traverse path indicated in hundredth of em (with 5 ~ traverse path you see the nuab~r 5oo indi cated).

    - If you press one of the X-keys, the light ju~ps to X. The traverse path appears after you release the key (with X = lo ~ the read-out indicates looo)

    The plus-and minus sign

    Reference and starting point for the ~ indication is always the position of the s l ides when switch i ng on the machine .

    II GXZF A 000000

    9 [ sool o

    N G X Z F A 000000 9 I sool o

    Plus sign

    - If you move the cross or longitudinal slide into plus-direction, you see on the digita l read-out only the nur.~er .

    Nlnus Sign

    - I f you move the s l ide nto minus- direc-tion, you see on the left side of the read- out a point.

    The point i ndicates the "- " sign.

    2 .5

    '

  • ()

    ( )

    (>

    0

    (. )

    Page 2 . 1 Inching operation

    Inching operation

    If you inch on one o f the feed keys , a pulse is given to the step motor . The pul se moves t he slide by .000546" On the read-out t h e f i gur e I is indica-t ed (if it has been zero before). Tne comput er b rings .000546" to the nearest 1ound figure . The rounded f igures are indicated in thousandth of inch .

    S t eps (angle of Traverse path Indication/read-s tep motor ) in inch out in 1/l ooo inch

    I. pa t h ( 50) o , ooo546 I 2. path (lov) o , oo lo9 1 3 . oath C1 5) o oo164 2 4 . path ( 2ov) o , oo218 2 s. pa t h (25 ) o , oo273 3 6 . p a th ( )Ov) o , oo328 3

    .

    .

    Note:Select inch or ll'.etric i ndica tion before switching on ma i n swi tch.

    EXERCISE:

    I. Hove slides according to dra1:i ng fron point 0 (pos i tion t

  • )

    l )

    )

    /0

    Inching operation

    I f you inch on one of the fe ed keys ,

  • ( )

    I I

    I

    Switch over from X to Z

    Switch over from X-traverse path Indication to Z-traverse path Indication (without change In the slides position)

    II G X Z F A .,. . 0 0 0 0 0 0

    0 .. ~ ~ o .. .Q;.,:B I 4201 o

    r t'"/ r.'"" E1 0003 El [!J(IJ(IJEi} 0'~ BPB CD001 ,z, El G0EI8 El

    ""' .

    """' II G X Z 0000

    F A 0 0 ~

    0 gC;.B I 22ool rr/~: 000 3 El E) 0(IJ(IJEi} Ot~

    BPB CD001 ,z, El G0EIB El

    Exaltple :

    - Tho lar.p X lights up. On tho digi t a l read-out the traverse path in X-direc-tion is indicated .

    - Press key 8 . The light j UJips fro:J x to Z. The read-out sh~~s the traverse path in Z- direction . I f you press key 1 ~1 again, the indication jumps back to X.

    Zero positions on digital read-out

    ""'.

    II 0

    G X Z F A 00000 ~

    0 0 .. ~ o ".G.FB I I Press key iDEL I

    rl'"lM

    E1 000~ El 00G~ Or3 B P B CDCDITJ 1 ,z, Only the value of the indicated axis will be set at zero. If you want to set both axis at zero , you have to change over the indication after first de l e ting the Othet ax i s (ptess ke y E l) and press (DELl again . El G0EI8 El

    SUHMR'i

    The zero-point is the posi tion of tha s lides when machine is switched on .

    - After traverse of slides the zero-poi nt can be set ane'" by pressing key

    (DELl in x- a nd Z- axis.

    2.9 )

  • =[~ 0 1

    Procedure :

    Page 2 . 11 Input of traverse path

    You want t o traverse with the cross sl ide fr= point 0 to Point 1, i.e .. 325" in X- direction. The digital read-out shall indicate va lue 0 at point I.

    Exa:cple:

    j \ I . X-lamp has to light up. Traverse 1

  • I

    .,

    )

    )

    I

    Input of traverse path

    Input of a certain traverse path

    [

    0

    C?

    1

    N G X Z F A ""'~ 0 0 0 0 0 0

    o "A ~ Ou.Q;;,B I I 0 r: ... /tt\1\

    E1 0001i3 ] 000~ lll3 ~ #r ~ CD00 J 'l' EJ G0EJB 8

    II G X Z F A ""'~ 000000 0~ ~ OuQJ;,B I 3251 0 . ~ 000~ ]

    000~ f)l3 ~#r~ CD00J 'l' El G0EJB 8

    2

    on

    0 1 ~ l--3,25 -

    ~~~~!?!~~ You want to t rave r se .-ith the c r oss slide f ro.u point 0 to point I , i . e . 3,25 rrm in x-di rection. The digi t al read- out shall i ndicate value o at poi nt I.

    I. X- lamp has to ligh t up .

    2 . Press key fiN~. x - lamp l i ghts .

    3 . Put in 3 , 25 = press ll]~~ 4. Press k e y !wP!. If you traverse .-ith t h e slide in X-di rec-tion, the digital read- out .

  • n

    ()

    ()

    Page 2 . 13/ Input of traverse path

    Example

    r..-:orking in "' h.J nd- o pc ration" mode

    Haterial : 1\lwninium Cutting speed: 660 feet per minute Feed size : .002" per revolution Ma x . depth of cut: .05" Tool: righ t hand side t ool , carbide tipped

    calcu l ate: l. R. P.H. 2 . Feed ra t e 3 . Bear in mi nd app l icat i on of right hand

    side tool .

    /"\J

    i . J

    __ :;.. - . . - - ~ \

    -&

    I 1 - .6"- ...

    . 8" 16' ...j

    2. 13

    < )

    ( l

    ( )

    ()

    J

  • )

    )

    t )

    I )

    Example

    !''orking in "iland-operatio:i" t~de

    Nate>:ial: aluminiun Cutting speed: 2oo ~~/min Feed s i ze : o , o5 ~m/>:ev. lla x. depth o f c ut: 1 m:n Tool: right hand side tool, carbide tipped

    Calculate : I. R.P . ~I. 2. Feed r ate 3 . Bear in mi nd application of r ight hand

    side tool .

    l - I- ~ - ~-

    -& -

    T 1 - - -1- ~ ,

    I I i $ 15-

    ---20 -~-------40------~

    2.13

    Input of traverse path

  • ( )

    ( )

    \ )

    Switching off step motors

    Cutting-off Power of Step Motors

    l'.'hen you s"i tell on t he c ach i ne, the step rr~tors remain OFF until you have traversed with the slides - either u11der "hand- ope-lation" or "CN'C-operation .. and \"'ill then continue to run until s witched off (see belC'") .

    Step n:otors r un hot ,;iJen not in use and i f they are not requ i red fot son:e time should be s.;i tched off .

    Procedure (no program stored): II GXZ FA

    ""'" 0 0 0 0 0 0 :::\, () "A ::!.r o .. ~:B I 641 o

    I . S',;itch to Ct:C-operation: press key fH/Cl

    -~8 0008 ~ 000~ l'lt9 B tifr E1 QJ00 !. t El G0EJB B

    I) rg"":' o .. 0 :::B . .. r,,-:.Jr,'r.

    El BrifrEJ

    El

    IIGXZFA 000000 9

    641 0 0008 g

    000~ Ot9 QJ00l ! G0EJB El

    2 . Press key (-.. 1 Light jumps to G

    3. Put in[!@] Nurrber appears on read-out .

    4 . Press !:ey liNP~ Step rr~tors are switched o f f .

    \~hen ptcgram is stored

    G6 4 is a pure s ,itch fu nction . It is not stored in the rr.emory.

    I. Press key 0 un t il l ar..p G lights up. 2. If a nur.ber appears on read- cut,

    press key DEL.

    3 . Press fill [1] . 4. Press key)INP~ tile step c o tcrs are

    switched off.

    2. 15

    I

    - ..-

  • ----------------

    ( )

    u

    ------------------

    Page 2 . 17/ Posltion of tool bit

    Scratching

    A reference I starting point for lhe tool bit has been chosen in the proc;rarr.s . h~en the program starts, the tool bit must

    be in this pos i tion. A very sicple ~~thod is the scratching of t he end- and tho cuts ide surface o f the running ~orkpiecc .

    2. 17 )

  • I

    )

    I

    Position of tool bit

    Positioning the Tool for Programming Exercises (without tool pre-setting gauge)

    Zvalue

    'y------r--~' II)

    Xvalue

    Scratching

    A r eference I starting point fqr t he tool bit has been chosen i n t he progra~s . 1..-nen the progr am starts, the tool bit must be in th is posi t ion. A very simple me thod is the scratching of the end- and the outsi de s ur f ace of the runnin9 workpiece .

    Pay attention:

    !. Tool bit must be se t at cent er he i ght.

    2 . Angle ~ ~ust be large r than 9o0 , other-wise you ca nnot face- tur n {compare r i ght hand s ide tool) .

    3 . Neve r move the tool bit into a static-nary 1.-:orkpiece , be c a us e edge of t ool bit 1r.ay break .

    \~hen scratching , the nain spindle must r un .

    2. 17

  • ----

    (J

    ------

    ----

    ------

    Page 2.19/ Posltlon oftool bit

    Positioning the tool bit to program start position

    NGXZFA ooeooo

    I 25 I NGXZFA oooeoo

    I 25 1

    I. ~:ove tool bit .o2!>" in +X-dlrection.

    2. Move tool bit .o2!>" in +Z- direction .

    T"ne t r aversed paths arc indi cated in x-and Z-di r ection on read-out. By pressing the ke)~the indication j~ps froo X to Z a nd vice-versa, without any traverse o( the tool bit.

