28
Oriol Pujolàs IFAE & Universitat Autònoma de Barcelona Emergent Lorentz Invariance from Strong Dynamics Gauge/Gravity Duality 2013 MPI Munich 30/7/13 Based on arXiv:1305.0011 w/ G. Bednik, S. Sibiryakov + work in progress w/ M. Baggioli

EmergentLorentzInvariance from&Strong&Dynamics&

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EmergentLorentzInvariance from&Strong&Dynamics&

Oriol  Pujolàs  

IFAE  &  Universitat  Autònoma  de  Barcelona

Emergent  Lorentz  Invariance                from  Strong  Dynamics  

Gauge/Gravity  Duality  2013  MPI  Munich  

30/7/13  

Based  on  

arXiv:1305.0011                                                        w/  G.  Bednik,  S.  Sibiryakov  

+  work  in  progress                                                                      w/  M.  Baggioli    

Page 2: EmergentLorentzInvariance from&Strong&Dynamics&

Motivation

Can  Lorentz  Invariance  be  an  accidental  symmetry  ?  

Context:    Hořava  Gravity    

recovery  of  LI  at  low  energies  is  the  most  pressing  issue  phenomenologically    

Page 3: EmergentLorentzInvariance from&Strong&Dynamics&

δcψ ψγ iDiψ δcγ2 B2 δcH

2 |DiH |2 (CPT even)

Motivation

Page 4: EmergentLorentzInvariance from&Strong&Dynamics&

Observational bounds: |cp − cγ |<10−20 !!| ce − cγ | < 10

−15 !

δcψ ψγ iDiψ δcγ2 B2 δcH

2 |DiH |2

EFT expectation: δc 1−10−3!!!

FINE TUNING

Collins  Perez  Sudarsky  Urrutia  Vucetich  ‘04  

Iengo  Russo  Serone    ‘09  

Giudice  Strumia  Raidal  ‘10  

Anber  Donoghue  ‘11  

(CPT even)

Motivation

Page 5: EmergentLorentzInvariance from&Strong&Dynamics&

Observational bounds: |cp − cγ |<10−20 !!| ce − cγ | < 10

−15 !

δcψ ψγ iDiψ δcγ2 B2 δcH

2 |DiH |2

EFT expectation: δc 1−10−3!!!

FINE TUNING

Collins  Perez  Sudarsky  Urrutia  Vucetich  ‘04  

Iengo  Russo  Serone    ‘09  

Giudice  Strumia  Raidal  ‘10  

Anber  Donoghue  ‘11  

(CPT even)

Challenge: can we achieve naturally ~ 10

-20 suppression?

Motivation

Page 6: EmergentLorentzInvariance from&Strong&Dynamics&

RG  &  Lorentz  Invariance

Page 7: EmergentLorentzInvariance from&Strong&Dynamics&

LI-fixed point is IR-attractive !! Chadha  Nielsen’  83  

RG  &  Lorentz  Invariance

Page 8: EmergentLorentzInvariance from&Strong&Dynamics&

LI-fixed point is IR-attractive !! Chadha  Nielsen’  83  

δc = δc0

[1−β g02 log(µ /M)]βδcβ

g 2 = g02

1− β g02 log(µ /M)

δcψ k 2

δcH k 2

g

@ 1 loop:

E.g., LV – Yukawa theory: L = (∂h)2 +ψ γ ⋅∂ψ +ghψψ + δc's

(4π )2 d δcd logµ

= βδ c g2 δc

(4π )2 d gd logµ

= β g3

RG  &  Lorentz  Invariance

Page 9: EmergentLorentzInvariance from&Strong&Dynamics&

LI-fixed point is IR-attractive !!

E.g., LV – Standar Model (SME)

Giudice  Strumia  Raidal’  10  

RG  &  Lorentz  Invariance

Page 10: EmergentLorentzInvariance from&Strong&Dynamics&

LI

RG  &  Lorentz  Invariance

In weakly coupled theories, LI emergens, but very slowly!

