17
Emergence of heavy-fermion superconductivity by the ordering of nuclear spins F. Steglich Max Planck Institute for Chemical Physics of Solids, Dresden

Emergence of Heavy-Fermion Superconductivity by the ... · Heavy-Fermion Superconductors. T. c (K) CeCu. 2. Si. 2. 0.6 ('79 K) [p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi. 2. Ge. 2. 0.2 ('97

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Emergence of Heavy-Fermion Superconductivity by the ... · Heavy-Fermion Superconductors. T. c (K) CeCu. 2. Si. 2. 0.6 ('79 K) [p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi. 2. Ge. 2. 0.2 ('97

Emergence of heavy-fermion superconductivity by the ordering of nuclear spins

F. SteglichMax Planck Institute for Chemical Physics of Solids, Dresden

Page 2: Emergence of Heavy-Fermion Superconductivity by the ... · Heavy-Fermion Superconductors. T. c (K) CeCu. 2. Si. 2. 0.6 ('79 K) [p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi. 2. Ge. 2. 0.2 ('97

2015 Kamerlingh Onnes Prize:

Professor Gilbert Lonzarich for visionary experiments concerning the emergence of superconductivity among strongly correlated quasiparticles at the edge of magnetic order

Page 3: Emergence of Heavy-Fermion Superconductivity by the ... · Heavy-Fermion Superconductors. T. c (K) CeCu. 2. Si. 2. 0.6 ('79 K) [p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi. 2. Ge. 2. 0.2 ('97

Emergence of heavy-fermion superconductivity by the ordering of nuclear spins

AF heavy-fermion metals:

BUT: no SC in YbRh2Si2at T ≥ 10 mK

F. SteglichMax Planck Institute for Chemical Physics of Solids, Dresden

Outline:•heavy-fermion superconductors•SC below Tc = 2 mK in YbRh2Si2•outlook

Collaborators:E. Schuberth (WMI), M. Brando (CPfS), R. Yu (Renmin), Q. Si (Rice)

p →

↑TCePd2Si2

N.D. Mathur et al., Nature 394, 39 (1998)

Page 4: Emergence of Heavy-Fermion Superconductivity by the ... · Heavy-Fermion Superconductors. T. c (K) CeCu. 2. Si. 2. 0.6 ('79 K) [p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi. 2. Ge. 2. 0.2 ('97

Heavy-Fermion SuperconductorsTc(K)

CeCu2Si2 0.6 ('79 K)[p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi2Ge2 0.2 ('97 DA, '98 CA/GR) CeIrIn5 0.4 ('00 LANL)CeCoIn5 2.3 ('00 LANL)Ce2CoIn8 0.4 ('02 NA)Ce2PdIn8 0.7 ('09 WR)CePt3Si 0.7 ('03 VI)CeCu2Ge2 p > 0 0.6 ('92 GE)CePd2Si2 ‘‘ 0.4 ('98 CA) CeRh2Si2 ‘‘ 0.4 ('95 LANL)CeCu2 ‘‘ 0.15 ('97 GE/KA)CeIn3 ‘‘ 0.2 ('98 CA)CeRhIn5 ‘‘ 2.1 ('00 LANL)Ce2RhIn8 ‘‘ 1.1 ('03 LANL)CeRhSi3 ‘‘ 0.8 ('05 SE)CeIrSi3 ‘‘ 1.6 ('06 OS)CeCoGe3 ‘‘ 0.7 ('06 OS)Ce2Ni3Ge5 ‘‘ 0.26 ('06 OS)CeNiGe3 ‘‘ 0.4 ('06 OS)CePd5Al2 ‘‘ 0.57 (‘08 OS)CeRhGe2 ‘‘ 0.45 ('09 OS)CePt2In7 ‘‘ 2.1 (‘10 LANL)CeIrGe3 ‘‘ 1.5 (’10 OS)

UBe13 0.9 ('83 Z/LANL)UPt3 0.5 ('84 LANL)URu2Si2 1.5 ('84 K/DA)U2PtC2 1.5 (’84 LANL)UNi2Al3 1.2 ('91 DA)UPd2Al3 2.0 ('91 DA)URhGe 0.3 ('01 GR)UCoGe 3.0 ('07 AM/KA)UGe2 p > 0 0.7 ('00 CA/GR)UIr ‘‘ 0.14 ('04 OSNpPd5Al2 5.0 ('07 OS) PuCoGa5 18.5 ('02 LANL)PuRhGa5 8.7 ('03 KA)PuCoIn5 2.5 (’11 LANL)PuRhIn5 2.0 (‘12 LANL) Am metal p > 0 2.2 ('05 KA)

Tc(K) Ce3PdIn11 0.42 (`15 PR)Ce3PtIn11 0.32 (`15 PR) PrOs4Sb12 1.85 ('01 UCSD)PrIr2Zn20 0.05 ('10 HI)PrTi2Zn20 0.2 ('12 TO)β-YbAlB4 0.08 ('08 TO/IR)