    2.19

    (

  • }

    )

    )

    ----

    -1-1:>-lc:>l-- . --

    Position of tool bit

    Positioning

    ~al~t;_L_Zero-posi tion

    I. S:;i tch to "hand- operation", set l

  • I

    ( I

    ( )

    I. }

    I}

    3. CNCOperation

    Operating elements Summaries Metric/Inch machine NC-Machine CNC-Machlne - Main elements What happens in CNC-Manufacture? CNC-Machine - Hand operated machine Setting up an NC-program Coordinate system Description of traverse path Kind of program Geometrical information Feed Preparatory functions (Gfunctions) External structure The format

    3. 1 3. 3-3.4 3; 5. 3. 6 3. 7 3. 8. 3. 9 3. 10 3. 13 3.153.17 3.193.31 3.33 3.35 3.37 3. 39-3.45 3.47 3.49 3.513.53 3.55

    I

  • ()

    ()

    u

    (.)

    Operating Elements CNC-Operation (Summary)

    Summary entries into program s heet and machine (inch)

    1. Address N: Block numbers oo-95 (96 blocks)

    2. Address G: Preparatory func tions GOO/G0 1/ G02/G03 ... ..

    3. Address X: Traverse path in * X di-rection. !l~'!~l~.H_o_n.; 1/1ooo inch without decimal point Possibl e X-values: X=O to x -;; T i999- (o- t~-i .999" J

    4 . Address Z: Traverse of path i n t z direction .

    5. Address 1':

    E~Ql.J,IJ;i>'1:. 1/1ooo inch without decimal poin t Possi b le va l ues: Z=O to Z ;;; T 19999- io- "t.:;- 19 . 999">

    - Feed speed with preparatory functions G01 /G02/G03/G84 !l

  • I

    Operating Elements CNC-Operation (Summary)

    SUl~'IAR'i - ENTRIES Ir-n'O PROGRJI.'~'IING S HEET

    Scheme

    I . Address N Block nu=bcrs 00 - 95 (96 blocks) 2. Address G Path functions GOO/GOI/002 . . ..

    3. Address X Traverse path (coordinati) in X-direc t ion in hundredth of tMI; 0 - - 5999 Tne input 5999 corresponds to 59,99 u~ traverse path.

    4 . Address Z Traverse path (coordinate) in Z-di rection in hundr edth of ~; 0 - ~39999 Tne input 39999 correstponds to 399 , 99 em traverse path.

    5 . Address F - Feed speed 0 - 499 rr~/min - Thread pitch from 1-499 (in 1/loo c~)

    6. Remarks: I n this column you enter notes s uch as right hand side tool, boring t ool, worki ng step, etc.

    3. 1a

  • c 0 -.; ('0 ...

    Q) Q. 0

    I 0 ( z 0 (/) ... c Q) e Q) -w -0 ... ...

    c 0 0 "0 c ('0 I c 0 -... ('0 ...

    Q) Q. 0

    3. 1b J

  • p .....

    ()

    -

    l. Main switch Turn key to the right. M~chine and con-trol system arc energized.

    2. Control lamo - main switch When main switch is on, control lamp (2) is on.

    3 . Emcrgcnsy-stop-button Wnen pushing the emergency-stop-button

    .you cut the current f rom the main mo-tor, feed motors and control unit.

    ~~~~~2~2~~2-~~~2~s~=~~~~=~~~~~~l Turn button to the loft . Switch on main switch .

    4 . Display of main spindle speed

    5 . Main spindle button (on/off)

    6 . Swi tch for option between inch or metr ic programming (only us- machine version) .

    7 . Ammeter for drive motor o f main spindle

    Tne ammeter indi cates the actual cur-r ent consumption of the drive motor. To protect the motor agai ns t overload, the current consumption muct not e x-ceed 2 ~~perc at continuous operation . The load can be diminished by r educing depth of cut, feed rate or belt posi-tion . (safe range)

    8 . Cassett e dock (acccssorv)

    -

    ~. Switch key: hand-operation to CNC-oporation

    If you press the key HIC, tho light jumps from control lamp hand-operation to control lamp CNC- operation. If you press agai~the light jumps back . 1o. Control l amp - CNC-operation

    11. Start key !START! When operating the start key, the re-corded program will start .

    _..

    12. Key board for i nput of program, correction of program, etc. (compare also detailed explanation)

    1 2 1. Kcyz @} to [2] Theze keys serve for input o f number combinationc for addresses GIX/Z/F

    12.2 . Minus key B '!>'hen you press the key G aft er input of X or Z numbers, thccc will be recorded in thy memory as minus value.

    12. 3. Input key IINPI When pressing the input key ~. you r ecord the value in the me-mory .

    12 . 4 Delete key !DELi 12.5 . Reverse l

  • ( ) 0

    ( )

    J

    2 . TAPE OPERATIC~

    AOS Tape end with SAVE

    A09 Pro2ram not found; no G22 pr~rruuned on t ape

    AIO Writing protection active

    All LOading mistal

  • ( )

    ( )

    u

    Page 3.3/ I nch Summary

    Summary

    Path functions - Block formats

    GOO Positi oning with rapi d t raverse

    x-axi s: + N ./GOO/X- .. ./ Z-axis :

    + II, ./GOO/ XsO/Z;-, , , , , /

    GOI Li nea r I nterpolation x-axis:

    + II, . /GOI/X- .... /Z=O/F . .

    z-axis: + IL ./GOI/XO/Z- .. ./F Taper : + + II . . /GOI/X- .... /Z- .. , .. /F ...

    G02 Ci rc ul ar i nterpolation (clockwise) + II . /G02/X-. . . . /P .

    G03 Circ ular interpolation (counter-clockl..-i so)

    + N ./G03/X- . . . . /F . .

    G20 Hold II .. /G20

    G21 Empty line N . / G21

    G22 Program end N /G22

    G33 Threading + N . . /G33/X O/Z- .... /F ...

    G78 Threading cycle + + N ./G78/X- ... . /Z- . ... ./F ..

    3.3

    92:~ -Lone). turni ng cyc_!e (c an cycle) + + N . . /G84/ X- .. . /Z- .. ... /P ...

    G6 5 Hagnetic tape operation G65

    G6 4 St ep ootor without powe r = (does not go into u.emory, bu t is a siu:ple s witch function)

    Alarm signs

    I. CNC-Ope r at.ion

    AOO Wrong G-instruct ion

    AOI Wrong radius inout Possib l e radii: / So/loo/15o/ 2oo/ 250 ... .... ... 1950

    A02 \;rang x-value X=O t o x ~ 1999 possible

    A03 Wrong F-value Fl to F499 possible

    1104 \;rang z-'va lue . +

    z;o to zc - 1 999~ possible

    AOS l!o G22-instruction programr.:ed

    1\06 ~:ai n spindle s peed too h i gh for th r eading

    A07 Wrong taper

    ( )

    {

    Tapers x:Z = (1-39):(1-39) possible '

  • ( )

    )

    \

    Summary

    Summary

    Path functions - Block formats

    GOO Positioning with ~apid traverse x-axis:

    + N /GOO/X- .... I z-axis :

    + N /GOO/X=O/Z=- .... I

    GO I Linear Interpolation x-axis:

    + N /GOI/X- ... ./Z=O/F ... z-axis:

    + N .. /GOI/X=O/Z- .... /P Taper:

    + + N .. /GOI /X- .... /Z- .. .. ./P ...

    G02 Circul ar interpola tion (clockwise) + N /G02/X-. . . . /F ..

    G03 Circular interpolation (counter-c l ockdse)

    + N, ./G03/X- . . . . / F ..

    /1'. oo G20. llold

    N /G20

    G21 Empty line N ./G21

    M 30 G22- Program end

    N /G22

    G33 Threading + N,./G33/X=O/Z-..... /F ...

    G78 Threading cycle + + N ./G78/X- .. /Z- .... ./F ...

    3.3

    G94 LOng. turning cycle (can cycle) + + N .. /G64/X- .... /Z- ... /F ...

    G6S Hagne tic tape operation G65

    C-64 Step c:otor without power -(does not go into memory, but is a simpl e switch function)

    Alarm signs

    I. CNC-Operation

    AOO Wrong G-instruction

    AOI Wrong radius input Possible radii: 25/So/loo/1So/2oo/ .... 59oo

    A02 Wrong x-value + X=O to Xc -S9oo possibl e

    A03 Wrong F- value Fl to F499 possible

    A04 1\rong Z-value Z=O to Z= t39999 possible

    A05 r:o G22-ins truction prograr.;ned

    AOO Main spindle speed too high for threading .

    A07 1-lrong taper Tapers X:Z = (1-39): (1-39) possibl e

  • Summary

    2. TAPE OPERATION

    1108 Tape end with SAVE

    A09 Pro2ram not found; no G22 2ro2r ammed on t a2 c

    AlO Writing 2rotection active

    All Loading mistake

    1112 Chccl

  • (

    \. )

    ()

    I

    Further technical data

    Rapid traverse feed: 2, 75 in~h/rnin

    Feed "hand-operation": o ,4- 16 inch/ min

    Conversion for i nch feeds "hand-opera-tion:

    rr.m/min Inch/min lo 0 4 25 I 5o 2

    leo 4 2oo 8 3oo 12 4oo 16

    Page 3.6/ Metric/Inch machine

    Alarm A14

    Only with tape oparation, mode o f opera-tion LOAD.

    You find a code on the tape indicating whethe r the stored data are in metr i c o r inch.

    ~~~!:'~!~.:. Program is metric You l oad program from tape to merr~ry. At the end of tho load operation it is checked : is selection k nob metric/inch or metric? If not , alarm A14 appears .

    !!!::.e~y.:-Switch over selection knob to metric , alarm sign disappears .

    Calculation of actual traverse paths:

    Metric traverse path:

    llwnber of steps 72 traverse path in ~~

    Inch traverse path:

    llwrber of steps 72 : 25,4 -

    Steps (angle of Traverse path step motor l in inch

    I. path (50) o;Ooo546 2. oath ( 10") . o,oolo9 3. -;:;-ath - ( 151 o.ool64 4. path (2o0 ) o,oo218 s. oath (25 ) o,oo273 6. path (3o") o,oo328

    .