Suppression is only for a factor Log ΛUV

ΛIR

⎛⎝⎜

⎞⎠⎟ 10

Page 11: EmergentLorentzInvariance from&Strong&Dynamics&

LI

LI

let’s accelerate the running by turning to strong coupling

RG  &  Lorentz  Invariance

Page 12: EmergentLorentzInvariance from&Strong&Dynamics&

Idea:

δc=µβ*g*

2

(4π )2δc0Near a strongly-coupled fixed point:

accelerated running

(4π )2 d δcd logµ

= βδ c g2 δc

RG  &  Lorentz  Invariance

Page 13: EmergentLorentzInvariance from&Strong&Dynamics&

Idea:

δc=µβ*g*

2

(4π )2δc0Near a strongly-coupled fixed point:

accelerated running

(4π )2 d δcd logµ

= βδ c g2 δc

RG  &  Lorentz  Invariance

power > 0 granted ( )

LV deformation

Unitarity bound

=> is an irrelevant coupling

Dim ∂µφ ∂νφ( ) ≥ 4

βδc > 0

δc

δc ∂tφ∂tφ

Page 14: EmergentLorentzInvariance from&Strong&Dynamics&

Lifshitz / LV boundary condition

AdS

IR UV

Dual to a CFT + UV cutoff (coupling to LV gravity, )

+ IR cutoff (confining, )

LV-Randall-Sundrum

ΛQCD

Bednik  OP  Sibiryakov  ‘13

MP

Page 15: EmergentLorentzInvariance from&Strong&Dynamics&

L = LCFT (OΔ ) −φ w2 − c2k2( )φ +λφOΔ

LV-Randall-Sundrum

RS Realizes a CFT with an operator and a LV source OΔ φ

∂5Φ = (w 2 − c2k2 )Φ

probe scalar with LV boundary

5−M2( )Φ = 0

Page 16: EmergentLorentzInvariance from&Strong&Dynamics&

L = LCFT (OΔ ) −φ w2 − c2k2( )φ +λφOΔ

LV-Randall-Sundrum

RS Realizes a CFT with an operator and a LV source OΔ φ

Gφ (w, k)−1 w2 − c2k2 + λ2 (p2 )Δ−2

if relevant (Δ< 3)

=> Emergent LI

λ

Page 17: EmergentLorentzInvariance from&Strong&Dynamics&

wi2 (k2 ) mi

2 + (1+ δci2)k2 + k2+2n

M (i, n)2n∑

LV-Randall-Sundrum

δci

2 δcUV

2

λ2ΛIR

ΛUV

⎛⎝⎜

⎞⎠⎟

2(3−Δ )

power-law suppressed! for relevant couplings (Δ < 3 )

Schematic form of the dispersion relations: Bednik  OP  Sibiryakov  ‘13

(Optimal case, Δ=2)

Page 18: EmergentLorentzInvariance from&Strong&Dynamics&

wi2 (k2 ) mi

2 + (1+ δci2)k2 + k2+2n

M (i, n)2n∑

LV-Randall-Sundrum

δci

2 δcUV

2

λ2ΛIR

ΛUV

⎛⎝⎜

⎞⎠⎟

2(3−Δ )

power-law suppressed! for relevant couplings (Δ < 3 )

Schematic form of the dispersion relations: Bednik  OP  Sibiryakov  ‘13

(Optimal case, Δ=2)

Page 19: EmergentLorentzInvariance from&Strong&Dynamics&

Lifshitz Holography

ds2 =

2

r2dr2 + r

2

2d x 2− r 2 z

2zdt 2

Kachru  Liu  Mulligan  ‘08  

z > 1

Lifshitz solutions in Einstein + Proca + Λ :

z=1

z = d-1

m2L2

At ∝ r z

Page 20: EmergentLorentzInvariance from&Strong&Dynamics&

ds2 = g(r)

2

r2dr2 + r

2

2d x 2− f (r)r

2 z

2zdt 2

Kachru  Liu  Mulligan  ‘08  

Lifshitz

At

AdS

log(r)

Lifshitz Holography

Page 21: EmergentLorentzInvariance from&Strong&Dynamics&

δGφ (w, k)

−1 (p2 )Δ−2 1+ w2 (p2 )(Δ1 −5)

Λ*2(Δ1−4)

+(p2 )(Δ−2)

Λ*2(Δ−1) + ...