►YbRh2Si2 0.002 ('14 M/DD)Eu metal p > 0 1.8-2.8 ('09 SL/OS)

YFe2Ge2 1.8 (`14 CA)CrAs p > 0 1.7 (`14 BEI/TO)

Page 5: Emergence of Heavy-Fermion Superconductivity by the ... · Heavy-Fermion Superconductors. T. c (K) CeCu. 2. Si. 2. 0.6 ('79 K) [p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi. 2. Ge. 2. 0.2 ('97

Field - cooled (fc) DC magnetization at T ≳ 1.4 mK[E. Schuberth et al., to be published]

TAF = 70 mKTc ≥ 2 mK: peak in MDC(T)

M/B

(10

-6 m

3 /mol

)

M/B

(10

-6 m

3 /mol

) 9

B

10 T T c AF

T B

8

YbRh2Si2 B ⊥ c

12 10

8 7 B ⊥ c (mT) 6

0.090 4 6 20

A 1 5

1 10 100

T (mK)

10 10 100 0

Page 6: Emergence of Heavy-Fermion Superconductivity by the ... · Heavy-Fermion Superconductors. T. c (K) CeCu. 2. Si. 2. 0.6 ('79 K) [p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi. 2. Ge. 2. 0.2 ('97

Superconductivity: zfc - MDC(T) & χAC(T)

M/B

(a.u

.)

χ′ a

c (S

I)

4

3

T B

2 B ⊥ c (mT) 1 0.418

0.055 0 0.028

C 0.012 -1

0.1 1 10 100

T (mK)

∆M/B

(ar

bitra

ry u

nits

)

0

YbRh2Si2

-2

-4

-6

-8 B ⊥ c

B (mT) 0.012 0.015 0.028 0.055 0.418

1 10 100

T (mK)

0.4

T c

0

-0.4

-0.8

D B = 0

1 10 100

T (mK)

T < Tc: large shielding

Tc = 2 mK

T < TB: partial shielding

Page 7: Emergence of Heavy-Fermion Superconductivity by the ... · Heavy-Fermion Superconductors. T. c (K) CeCu. 2. Si. 2. 0.6 ('79 K) [p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi. 2. Ge. 2. 0.2 ('97

field - cooled (fc) MDC(T): Meissner effect

M/B

(a.u

.)

χ′ac

(SI)

4

3

T B

2 B ⊥ c (mT) 1 0.418

0.055 0 0.028

C 0.012 -1

0.1 1 10 100

T (mK)

peak in fc - M(T) at Tc≌ 2 mK

T < Tc: flux expulsion („Meissner effect“)

Meissner volume ~ 3%: strong pinning!

Page 8: Emergence of Heavy-Fermion Superconductivity by the ... · Heavy-Fermion Superconductors. T. c (K) CeCu. 2. Si. 2. 0.6 ('79 K) [p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi. 2. Ge. 2. 0.2 ('97

Nuclear specific heat C(T) & entropy SI(T)∆C

/T (J/

K2 mol)

C/T (

J/K2 mo

l)

S / S

I

I,tot

A

10000 T A

YbRh2Si2

1000

100

10

1

0.1

µYb/µB

0.15 0.05 0.01 0.00

B (mT) 59.6

2.4

B ⊥ c

1500

TA

1000

1 10 100 T (mK)

1

500

B 0

B = 2.4 mT

0.9

C 0.8

1 2 3 4 5 6

T (mK) 0 2 4 6 8 10 12

T (mK)

C(T,B) =CQ(T) + CZ(T,μ4f(B))

Phys.Stat.Sol.B 247,737(2010)

ΔC (T) = C(T, B = 2.4 mT) – C(T,0)

T ≥ 10 mK: SI(T) = SI,totSI,tot ≈ 1.8 Rln 2

171Yb (I = 1/2, 14.3%)173Yb (I = 5/2, 16.1%)

Page 9: Emergence of Heavy-Fermion Superconductivity by the ... · Heavy-Fermion Superconductors. T. c (K) CeCu. 2. Si. 2. 0.6 ('79 K) [p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi. 2. Ge. 2. 0.2 ('97

Field-cooled DC magnetization at very low fields

M vs. 1/T M vs. TM

(arb

itrar

y un

its)

T (m

K)

M (a

rbitr

ary

units

)

B

c

A YbRh2Si2

0

1 T T L H T A

0 -1 T

-20

-2 1.8 2 2.2

T (mK)

2

-40

B ⊥ c B = 0.09 mT 0 0.2 0.4 0.6 0.8 1

1/T (1/mK)

C

1 0 2 4 6 8 10 12

B (mT)

B ≲ 3 mT: TA > Tc

- dBc2/dT∣Tc = Bc2‘ ≃ 25 T/K

Page 10: Emergence of Heavy-Fermion Superconductivity by the ... · Heavy-Fermion Superconductors. T. c (K) CeCu. 2. Si. 2. 0.6 ('79 K) [p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi. 2. Ge. 2. 0.2 ('97

New T – B phase diagram of YbRh2Si2T

(mK)