    .

    .

    ;j.t)

    Traverse path in inch

    Indication/read-out in 1/1ooo inch

    ..

    1 I 2 2 3 j

    .

    .

    .

    l

    )

    )

    u

  • ()

    ( )

    u

    Page 3 . sJMetric/lnch machine

    The Metric/Inch Machine-Version

    You turn the knob to SHi tch over fro:~ me t r ic to inch data input.

    Condition :

    Tne w~chine memory must be empty, when s..,itching over, this is valid for "hand operation" or "CNC-operation". Other-.;ise alarm J\13 is i ndicated .

    Measures: I. Press lxNPj +!REV~ alarm sign disappears 2. Delete inch or metric program

    Input for Inch operation Maximum Input sizes

    1. Input of X- and z - values: X-va l ues:

    in o,ool inch . The values are put in without decimal point.

    X=O to X=+ 1999 (1/looo inch) Otherwise ~uarm J\02

    ~~~~l?!~l x- value = o,l34" Input: 134

    2. Input of thread pitches :

    Pitch in thousandth o f a inch (1/looo). ~~~~~!~:. Tnread with 2o tpi I i nch : 2o ~ o,oS Pi tch P is therefore o , oS" Input: So

    3. Input of feed:

    Feed = 1,2 inch/min Input F = 12

    3.5

    z- values : Z=O to Z= !19999 Otherwi se alarm A04

    Feeds: F=l to F=l99 (in 1/lo inch per minute); otherwise alarm A03

    Radii: So,loo,l5o,2oo 19So otherwise alarm AOI

    (1/looo inch);

    ( )

    ( )

    (

  • )

    ( )

    i

    The Metric/Inch Machine-Version

    You turn the knob to s.

  • Metric/Inch machine

    -----------------------------------

    Further technical data AlarmA14

    Rapi d traverse feed : 2, 75 inch/min Only wi th tape operation, r:ode of opera-tion LOAD.

    Feed "hand-operation": o, 4- 1 , 6 i nch/ min

    Conversion for i nch feeds t i on:

    "hand-o,eera You f ind a code on the tape indicating whethe r the s t ored d a t a are in me t ric or i nch .

    m::l/mln Inch/min ~~!!~~ !~~ lo 25 5o

    loo 2oo 3oo 4oo

    o . 4 l 2 4 8

    12 16

    Program i s ffietr ic You l oad program froo tape to memor y. At the end of the l oad operation i t i s checked: is selecti on knob metr i c/inch or t:etri c?

    If not , alarm Al4 appears .

    ~:!:-:3'1.:-Swi tch over selecti on knob to rr~tric ,

    alar~ s i gn disappears .

    Calculation of act ual traverse paths:

    ~~etric traverse 2ath:

    Nunber o f ste2s 72 traverse pat h i n rnrn

    Inch traverse 2a th :

    Nurrber o f 72

    Steps (ang l e of step r:otor)

    1. path (50) 2. path (loy) 3. oat h (ISO) 4. path (2o0 ) 5. path (25 ) 6 . path ( Joy)

    .

    .

    ste2s : 25 ,4 -

    Tra verse path nch in i

    o, o, 0 o , o,

    ooo546 oolo9 ool64 oo2 18 oo273

    o , o o328

    3. 6

    Travers e path i n i nch

    Indica tion/ read-out in 1/looo inch

    l I 2 2 3 3

    )

    )

  • )

    ( )

    ' )

    CNC

    What is a CNC-Machine?

    - A machine which we feed with figures and letters = DATA INPUT

    - A machine which "understands" the data , which processes it and calcu-lates = DATA PROCESSING

    - A machine which passes on this data and calculated values in form of in-structions = EXECUTION

    NC-1-!ACHINE

    ~ AC

    NC-machine

    Computer-numeri-cally controlled

    Specialists Direct numerically con-trol led (direct elec-tronic input of program via cable)

    Adaptive control (control system adapts i tself to changed work-i ng conditions)

    Meanings in daily use

    These meanings change quite often in their daily use. NC-~4chines were origi-nally W4Chines with nurr.erical control, but no microprocessor. Today such rna-chines are obsolete . The program was read in direct ly from the perforat ed tape.

    3. 7

    Today NC- machines comprise all types CNC, DNC or AC types .

  • CNC-machlne - Main elements

    CNC - Machine - Main Elements -A "humanized" Comparsion

    . '

    Data Input: - Data on digital readout Via keys or magnetic tape

    Interlace element: -+ Output element can be compared to Lei's call him

    a secretary press speaker. Central Processing Unit o Microprocessor. Let's call it the director. He delegates, takes de cision, calculates. A watch gives him the feeling lor time, but

    . he does not have any specialist knowledge .

    ' Operating program Memory = RAM (EPROM) = Remembers the

    specialists. program They know everything.

    Output element (Inter lace): Chief operator. He receives orders and passes them on.

    l Machine Amplifier (foreman)

    3. 8

    '

    (

  • CNC-machine - Main element:

    ----------------------- -

    )

    '

    \ )

    Interlace element (secretary)

    Operating program = EPROMS (Specialists)

    CNC-Machlne Main Elements

    ~I

    Central processing unit ~ Microprocessor

    3.9

    Digital readout

    Output element (press speaker)

  • )

    )

    )

    Interface element (secretary)

    CNCMachine

    What happens in CNC-manufacture?

    What happens in CNC-Manufacture? Digital read-out

    3. 11

    Output elemen t (press s:leaker)

    Amplifier (foreman) 7

  • What happens In CNC-manufacture?

    -------------------------------

    )

    \

    What happens In CNC-Manufacture?

    h~at kn~~ledqo i s necessary i n order to manufac ture , usinq a hand oper ated or a CNC lathe?

    , ___ ,,. __ ~

    Aluminium

    Hand operated machine NCmachlne

    3.13

  • )

    )

    )

    CNC-machlne - Hand operated machine

    acture using a Differences in Manuf hand-operated or a C NC-Machine

    (Summa ry) Hnd ope rated r.achine CNC-machine

    Necessary Infer matlon

    wing Techni ca l dra

    --l

    ..

    Necessary m eans

    Lathe

    Chucking devi ces (chuck , center , e t c

    Turning tool

    . )

    (to e xecute operat ion)

    Reading of t echnic a l dra .. i ng

    Kna .. ledge about ch istics of tur ning

    aracter-

    Roughing tool

    Copying tool

    Side tool etc .

    3.15

    tools

    ~ ~

    r,;;;- L~~ 'o '--Ill T -~

    :.- ~' :1

    /

    v

    v

    ..;

    v

    v

    .

  • CNC-machlne - Hand operated machine

    -----------------------------------------------------

    )

    I l

    \ )

    Hand operated ~achine

    Differences In manufacture, using a Hand operated or a CNC-machine -

    Continued

    Technological information

    + Cutting speed depending on - material of workpiece - tool (HSS, carbide tipped) - turning operation such as

    roughing, finishing, sere" cutting

    + Feed ra te

    + Cutting depth

    + Performance a nd di mensions o f machine

    Execution

    C!IC- machine

    Operator must knO'd ho-< to control the machine

    + Writing the NC- program ..

    ... ~- :.:.

    + Input of ~;c-program

    l il l:= ~

    + Preparing the machine

    + Exe cution

    3. 17

  • Program

    ~--------------------------------------------------------------------------------------~~

    )

    l )

    Setting up an NC-Program

    Scheme

    Technol ogical Info

    I Program input l

    I I Hachine I

    3. 19

    I Geottetrical Info l /

    Kn~Nledge is necessary concerning machine and

    syste~ of control

    Operator oust be aNare of different input pos-sibilities (input di-rectly on oachine, in-put via perforat ed tape, via magnet i c tape, etc .)

  • ( )

    I )

    What is Programming? Programming lt.

  • )

    ( .

    l

    \ )

    Setting up a program structure

    To learn programming ceans to learn to write d~~n instructions which the other will understand; and this without pre-suming that the one who executes has speci a l kn~~ledges or will correct wrong or uncompl ete instructions .

    With which Information do we have to feed the computer? Experts from various fields sat together and discussed h~~ such listings of in-structions could be structured.

    Aim: Simpl e , not depending on a certain language, practice- oriented, useable for all machine tools .

    Procedure :

    I . Analysis of operations on machine tools

    I Determining of program structure .

    3.23

    Program

  • (

    WITH WHICH INFORHATION DO WE HAVE TO FEED THE CO:!PUTER'?

    Basically the sar.:e information . l:hich we would have to give to so:::eone, ''hy not try: Wri te the insttuctions do-.m, o r give them directly to a man on the machine .

    ~~~~~!~~ The man on the machine has to turn a shoulder . Tool bi t position as indi-cated in the l eft hand dra,;ing . Hate r ial: Aluminium

    Hachine perf ormance like Compact 5 CNC. The turning operation should be done as economically as possible. The main spindle is a l ready r unning .

    - 20

    -r---~ ---~- - -~ --

    .. ...

    _L __

    Program

    ( ) ~!}~~~~!0 -~~~t?!~~ PS : our car will hard ly reach the stree t without a bump , because you will mos t probabl y give unclear in-structions a nd these maybe in a mis -leading sequence ..

    )

    Try to give instructions to someone to drive the car out of the garage, who does not kna,; h o,; to drive a car. our partner is only auo,;ed to follO'n your instructions blindly.

    3.25

  • )

    )

    Program

    Determination of program

    A talk bet~een a progra~~ing specialist and an operator could run as follo~s : The specialist wants information h~~ the workpiece (co=pare exampl e of pre-vious page) is being canuf actured.

    - +-s --.f. ~ --. _L_-~ __ .._

    ~~~:!!!!~!: !: .:. Please expl a in to ~e . what you do in order to manufac t ure this workpiece? I see that the tool bit is counted and the main spindle is running.