⎛⎝⎜

⎞⎠⎟+ ...

⎣⎢

⎦⎥

The flow imprints modified scaling into the scalar propagator

δc2

(ΛIR LUV )2(Δ1 −4)

(ΛIR LUV )2(3−Δ )⎧⎨⎪

⎩⎪

... and into the dispersion relations of bound states

Bednik  OP  Sibiryakov  ‘13

Lifshitz Holography

Page 22: EmergentLorentzInvariance from&Strong&Dynamics&

δGφ (w, k)

−1 (p2 )Δ−2 1+ w2 (p2 )(Δ1 −5)

Λ*2(Δ1−4)

+(p2 )(Δ−2)

Λ*2(Δ−1) + ...

⎛⎝⎜

⎞⎠⎟+ ...

⎣⎢

⎦⎥

The flow imprints modified scaling into the scalar propagator

δc2

(ΛIR LUV )2(Δ1 −4)

(ΛIR LUV )2(3−Δ )⎧⎨⎪

⎩⎪

... and into the dispersion relations of bound states

In the simplest model – not very large suppression Δ1 ≤ 4.35

Bednik  OP  Sibiryakov  ‘13

Lifshitz Holography

Page 23: EmergentLorentzInvariance from&Strong&Dynamics&

δGφ (w, k)

−1 (p2 )Δ−2 1+ w2 (p2 )(Δ1 −5)

Λ*2(Δ1−4)

+(p2 )(Δ−2)

Λ*2(Δ−1) + ...

⎛⎝⎜

⎞⎠⎟+ ...

⎣⎢

⎦⎥

The flow imprints modified scaling into the scalar propagator

δc2

(ΛIR LUV )2(Δ1 −4)

(ΛIR LUV )2(3−Δ )⎧⎨⎪

⎩⎪

... and into the dispersion relations of bound states

In the simplest model – not very large suppression Δ1 ≤ 4.35

Bednik  OP  Sibiryakov  ‘13

Lifshitz Holography

can be made arbitrarily large w/ non-minimal couplings Baggioli  OP  w.i.p.

Page 24: EmergentLorentzInvariance from&Strong&Dynamics&

Conclusions

RG  +  Strong  Dynamics    =>    fast  Emergence  of  LI  is  possible  

Emergent  LI  may  not  be  an  exceptional  phenomenon  

The  leading  LV  corrections  are  characterized  by  an  exponent    

determined  by  the  LILVO  –  least  irrelevant  LV  operator  

                 -­‐>  RG  scale  =  compositeness  scale  

                   -­‐>  how  large  can                                be  ??   δc Λ IR

ΛUV

⎛⎝⎜

⎞⎠⎟ΔLILVO − 4

ΔLILVO

Page 25: EmergentLorentzInvariance from&Strong&Dynamics&

Application to Condensed Matter

Discussion

  –  Is  ELI  already  at  work  in  some  material?    

  –    QED3  has  been  argued  to  exhibit  ELI  

  –  Related  phenomenon:  emergence  of  isotropy  

Page 26: EmergentLorentzInvariance from&Strong&Dynamics&

Implications in Particle Physics / Non-Relativistic Gravity

Discussion

compositeness  –  at  low  Energies  ~  100  TeV  

Limits  on  compositeness  in  SM?     Λ ≥ few10TeV

Page 27: EmergentLorentzInvariance from&Strong&Dynamics&

compositeness  –  at  low  Energies  ~  100  TeV  

Limits  on  compositeness  in  SM?     Λ ≥ few10TeV

Implications in Particle Physics / Non-Relativistic Gravity

Discussion

Several  QFT-­‐mechanisms  for  Emergence  of  LI  NR  SUSY  (Groot-­‐Nibelink  Pospelov  ’04)  ,        Large  N  species  (Anber  Donoghue  ’11)  

Via  naturalness,  NRQG  becomes  very  predictive:  new  physics  at  much  lower  energies  

105  GeV 1015  GeV

Page 28: EmergentLorentzInvariance from&Strong&Dynamics&

Thank you!