B (m

T)

400 200

100

40

20

YbRh2Si2

PM

0.5

0

A + SC 1.8 2

T (mK)

10

AF 4 B

2

1 A + SC

B ⊥ c

0 10 20 30 40 50 60 70 80 90 B (mT)

Bc2‘ ≈ 25 T/K,cf. CeCu2Si2

(m* ≈ several 100 mel :heavy – fermion SC)

geff (~TA/BA) ≈ 0.03 – 0.06 → hybrid A phase: (dominating) nuclear AF order

Page 11: Emergence of Heavy-Fermion Superconductivity by the ... · Heavy-Fermion Superconductors. T. c (K) CeCu. 2. Si. 2. 0.6 ('79 K) [p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi. 2. Ge. 2. 0.2 ('97

Three - component GL theory by R. Yu & Q. Si

T

A T T T

I A AF hf

T T T hyb AF

B

m AF

SC

T T hyb AF

T ≤ TAF = 70 mK:ΦAF with QAF

T ≤ Thyb = TA = 2.3 mK: ΦJ, ΦI with Q1 ≠ QAF

(- λΦJΦI )

Below TA: hybrid order competes with primary order→ system approaches QCP→ superconductivity develops, driven by quantum critical fluctuations

λ (~ Ahf = 102 T/μB ) ≈ 25 mK

Page 12: Emergence of Heavy-Fermion Superconductivity by the ... · Heavy-Fermion Superconductors. T. c (K) CeCu. 2. Si. 2. 0.6 ('79 K) [p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi. 2. Ge. 2. 0.2 ('97

Qutlook: Interplay betweensuperconductivity and quantum criticality

Heavy - fermion superconductivity robust at AF QCP

• Conventional (3D - SDW) QCP,CeCu2Si2presumably also: CePd2Si2, CeIn3, ….

• Unconventional (Kondo destroying) QCP,CeRhIn5 (H. Shishido et al. '05; T. Park et al. '06, G. Knebel et al. `08)presumably also:β -YbAlB4 (S. Nakatsuji et al. '08)

• Link to doped Mott insulatorse.g., cuprates, organic charge – transfer salts

new example: YbRh2Si2Kondo breakdown QCP: (T=0) 4f-orbital selective Mott transition

Page 13: Emergence of Heavy-Fermion Superconductivity by the ... · Heavy-Fermion Superconductors. T. c (K) CeCu. 2. Si. 2. 0.6 ('79 K) [p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi. 2. Ge. 2. 0.2 ('97

Happy Birthday, Gil !

Page 14: Emergence of Heavy-Fermion Superconductivity by the ... · Heavy-Fermion Superconductors. T. c (K) CeCu. 2. Si. 2. 0.6 ('79 K) [p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi. 2. Ge. 2. 0.2 ('97

Erwin Schuberth: PrNi5 nuclear demag (Tmin = 0.4 mK)

Page 15: Emergence of Heavy-Fermion Superconductivity by the ... · Heavy-Fermion Superconductors. T. c (K) CeCu. 2. Si. 2. 0.6 ('79 K) [p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi. 2. Ge. 2. 0.2 ('97

Determination of heat capacity C*(T) using M(T) of YbRh2Si2 as internal thermometer -

via heat - pulse (C* = ΔQ/ΔT) and relaxation (τ = R⋅C*) method

Page 16: Emergence of Heavy-Fermion Superconductivity by the ... · Heavy-Fermion Superconductors. T. c (K) CeCu. 2. Si. 2. 0.6 ('79 K) [p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi. 2. Ge. 2. 0.2 ('97

First-order nature of superconducting transition

(10-6

m3 /m

ol)

χ′ ,

χ′′

ac

ac

10

YbRh2Si2 8 B ⊥ c

6

B = 28 mT, 2.5 µT ac B = 0 (earth), 2.5 µT ac

4 B = 0 (earth), 2.5 µT ac B = 0 (earth), 10 µT ac

from T. Westerkamp et al. 2

0

-2 1 10 100 1000

T (mK)

T ≤ Tc:

increase in χ’’(T)

superconducting transition: 1st order

Page 17: Emergence of Heavy-Fermion Superconductivity by the ... · Heavy-Fermion Superconductors. T. c (K) CeCu. 2. Si. 2. 0.6 ('79 K) [p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi. 2. Ge. 2. 0.2 ('97

Superconductivity along with Nuclear Kondo effect

(in the Absence of Nuclear Order)?

Nuclear Kondo temperature TK,nucl = TF,eff exp(-TF,eff/ Thf)

Thf ≈ 25 mK, TF,eff ≈ TK ≈ 25 K: TK,nucl = TKexp(-1000)

Mass enhancement: m*/mel ≈ D(104 K)/TK,nucl = 400/exp(-1000)(“superheavy” fermions)

For superheavy-fermion SC TK,nucl ≥ 10 Tc !

Even if TK,nucl ≈ 25 mK → mass enhancement ≈ 400 000 !

Kondo temperature TK = D exp(-D/J)