    ~~!::!!!:~!::.:. -z o;ove the cross s lide by 6 IUD .

    ~E~:!!!g;;:!;.:. In .rhich direction? You can move it to-wards you or away from you.

  • (

    t )

    ( )

    Program

    Brain storming of the specialists, program structure

    7horo a re r~ny di f ferent ~rations on a C4Cht no ~1. He do 1 ~efine l ongi-t udina l or cross turning or scre~cut tinQ? Of t en I repeat c~rtain slide C.O\'O::ente in cyc l e s; I r.eed a code word o r a code~u:~cr. ror exarple I take lho lottor G and add ~ f igure.

    For the instrucl iona on lonqitudir.al ar~ cress slide CIO'Ie!:ents 1 l 4ke the

    x~rtes-coordinatca-Svt~. right hL~ turninq .

    z = longitudinal s lide X = Cress slide 'i'he directions a r (! i nd icated "' lth !ai9n.

    Absolut e or 1 ~cre=enta l7 ~~ich lr.put f ineness? o , I m , O, o l r..:l o r o,ool r..=?

    h"hat else do I have to proqr&::~?

    Feed: I ta~e the code- le tte r F Spindle speed: Code-lc t tor S e tc .

    7his is all put t~tthcr in 4 llat .

    The determining of a program structure .... ~as of course a 'n'Ol:k of years , a nori< of many specialis ts. The foll~~ing pa-ges will bring de t a ils on the program structu>:e valid for all machine tools which is standardized according DIN 66o25 .

    3.31 J

  • )

    ( l

    The coordinate system on NC-machlnes

    The information "move l ongitudinal slide in direction headstock" is a very long one . Besides that , in each language it would be different . Tnat ' s why the tra-verse path ~~ver.ents with machine t ools a re described within the coordinate system.

    Coordinate systeo on lathes

    Z-axis Axis parall e l to the turning axis

    X-axis Axis rectangular to the turn-ing axis

    - Z moveccnt = u.ovement of l ongitudinal slide in di r ection of headstock

    +Z mover.ent u.oveocent of longitudinal slide a-.ay fro::> headstock

    - x movement see drawing +X rooverr~nt see drawing

    3.33

    Coordinate system

  • \

    Verbal instructi on: -------------------

    Description of traverse path

    The coordinate system

    The description of traverse path

    Do you rer:cmber the sur..rr.ary of the spe-cialist?

    You move the longitudinal slide in direction headstock by 21 run at a certain feed rate

    With the help of the coordinate system we can say it sir:pler:

    c::c- instruction:

    ~:ove longitudinal slide to cove in Z-direc tion Hove longitudinal slide in direc-tion bf headstock ~:ove longitudinal slide by 21 U.'ll in direction of headstock

    3.35

    to r:ove in -z direction

    = to move i n -z direction by 21 rrm. The Ct;C- instruction is Z- 21 rrn.

  • )

    ~ I

    )

    )

    Program

    Concept of Programming - Methods of Programming Basically there a re t .:o methods to des-cr ibe the path : absolu t e or incr emental.

    3. 37

    Absolute The path i n formation is given from a start ing poi nt.

    :::> ;,..- ..

    Incremental Each point (place) is the reference point (place) for the following mea-s urerr.ent.

  • Jl

    /

    r I

    ( )

    ' 8 IMPORTANCE OF NC-MACHINES - NC-TRAINING

    Development of r.;c-r..5chines

    f'uture of 1\C-a:ach!nes

    ~nY r.;C-training?

    Mr. John Pearson and the M. I.T . (l~assachusetts Institute of Technology) developed 1952 on behalf of the US-Air-Force the first numerically-controlled machine tool for the production of particularly complicated workpiece&. Due to the high costs and the voluminous size of the con-trol unit and because of the complicated operation and maintenance, one could hardly icaginc that this technology could be used on a broad basis . But the first step was

    . made and this control type was further developed .

    So~ I S years ago NC-machines were extremely costl y and only very few companies had the courage and the conviction to invest in this new technology.

    Froo 1975 on, the production of NC-machines gre~ enormously . ~~e mai n reason for the sudden increase was certainly t he development of the microprocessors. The use of NC-machines in this way was first attractive to large , u~dium and s mall ~~nufacturing cocpanies. Today the cost of, for exampl e, a control unit with a much larger capacity will only cost a t wenty-fifth as ouch as compared to 1968. The initial mis-trust as to the reliability of electrical control has u~anwhile disappeared; the machine break-da~ns caused by defec-tive controls are bel~~ one percent.

    Lower purchase prices, higher cut ting capacity, p rec ision, speed, longer life, easy progra~ng will fur ther increase the number of NC-machines: experts estimate that the nurrber will quintupl e unt i l 199o.

    In nearly all manufacturing companies there is high demand for NC-trained personnel and this demand will sharply in-crease in the future. Therefore training is of utmost impor-

    J

  • J

    Absolute system

    Geometrical Information The geome trical information is in the t echnical dra~ing . Lettering of drawing Can be done according to the incre::.on-tal or to the absolute system. In 10any cases you find a corrbination of these ti

  • r )

    ( )

    )

    Absolute system

    Methods of Programming In the program you have describe in each block the path of the turning tool . Basi-cally there are too methods to describe th i s path.

    Geometrical information

    Incremental system The path information given to the turning too l s i s always calculated from a definite starting point.

    Here the pcsi tion of the turning tool is given as its distance f rom the preceding final pos i tion. The zero reference point f or each path informat ion is the actual position of the tool bit.

    -x

    2 1 (Jq, 4 3 IS

    -i 1/ "' o ~ (~

    !/ "'~ -5 l l +Z -z ~

    +X +X

    X z X z

    -3 0 -3 0

    -3 -2 S' 0 -z.s -Z -2 5 1 0 -2 _t; 0 --IS

    0 -6 l -2.

    3. 41

  • L-~ -x -~ I

    --:2

    + .. -1 I

    -1

    l ) ~1 2 I 04 3 I ~3

    +X

    1 - ~

    -X - 2,

    2. - 1 4 3 -1 ~1 I

    -z

    l - 3. ~f

    Geometrical Information

    Exercises

    The absolute system

    nts for he ab-

    Enter tho measure:::e points 1,2 , 3,4 in t solute system.

    X Z

    -

    The incremental system

    1 2 3

  • )

    l I

    Absol ute system

    Advantage:

    Advantages - Disadvantages

    The C 0 -l.~ 0 -ZS'

    .

    .

    3. 45

    If you have to change one point, a ll follcwinq enos will have to be changed as well.

    Since point I was changed, also the description for points 2 and 2 chanqes.

    X z X z

    -1. -1 - O.t; 0 - ,., S' OS

    - Z 4 0 0

  • ()

    ( )

    ( I

    u

    Pa9e 3. 4 7/Feed

    The feed (F)

    Por the feed size or feed speed the letter P is used .

    .!..!.._~ Size(F1)

    incM ev --H-;;.;.~m/rev I. Peed size: inch

    Is indicated in inch per main spindle revolution

    r 1 = inch/rev.

    Inch

    rml/min inchifnln

    Movement of t oolbit (in inch) per ni-nute. 1. = Path i n inch

    f'2 -1. [ I~ch]

    min m1n.

    Inch

    Feed size (FI l to feed speed (F2l

    r 2 Gnch]= s[r~vJ x min. m1n. p cnch] 1 rev. Feed speed (F 2l to feed size (f'l )

    f' l [_!.nchl = rev.j

    F l inch] 2 linin.

    s crev] oin .

    s Main spindle speed

    Conversions

    On industrial oachines you r.!ay pu t in the feed in mm/re v. and run/min . On the C~~PACT 5 CNC the food is put in i n IMI/min.

    Is indicated in rrm per main spindle r evolution

    F1 = m:n/rev.

    Z.!etric

    = Hove::ent of t ool bit (in m:nl per mi-nute. L = Path in rr.rn

    L min

    Metric

    Feed size (F1l to feed speed IF2l

    l = J s [rev J F [= J F2lmin . = ~ x I rev.

    F 1 c-l = revj S = Main spindle speed Ni th the CO!IPI\CT 5 CNC the feed does not depend on the spindle speed, so you have to calculate t he feed size or look for it in tho chart .

    (

    ( )

  • )

    The feed (F)

    Fo r the feed size or feed speed t he l e t te r F i s used .

    I. Feed s i ze

    Is i ndica t ed in ~~/~ain spind le revol u-tion .

    --++,._:;11-'D/ U F = m.:n/ r ev .

    run/ mi n

    Conversion:

    Fe ed speed (mm/ mi n)

    2 . Feed sp eed

    = MOvement o f t ool bit p er ninute s

    F "--mi n (rr,'D/ min)

    On indus tria l cachi nes you ~4Y put in the feed in m:n/rev and r..::>/ min . On the Compac t 5 C~C the feed is put in i n tt.:n/min.

    Hain spindl e speed (rev/min) x feed size ( rr.::~/rev)

    ) IF (r..m/min) S (rev/min) x F ( l:.lll/ rev )

    )

    Feed s i ze (~il/rev ) Feed speed (rrm/ cin) Hain spind l e speed (rev/min)

    F (rrm/rev) a F (m.11/min) S (rev/min)

    With the Con:pact 5 CIIC the feed depends nol on the spindle s peed , s o you have t o

    cal c ulate the f eed size or l ook for it i n the char t\

    3. 47

    Feed

  • )

    ()

    ( )

    l )

    ><

    G-functlons

    Preparatory functions (G-functions)

    The patfl f unctions are defined according DIN 66o25 and ISO, the meanirlg o f which .:ill be expl ained in the follc,:i ng chap-t ers.

    +

    GOO Slides toove only at rapid traverse speed .

    GOI Slides rr.ove at right angles and/ or at progra~~ed angles with progra~~ed feed .

    G02 Turning tool foll

  • n

    (J

    u

    Page 3. 5Yfxternal structure

    ( ) -The words of the COMPACT 5 CNC

    I. l1ord: Address letter N The f irst colurrm carries t he b l ock number. You put in: 00 (first s t ep o f operation)

    01 (2nd s tep of operation) etc .

    N G X z F E

    00 -

    01 .

    2. l~ord: Address letter G and numbers G is the sycbol for t he operation tube done . Each number means a certain ~~vement, e .g. ol straight line u.ovement, o3 circular rr.~vement, etc.

    N G X z F Bern

    00 01 12t; 1--Ot! 0~

    3. 1\ord: Address lett er x and numbers X means x-axi s . The numbers indicate the traverse path in X-di rection. The number can have "+" or "-" sign . X +125 means .125'' i n plus X-direction.

    N G X z F Bern

    00 01 1l5 zoso 100 ---

    --

    0-1 01

    3.53

    4. 1\ord: Address letter z and nurr~ers z means z-axis . The numbers indicate the traverse path in Z-direction . Z +2o5o means 2 .o5o" in plus Z-direction.

    N G X z F Bern

    00 Otl 42.5" 1~50 . ----Q.L _QL

    5. 1\ord: Address l e tter F and numbers F is the abbreviation of " feed" . FIOO means a feed of l o inch per minute.

    N G X z F

    00 01 Otl 03

    On industr i al CNC-rnachines there are fur t her 1-:ords in use.

    Bem

    Spe ed of main spindl e (address letter S) Tool for the relative block (address letter T) Suppletr"'ntary miscellaneous f\lnctions (address let t er ~l ) etc.

    ( )

    ( )

    (_ )

  • (

    ( )

    I )

    External structure

    The words of t he COMPit.CT 5 CNC

    I. Word: Address le tter N The first colurr~ carr ies the block number . You put in: 00 (first step of operation)

    01 (2nd step of operation) etc.

    N G X z F E

    00 01

    - :- - -

    2. I~Ord: Address letter G and numbers G is t he s ymbol for the dime nsion. Each number means a cer t ain movccent , e.g. 01 strai ght on movement, OJ cir-c ular ~~vement , etc .

    N G X z F S.m

    00 01 12S '-

    01 03 --

    3 . h"ord: Address l etter x and numbers x ceans x-axis . The nurrhers indicate the traverse path in x-direction . The nurrbcr can have "+" or "-" sign. x+l25 means +1,25 rr.-:> in x- di rection .

    N G X z F Oem

    00 01 12.5 zoso 100 --01 01

    -

    3. 53

    4. l;ord: Address letter Z and numbers z oeans z - axis. The nurrbers indicate the t raverse path in Z-dircc tion . Z+2o5o ceans 2o, 5 rnm in Z-direction.

    N G X z F llem

    105~0::.....__1--1--I 00 -=0~1_, __ 1:::2."-S_ Qi_ ~0~3-~-----~-------I----1---

    5. l;ord : Address letter F and nur.Ders F is the abbreviat ion of " feed". Floc mea ns a f eed of loo rr-:> per mi 1mte.

    N

    00 01

    G X

    . .2.2._ _...iL 03

    Z F Bern

    2.050 100

    On industrial o;c-machinos there are f m ther ... :ords in use .

    Speed o f main spindle (address letter S) Tool for the re l ative bloc k (address letter T) Suppl e =ent a ry miscel l aneous functions (address letter H)

    etc .

  • n

    ()

    ( )

    u

    The input format or block format

    These 2 terms can be found with all prO

  • I

    (

    ( I

    .

    \

    These 2 ter r.s can be found with all program::>i ng schedu les . The input forma t prescribes o,;Ji ich values you have to put in t o the progra~~ing sheet for each single b lock to be pu t into the

    co~puter in this sequence.

    The i nput format depends on the G-func-tions (path- functions) . h-nen t hreading you have to p ut i n the pi t ch and the length of the thread, for exarr~ le with GOO {positi oning with rapid traverse). You have to put in only the path in x-or Z-direction.

    Explanation + + N .. / G .. /X- .... /Z- .. . . ./F ...

    N . . The dots stand for nlliTbers 00 t o 95 {96 b locks)

    G. . The dot s s t a nd for the numbers + + X-. ... The 4 dots stand for nurr.ber s -0 to

    :!:5999 + + z- ..... The 5 do t s s t a nd for nur.bers - 0 to

    :!:39999 F . . The 3 dots stand for nurr.bers 1-499

    If t he input format prescribes

    N . / G20

    yotJ have t o put in on ly t he block number and G20 into the p rograrr"-:>ing sheet.

    N G X z F

    15 zo

    3. 55

    Block format

  • l )

    , }

    I )

    I I

    4. Programming

    ,

    G20/G21/G22 GOO Positioning with rapid traverse G84 Fixed cycle - longitudinal turning G01 Linear interpolation G02/G03 Circular interpolation - Clockwise - Counterclockwise G33/G 78 Threading with constant pitch, threading cycle Control of dimensions - Corrections of dimensions Programming the outline of a workpiece Exercises

    4.1 4.3 -4.5 4.74.17 4.19. 4.41

    4.434.55

    4.57 - 4.83

    4.85 4.87. 4.91 4.934.101

    I

    (

  • s .

    < ' ' """''-'91"

    1-- 1-

    -

    Tf" '-.

    ,gt . '(

    1- --

    -1--

    .

    ' ' ' ..... ..,...

    I-1- f-

    l7il

    ' I~ ~ IJt 1--'- - - 1--- - -

    (

    """"'"" ' ' .... """' 0

  • ( )

    u

    Page 4 . 3 /GOO

    GOO - Positioning with Rapid Traverse Toe positioning of the turn ing tools, i . e . movement o f sa~e without chip rereoval, mus_t be done with highes t possible speeds (r ap i d traverse ) for economic reasons . The slides move in z- or X-direction.

    Necessary Inputs I . Sl ide ~ves in X-direction: ~~. x-

    value in thousandth of inch (.ool ) . 2. Slide r-oves in Z-direction : I;() I , X=O,

    z- value in thousandth of inch (.ool).

    The speed of the t raverse is 27,5 inch per minut e in both cases .

    - uoo

    Input formats GOO 1. N . ./GOO/X .. .. I 2. N . .IGOOIX~OIZ .... ./

    Example: To facilitate the counting and dismount-ing of the turning t ool it keeps the i n- -dicated distance to the workpiece edge . Toe tool is moved with r apid tra~erse to point A.

    Block NOO - Turning tool moves . 25" i n x- axis, sign "- ". z-value and F-value need not to be entered.

    Block NO! - Turning tool moves .2o" in z-axis, sign"-". P-value need not to be entered.

    N G X z F Ben

    QQ._ 0 0 - 250 01 00 0 - 200 02, 2.2

    4.3

    (

    )

    ( )

    (

  • \

    )

    GOO - Positioning with Rapid Traverse The positioning of t he turning tools , i.e. movement of sau.o without chip removal, must be done wi t h hiifnes t possible speeds (rapid traverse) for economic reasons .

    The slides move in Z- or X- direction .

    Necessary Inputs I. Slide moves in X-di rection : t:oo, X-

    value in hundredth of r.JD .

    2 . Slide n::oves i n Z-d i rection: N01 , X=O, Z-value h o f rr"'ll in hundredt

    The speed o f tho traverse is 7oo JT~/min i n. both cases.

    ==~------. JJ _--F-

    - !,-

    Input formats GOO 1. N .. /GOO/X :t .. . .I 2. N . .IGOOiX=OIZ= . ... .I

    Example: To facilitate the mounting and dismoull t-ing of the turning too l it keeps the ill-cHeated dis tance to the >;orkpiece edge , The tool i s moved with rapid traverse to point A.

    Block r:oo - Turni ng t ool

  • n

    ( )

    ( )

    u

    Page 4.s 1 GOO

    Programming exercise 1 (GOO) The workpiece is finished . The turning tool has to return with rapi d traverse speed to 0 -point. Program the "program end" at 0-poin t.

    Note: There are 2 possibi lities. Pro-gram both.

    N G X

    N G X

    Programming exercise 2 (GOO) Program the tool movement at rapid tra-verse speed 0-5 (lo blocks are necessa-ry). Program the points with one decimal point. One block equals . I".

    N G X

    4.5

    z

    z

    .

    (

    F Ser

    ( ) F Ser

    ( )

    z F e.

    \ I

    I

  • )

    ( )

    t )

    erclse 1 (GOO) Programming ex The wor kpiece is t ool has to retu speed to 0 -point end" at 0 -point .

    Note: There are gram both

    finished. The turning rn with rapid traverse . Prograo the "program

    2 possibilities. Pro-

    PROG RAMMBLATI EMCO COMPACT 5 CNC

    N G X z F Bor

    -

    PRO GRAMMBLATI EMCO COMPACT 5 CNC

    N G X

    Programming exercise 2 (G 00) at rapid tra-Program the tool move~ent

    verse speed 0-5 (lo block s are necessa-ry).

    f

    z F llor

    GRAMMBLATI EMCO COMPACT 5 CNC I f: "

    . ....; , PRO

    G X z F Bt ' l 1 . ...., . :.: . N

    -

    . , .. ! .;: -

    -

    -

    ]~ ~ c " . ~f

    "'

    ~ .,.

    ' ~ . . . - ~,... __,_ I-

    I "" ~~ ,..... . ., :::: ::: "' I[

    : :::

    . :I : !r :; t :i ~ .. = b'ifu_ ... 'I I 'f" .::. "" : - - ... . .

    ........ .- ~.... .

    4.5

    GOO

    J

  • ()

    ()

    u

    Page 4. 7 j G84

    G84 - Fixed Cycle I Longitudinal Turning '

    As the word cycle says, the l!lOVement of the turning tool is a closed one .

    Example:

    Turning of shoulders on an axle

    Hand operated machine You feed in with the cross slide , move the l ongi t udi nal slide 11, bring t he longi t udinal slide back , feed in tl and t2 etc. There i s a l arge percentage of turn-ing j obs of this kind . This was the reason to implement a fixed cycl e in the c~c machine .

    -----.,

    4. 7

    CNC-machlne Path function G84 If you program G84, the s lides will move at progr~med feed rates/rapid traverse in the prograrrrued x-and Z- directi ons in a cycle .

    vF ~ programmed feed rate (I - 19,9 i nch per minute)

    vE r apid t .raverse (27, 5 inch per mi-nute)

    VF (-Z) Vf(+X)[

    ---------VE (+Z)

    )

    ( )

    I

  • )

    )

    )

    Gl4

    G84 - Fixed Cycle I Longitudinal Turning

    As the word cycle says, the covement of the turning tool i s a closed one.

    Example:

    Turni ng of shou lder s on an axle

    Hand operated machine You feed in with the cross slide, move tho l ongitudinal slide 11, bring t he longitudinal slide back , feed in t l and t2 etc . There is a l arge pe rcentage of turn-ing jobs of this kind. This was the reason to i mplement a fixed cycle in the CNC machine.

    - ------,

    - - - ----, ------j

    4. 7

    CNC-machlne Path function G84 If you program G84 , the slides will move at progrrun=.ed feed rates/ rapid traverse in the progra~~d x-and Z-directions in a cycle .

    vF =programmed feed rate (l-4oo ~~/min) v = rapid traverse (2ooo ~/min)

    Vr(+X)[ - --------Ve (+Z)

    I Ve (-X)

  • )

    )

    Possibilities and applications when turning

    -d~--- --------. l __ _Po~~i~yA--~ Example : Outside tur ning f r o :n right to l eft

    l -Posslbl~t~ B _ ] Example: Outside turning from left to righ t

    ----~

    N

    ----------o-- 0 t Possibility C f Exa .:.p l e: Boring

    G X z

    0 .:r--------- t Possibility D J Hardly used for t urn i ng operations

    z

    It z= t:>- red a rapid traverse ~::=====> b l ue ~ feed at given speed

    4.9

    G84

    F

  • ()

    ()

    u

    Page 4 . II /G84

    Program Input G84 As per sign for X a.nd z you can program 4 cycles (A, B, C,D).

    Inputs I . Block number 2. G84 3 . X-value in thousandth o f

    inch ( .ool ") 4. z-value in thousandth of

    inch (.ool") 5 . Feed in tenth o f inch

    (.I" per minute)

    Example:

    The firs t and the fourth l!".overr.ent are in rapid traverse . The second a nd tile t hi rd movement with t he progra~~ed feed s peed .

    (2)~--,--~2\----.-

    A cV 8 I ----@}--~--~---

    1

    c cv D ~~--~2~----t------~2~----~

    'lou :,ant to t rave r se in cycl e A.

    t~.--: -3.:~:...._~ ~ft Input formats G84 G z F N . .IG841X ... .IZ ... .IF . ..

    84 - 3co - 3o5o 12o

    4. 11

    l )

    ( )

    ( I

    ( )

  • )

    )

    I )

    Program Input G84 As per s i gn for X and z you can program 4 cycles (A,B,C,D) .

    Inputs I.

    2. 3. 4. 5 .

    Block nurrher GS

  • {)

    -

    ( )

    ( )

    u

    /"\../

    .. --- ~ __ _ ,.. - -- - - --~ 1

    . ---.s''--- .7" __ .,

    1.6"

    t--, 1 r -- -

    ___ _J_-1- I I I r- --1--"'

    .I ~ .

    i

    Page 4. 13/G84

    Example:

    Manufacture ~orkpiece as indicated left hand . The tool is posi tioned at i ndicated d i s-tance. The cycles should s t art a t point A.

    ~laterial: Alu.:;iniU::J !II I " Revolution of main spindle: 2ooo rpm. Feed:.25 inch per minute Max . depth of cut : . oS"

    N 0 X z F 84>mor1n

    4. 13

    ( )

    l )

  • )

    N -- N --

    '$.

    ( ) ~------ 40 ------~

    )

    I )

    G84

    Example:

    1-lanufacture \

  • ( )

    ( )

    u

    Page 4 . IS / G84

    Programming exercise 3 (GB4)

    AI

    f JJ j "' - ~-~- ~ - - - . -& ~ .

    - 1:.-.6-~~ . 1.6"

    N G X

    The workpiece has to be manufactured i n G84 cycles.

    - Ma'\. depth of cut .os: starting position of turning tool, see drawing .

    Choose revolutions of main spindl e and feed from cha rt and write up program. Make a drawing in the scal e of t he

    tra~sparent pape r a nd put in block numbers.

    Cutting speed: IOOO fpm Feed: . 00 1-'' Calculate f eed speed and spindle speed.

    z F

    -- -

    -

    -

    .

    -

    - ------ - 1-

    4. 15

    ( )

    ( l

    ( l

  • )

    /\J

    --~- -

    l ) 40

    )

    Programming exercise 3 (G84)

    ~ 1 - - - + T ~

    I_

    f-- 15 -20

    N G X

    5

    The ~orkpiece has to be manufactured in G84 cycles.

    - !!ax. depth o f cut I = - Startin9 position of tu r ninq t ool,

    sec drawing.

    Cnoose revo lutions of main spindle a nd feed from chart and write up prograo. Hake a dra.-llng Lo scale I: lo on l eft hand side.

    z F

    1---41---~------t----~

    4. 15

    G84 ,....

  • ()

    ()

    u

    Page 4.17/ G84

    Programming exercise 4 (G84)

    l .. 1---1,69 ---.j

    .2511

    The first cuts are done using cycles G84.

    - Max. depth of cut: .o5" - Oista.nce to edge of shoulder: .o2"

    Material: Aluminium

    Cal culate main spindle speed, feed and write up program. Make a drawing with the transparent scale.

    N G X z F ee

    1---- -~------- --1- --ll- ~-- - - ---------t-

    --1--~------. --~- ----1------------

    ---- !---- .. .

    4 .17

    (

    (

    (

  • ( )

    ( )

    )

    G84 -----------------~=- -~

    Programming exercise 4 (G84)

    0 ...

    '&

    1--- -40- - -l

    ....,.,...._ 0,5

    5

    The first cu ts are done us ing cyc les G!l

  • )

    )

    -z ..

    ..

    G01 - Linear Interpolation Linear ccans s t raight l ined Interpolation rr.eans the f inding of inter mediate va lues

    Linear interpolation rr.eans the findi ng of intermediate values o n a (straight) line. Th is line can also be at a cer-tain angle .

    Possibilities of G01

    1. Turning In Zdirectlon (axis)

    +Z (Longitudinal t ur ning) with given fe ed ra te. No interpolation taking place ...

    n II I I ~~

    v

    -x

    +X

    (X- r::oveo:ent = 0)

    2. Turning In Xdirectlon (axis) (Facing) with given f eed ra te . No inter-polation t aking place .

    (Z-move:oent " 0)

    3. Taper turning 11i th qiven feed r a t e . X- and z-valucs arc being interpolated. (X- a nd z-z::ovel:'.ents )

    4. 19

    G01

    J

  • N 0

    .. 0-1

    () \

    N G

    .. 01 u

    I I I

    page 4.21/ G01

    1. G01 - Turning in Z-Direction

    ~9"

    -+~-o~- .o s11

    ~~~'!:,~!~ ~ Tool bit shall c:ove . 95" in Z-direction . Tool bit position as indicated in drawing.

    Inputs L ____ _ !. Enter block number

    X

    0

    X

    250

    z F

    -950 25 -

    2. Enter GO! 3. X-value ~ 0 4. z-value to be put in thousandth of

    inch 5. Put in F-value in tenth inch per mi-

    nute

    Input format longitudinal turning

    .... .IF =

    2. G01 - Turning in X-Direction

    z F B .

    0 25

    ~~~~~!~~ Tool bit shall face end plane (cu t end plane) ; tool bit position to start a s indicated in dral

  • )

    N G

    .. 0-1

    N G -

    ) ' . 01

    I I I

    1. G01 - Turning in Z-Direction

    22,5

    - -i-f-oo-1

    !?~~E!~.:. Tool bit shall move 23 , 5 mm in Z-direc-tion. Tool bi t position as indicat ed i n drm-:ing .

    Inputs

    G01

    L ____ _ I . Enter block nurrber

    X

    0

    X

    -soo

    2 . Enter GOI 3. X-value = 0 4. z-value to be pu t in in hundredth of

    = 5. Put in F-valuc in n~/oin

    z F longitudinal turning N . ./GOIIX = 0/Z s .. .. .IF =

    -

    235"0 ~~-

    2. G01 - Turning in X-Direction

    z F

    -0 80

    ~~~~!~.:. Tool bit shall face end plane (cut e nd plane); tool bit position to start as in-dicated in drawing.

    Inputs I. Enter block number 2 . Enter GOl 3. x-val ue to be put in in hundredth of

    C.'Jl 4. z-value = 0 S. Put in F- value in G~/min

    4. 21

    Input format G01 facing N . ./G01/X = .. . IZ = 0/F=

  • (

    ()

    ()

    u

    " ... -&

    2 . - .- --

    $

    .51"

    .71"

    1-- - - 1.6" -----1

    ,_,

    ----

    - - --

    Page 4.23/ G01

    Example: Finishing of t he shoulder workpiece in one cut. The depth of cut to be .01" The t ool bit's starting position as in-dicated in the drawing.

    N G X z F

    QQ. oo - 2 ~0 l...o.i _Q{_ 0 -560 20 ...Q2, 01 -!00 0 J..O

    ~ Of 0 - 200 20 Qt. _M_ A40 _Q_ 20 OS 00 250 ~ 00 0 160 .Ql 2'2.

    4.23

  • (. )

    , )

    f ) '

    '

    I ~-~~2~

    1------40-.J

    Example: Finishin9 of the shoulder l

  • ()

    ()

    u

    Page 4. 25/ G01

    Programming exercl&e 5 (G01)

    Unfinished workpiece ~

    [f ~ ~ 1-- CIC! - - f- $ $ i

    f-L-1-- .ff -

    .a 1.6"--

    Finished workpiece

    ... e

    .612" -.812"-~ ~----- 1.6"-----o~l

    -., --

    A chip of .012" depth has to be turned off the unfinished ~~rkpiece (exercise 3 , page 4 .1 5)in one cut .

    Starting position of turning tool see drawing .

    ~lake a drawing in scale o f the transparent scale using the drawing paper and put in block numbers. No te that the tousa ndth of inch cannot be measured from the drawing in this scale, so you must calcula te the paths .

    N G X z F

    -

    - --

    -

    -- -

    - -

    -

    4. 25

    )

    ( )

    )

  • ( )

    ( )

    ( )

    Programming e

    UnCinls hed ,orkpiccc

    15 1---- 20- -1 ~---40--------~

    Finished ..... orkpiece

    C'l C'l -- -&

    ~---40 ------~

    -., ~---

    xercise 5 (G01)

    A chip of o,3 ~~ depth has t o be t urned off t he un f inished ~orkpiccc (exercise 3) in one cut.

    Starting position of tur ning tool see drawing.

    :.~aj

  • )

    ( )

    ---

    ( )

    ' )

    G01

    3. G01 - Linear Interpolation Taper Turning

    Exa mple

    4.27

    Hand operated machine

    On a mechanical I convent iona l l athe the top s lide is c l an:p ed at t he desired t a-pe.: angle . It is the top s lide ~C both slides a.:e not rr.oving at the same t i.c::e , but one after ano ther . TOe microprocessor calc ulates the ratio X: Z and g ives the ins t r uc t ions to traverse to t he step mo tors . This cal-culation of the X :Z ratios is called li -near interpolation.

    Example 1 Arig l e = 45 The 1atio X: Z at 45 is I :1 . LOng i tudina l and c r oss slides move at sarr~ i n terva l s .

    Example2 The ra tio X: Z = 10:36 = I :3' This means :!. steps i n z - a xis and I s t ep in x-axis .

  • I t--t--t- - -t-t- I

    -r- --1--+-

    >-f---t-1- ' - f-i--1-1-. . t-t-

    --i---11-~'-t--- ---r- -I- t- ..-

    -f--:--1-t- -1---t---J . .

    I-

  • ()

    () N

    ( )

    u

    Page 4. 29 / G01

    Taper45 (X-value and Z-value are the same)

    G X z F

    01 250 -250 . . .

    .r---r--f.J .2S"

  • )

    ( )

    ( )

    ( }

    '

    N G X

    GOt

    Taper45 (X-value and Z-value are the same)

    z F

    I . Bloc)< number 2. GOI 3 . x- value (S2 value) o f taper end point

    in h\>ndredth of rm> J 4. z -value (S2 value ) of taper e nd point

    in hundredth of rrro 5 . F- value in ~~/min

    Input format GOt N . ./G01/X ... ./Z .... .IF ...

    - - - - ------1- - 1-'--'-- _q_i_ ~ !ioo_ .:5.1!loo~- _._. - .

    Example:

    ..-1----!l-5 x45 A chan fer o f 45 x 5 rr.~ has to be turned . Starting point o f t ool bit as indicated .

    N G X z F - 1-

    00 00 - soo. -

    01 oo - ~00

    Ol g~ - 100 - li!io go OJ fi - ZOo - 3SO 80

    -

    R~ .Qi - 300 - 2So _j_o_ 1-OS 8~ - ~oo -1SO 8o

    I_QQ_ DO -sso .. --- - -

    0-1 07 +SS.Q_ _ -5_so -

    --- -08 00 0 +SSo ..P.L ~

    -

    - ~Q~ .

    ---- .

    -- -

    . .1L ~L __ +bOO - ..

    . _-:_600 11 oo SOD 12

    _QJ)_ 0 + .1.00Q --

    . - -1-i-L .zt ..

    - -

    4.29 J

  • )

    ()

    ()

    (J

    Programming exercise 6 (G01) Taper45

    Program the taper out o f programming ex.ercise page 4. 17, G84 . Choose the starting position of the tool bit on your o--,;n .

    1--- 1.6"- - ---l

    N G X z F

    1--- l--f-- -

    --11-- 1---------+ - - 1

    ---

    4.31

    Page 4 . 31 / G01

    j

  • G01

    \

    Programming exercise 6 (G01) Taper45

    Pro9ram the taper out of prograrr

  • t---- 1.211

    ()

    u N G X z

    01 250 -250 I

    l)

    I;

    25 .

    Page 4. 27/ G01

    Example2 The ratio X:Z = 0 . 4:1.2" 1: 3 This means 3 steps in z-axis and 1 step in x- axis.

    4. 27

    Inputs Page 4.33 1 . Block number 2. GOt 3 . x-coordinate of taper end point 4 . z-coordinate of taper end point 5 . F-va l ue in tenth of inch

    Input format G01 taper N . ./GOt/X ... . IZ .... .IF .. . 1

    Alarm signal A07

    )

    \

    lfnen you put in other data than X:Z (1- 39) : (1 - 39) the alarm signal 1107 appears . The co:nputer does not knO'.< these other X:Z rat ios . ( ) (

    4.33

  • )

    ~ )

    I J N G X --

    o1 tSOo

    \ )

    Tapers in General .

    Possible angles on COMPACT 5 CNC The following taper angles are possible:

    Ratio X:Z

    X:Z = (I to 39) : (I to 39)

    T'ne nurrJ)er of possibl e angles is lioi ted because of computer capacities . On the Co~pact 5 CNC the slides do not move at the sarr.e time , but one after a nother. l~hen turning at an angle ratio of 39:35 He would produce a s ome,.;hat rough surface on the workpiece , so ,;e limit ourselves in the turning exercises to the ratio .

    X:Z = (I to lo) (I to lo)

    z

    -SOO

    Inputs Progran the end point o f the taper .

    1 . Bl ock nurrber 2 . GO! 3 . x- coordinate of taper end point 4. Z-coordinate o f t aper end point 5. F- va lue in rr~/mi n

    f Input format G01 taper

    -

    N . ./G01/X , .. . IZ .... .IF . . . 1 80

    Alarm s i gnal A07

    ~nen you put in other data than X:Z = ( 1-39): ( 1- 39) the alarm signal A07 appears. The computer does not kn~~ t hese other X:Z ratios.

    4.33

    G01

  • }---+ .1 -L -I I I. ! 1--- ! I I I~

    J I 1--t-' - - I ---r

    -

    .

    i- -- -+- _T I 11- - ' ! I- f~ -~ ,.,.. 1-'- -1-T t- : r-i"

    ~ : 1- -

    1- --

    ~ I rr- 1- -- 1-..

    + 1-

    j _ I I -r ..!. I I I _I_ ..

    - r ! ~ -.- I I f- 1- 1- j l r-'" 1- . r-l ,__.__, __ ~ - I i I- ro t Cj> l H - -1-1-, i - 1-'- --~ I z 1-+ r-1 ~ --- ' ... ~J . , ... - ~~ l ~ I I-"- -~ 1- - .. ! t z 0 -~-~ ' ' -I- -~.-r- --t- ;--I- ~ 1 0 -I J '-1-~ Jr- /C\1~ 1-i- vO" ~ vz / 1-- r- ~~ ~--~ ~ ' r--I- J J~ 0 J -;-J~ I . ?- f t , I -~ ~ I ~ - 1\y : ~ U: c ~ i - I ~ I -r- (/j -

    f - ~r~ :-1- ~- I ~ t- -1- t l ~~ ( 1 ~ tl-- - ~co -I-- / -r0 '\.0 t r._ ~ !~z'~ _J ~ I- -1- ~ I

    I ~ J r'- ' ; ~/ (") ' -- - -- lP+~ ~ ~"i 1 '(//_~ I--t I ~ -t ~ . I t I B ,...

    z -z -- !-I 1 t-

    -+~ - ; 1-

    .

    .

    -- I 1-

    . t- J. -

    --

    1- ..1.

    -}- I J 1- _i

    .

    ~- - J ...1. , ..

    4.34 I

  • Page 4. 3S/ G01

    ()

    N G X z F I Example:

    00 00 -250 01 --00 0 -200

    8lt- -50 -02 -850 2o

    Taper 1:2

    A taper 1: 2 is to be turned.

    0:} 00 0 -250 -

    Right hand side tool. Oli 00 -so

    -05 01 -so -2()0 20 06 04 0 - 400 20

    -

    ( ) .:IJ ~ Of 0 ' 2o 08 00 0 !tOO 01 co -so

    --

    ~0 Of -5o -2oo 2o --=--

    -11 01 0 -2oo. 2o ~2 04 s o 0 2o 1-~ 00 0 2oo

    -

    ,{If 00 :...5) {S 0'1 -so -2oo

    - - -- --

    2o -

    .{{, 0'1 2oo ,n 00 250 -

    1---.Q _ _ -~ .6'-:. .21 -

    _1t 00 0 ..{oSO -

    ,

    -i't 22 . -

    () (

    0

    -- 1---l

    u

    Taper denomination

    4. 35

    Taper I :K a Di ffer e nce of diameter Taper l ength D- 6

    . - 1

    ~ is the proC)r arr., ing angle

  • G01

    N G X z F Example:

    oo 00 - SOD Ta,eor I: 2 0~ 00 0 - !tOo oz ~~ -100 - 1100 go A taper I: 2 is to be turned , I o3 00 0 - '>00 Right hand side tool .

    0~ 00 - 100 OS 01 - 100 - 400 Rfl

    _Q_6. 0-1 0 - too Ko

    ( l

    Ot _Q:f_ __jfiJ)_ 0 go o& 00 0 liDo 09 00 - 100 j_O 01 -jQQ -~00 fo -11 ()'( 0 - /too 80

    I ~

    12 0-1 100 0 so _1_~ 00 0 ~00

    1~ 00 -100 r~S 01 100 -~oo flll ,, {, 01 ltiXl 0 go 11 00 Soo 1-----12 - 1-4 1---11' 00 0 1 -!no 111 2'1.

    Taper denomination ( ) ..

    Tap er I :K = Di fference of diaC-et er Taper l ength 0 D-

  • Page 4.37/Got

    ) (

    Programming exercise 1 (GOt )

    ~ ~ ~ .---- ~ - ~ - . -f-

    '& '& ~ s

    () ~ L ~ I I " .

    . r-.3"L . 4- (

    .9.' I -'

    N G X z F

    .

    -

    -

    -

    -

    -b- ,

    - --

    -

    --

    --

    _ , - --

    - --

    -

    u 4.37

  • )

    )

    N G

    - -

    )

    Programming exercise 7 (G01)

    -4---~---~-$ $

    X z

    0 --+--- -1--~ - -

    e

    -H-1x45 f-6 .. 1---10-1-----20--~

    F

    As-~ "' I ~

    I ..

    ~

    - --

    - -----

    4.37

    G01

    I'

    i lj~

    ,,,,

  • \

    Angle

    5, 7 1

    6,34

    8 , I 3

    9 , 64

    l I I, 3 12' 52 14,o0

    15, 910

    16 , 69

    18 , 43

    2o, 56

    21,8

    23 , 2o0

    23 ' 96 26 , 56

    29 , 74 Jo,96

    ) 32, o0 33, 69

    )

    Angle a/2 and X: Z ratios

    .

    X:Z Angle X:Z Angle

    I : lo 35 , 54 5 : 7 6o, .t6u

    I : 9 36, 87 3 : 4 6o , 95

    I : 7 38, 66 4: 5 63, 43

    I : 6 39 , 8o0 5 : 6 66 , o4

    I : 5 4o , 6o0 6: 7 66 , 8o0

    2 : 9 4o , l9 7 : 8 68 , 2o0

    41 , 63 0

    I : 4 8 : 9 69 ' 41

    2 : 7 41 ' 99 9: lo 71, 56

    45, o0 I : I 73 , 30 0

    3 : lo I . 3 48 , 8 1 0 : 7 7 ) are pro-grar.r.:ed.

    For the turning exercises we lioite our-selves t o ratios X:Z ~ (1-lo): (1-1o).

    4.39

    G01

    X:Z I - 1

    7 : 4

    9: 5 2: I

    9: 3 7 3 5 : 2

    8 : 3

    3: I

    lo: 3

    7 2

    4: I 9 : 2 5 : I

    6: I 7 . I

    8 : l

    9: I

    Ia: I

    ---"

  • \

    ( )

    ( )

    ( )

    Data on angles

    Example

    We take f or ~h 3o0 the ratio X:Z = 3:5 ( ""1.2 with 3 :5 = 3o,96.

    0 -- ~ ----1-~

    52

    The tool bit has to traverse from points S l to 52.

    I()

    " ><

    52

    Z=?

    The path x i s 5 rr~ .

    The ratio X:Z 3:5

    51

    5:3 = 1, 66666 ... , t hus not divisible . lle take the next gteater number which is divisib l e by 3: 5.ol S , ol : 3 = 1, 67

    4. 41

    Z 5 x 1.67 8.35

    The z-value is 5 times as l arge , t hus 1, 67 x 5 = 8 , 35 rrm

    The block fo r the traverse path S I -S2 i s:

    N G X z F

    ---01 S01 - 835 _.!..._ -

    By ratstng the value fro~ 5 to 5 , ol , the tool bit j uts out o , ol rrm in x-direction and o , o3 u~~ in Z- di rection over the i deal point . Please take this into consideration when prograr.,ming the f ollO'..-ing blocks.

    GOt

  • n

    ()

    -

    Page 4.43 G02/G03

    G02 - .Circular Interpolation Clockwise

    G03 - Circular Interpolation Counterclockwise

    With the circul ar interpolation the cir-cul ar arc is divided into single steps . It is substituted by many straight lines . Different from the linear interpolation the ratio X: z changes h ere permanently .

    I

    I .. -- ....

    / , /z ""' ,.-1 r . . )---: ~- Z:X )

    ' / ........__ _

    Possible radii on the COMPACT 5 CNC .05"/ . 1"/ . 15"/ .2"/ . 25"/ ... up to 1.95"

    Program Input 1 . Block nur..ber 2 . G02 or G03 3 . X-value in thousandth of inch . As X-value

    we put in the )(- coordinate of the 4th part of circumference.

    The longitudinal slide ooves automatically in minus - direction (di-rection chuck) . No Z- Input ~- F- value in tenth of inch

    Alarm sign A01 1/hen input of radius is undefined (for examp le r=l.13 inch) the alarm sign 1101 appea r s.

    / 4.43

    (

    (

  • G02

    G03

    )

    Circular Interpolation Clockwise

    Circular Interpolation Counterclockwise

    lnth the circular interpolation the cir-cul ar arc is divided into single steps. It is substituted by many straigh t lines. Different f rom t he linear interpol ation the ratio X: Z changes here permanently.

    Possible radii on the COMPACT 5 CNC o,25/o, 5o/ l /2/3/4/5 ... up t o 59~

    Program Input I . Bloci< nu:::bcr 2 . G02 or G03

    3. X-value in hundredth of ~' As X-value we put in the x-coordinate of the 4th part of circumference.

    4. z ~ 0 . The l ongitudinal slide ~ovcs auto~tically i n minus-direction (di-rection chuck).

    5 . F-va lue

    Alarm sign A01 ~~en i nput of radius is undefined (for e xampl e r ~ 4, 5 ~~) the alarm sign Aol appears.

    4. 43

    G02/G03 -

  • G02/G03

    Radii when outside turning

    Radii clockwise 002

    ) N G X z F N G X z F

    02 + Ol -. -

    Radii counterclockwise 003

    )

    N G X z F

    - - ~03 -

    '

    4. 45

  • )

    ()

    ( )

    u

    ~>age 4. 47/ G02/G03

    G02 - Radii clockwise

    ~:oveccnt of turning tool as seen fro:n above

    2 .

    ~J-._. I .

    ~ ! ,@ ~ .. , --

    Prograo for fourth part of circumference I

    Pourth part of circ~fcrence 2

    Pourth parts of circun fcrence 3 and 4 arP no t prograrr.mable since Z-direction is po sitive .

    Input formal G02 N .. /G021X:!: ... .IF ...

    G03 - Radii counterclockwise

    t-:ovezcnt of turning tool as seen fro~ abo ve

    -~t" % G< . . I __ _

    j': .P j

    Program for fourth part of circumfer ence 3

    Program for fourth part of c i rcumference 4

    Fourtl'\ parts of circu,-, fe rence 1 and 2 are not progra~~able s i nce Z-direction is po-sitive .

    Input formal G03 N . .IGOJ/X .... I F= ...

    4.47

    (

  • )

    )

    . )

    G02 - Radii clockwise

    !toverr:e n t o f turni ng tool as s een fro~ above

    Progr am for four th part of c i rcumference 1

    1 ~ /o~ 1-~~ 1 ~ L~l Fourth part of circumference 2

    I~ I ~2 ~ ~~ I ~ I~~ I Fourth parts o f circumference 3 and 4 a r e not prograrrmable since Z-direction i s po-sitive.

    Input format G02 N . ./G02/X ... .IF ...

    G03 - Radii counterclockwise

    :-tover.ent of turning too l as seen f rom above

    Program for four th part of circumference

    I ~ I o~ 1 - ~~ 1 z I~~ I 0 Prog t.am for fourth part of c i rcumference

    I~ I o~ I ~~ I z I ~~ I 0 Fo\>rth parts of circun ference I and 2 a r e not progra~uable s ince Z-di r ect ion i s po-sitive .

    Input format G03 N . ./GOJ/X ... .IF= ...

    4.47

    3

    4

    G02/G03

  • ( )

    ( )

    ' ()

    Page 4.49 G02/G03

    pepth of cut when turning radii

    You turn a rsdillS With the right hand side tool . oe = 93

    You have seen that with outside tu rning (as with facing) the max. depth of cut is .012". 1-fnen turning a radius you find a similar situation, either at the beginning or at the end o f the fourth part of cir-cumference.

    Exercise: PollaN wi t h the t ransparent paper (right hand side tool) Mlo:l the indicat ed radius . You will recognize the changing situation i tm.ediately.

    002

    1-'.ax. depth gt cut of .012" only at the begin at 93 .

    Line of possible depth of cut

    '

    G03

    Hax. depth of cut .012" only at the end of radius at 93 .

    4.49

    ( >

  • )

    )

    )

    I )

    Depth of cut hhen turning radii

    You turn a radius with the right hand s ide tool. ~ = 93 You have seen that with out side turning (as with fac ing) the max . depth of cut is o , 3 m:n. h"hen turning a radius you find a sinilar situation , either a t the beginn ing or a t the end of the fourth part of cir-cumference.

    Exercise : Foll~~ with the transparent pape r (right hand side tool ) Hlo :l the indicated radi us . You will recognize the changing situation i rrruediately.

    002

    ~lax. depth of cut o f o, 3 rr ., only at the begin at 93.

    Line of possibl e depth o f cut

    '

    Hax. depth of c ut of o,o3 m:n only at the end of radius at 93.

    4.49

    G02/G03

  • I 4.50 I

  • ()

    .. ~

    Example G02

    Hatcr i a l: Aluminiuc St art i ng position o f turning t ool as in drawing .

    ' t -4-- -- ~- ---- ~ - - ~

    ~

    .

    / . /

    N G X z F

    00 00 -250 - 00 01 0