30
EMERGY & ENERGY SYSTEMS EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Embed Size (px)

Citation preview

Page 1: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

EMERGY & ENERGY SYSTEMSEMERGY & ENERGY SYSTEMS

Session 4 Short Course for ECO Interns,

EPA and Partners

Page 2: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Emergy EvaluationsEmergy Evaluations

• Tables and metadata

• Calculations

• Locating data

Page 3: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Reading an Emergy TableReading an Emergy Table

• Note number Unit Solar Solar Em$Input Data EMERGY EMERGY Value

Note Item and units (sej/unit) (E13 sej) (1996 $)

NONRENEWABLE STORAGES1 Air 3.76E+10 J 2.12E+03 80 6642 Water 3.74E+07 J 4.80E+04 2 15

Sum of free inputs (sun, rain omitted) 82 679

PURCHASED INPUTSOperational inputs

3 Electricity 1.25E+10 J 1.60E+05 199 16614 Labor 1.31E+06 J 2.46E+07 3 275 Silica 6.80E+05 g 9.70E+08 66 5506 Coke 3.40E+06 g 2.05E+09 697 58087 Phosphate 2.72E+06 gP 1.78E+10 4842 40347

Sum of purchased inputs 5807 48392

TRANSFORMITIES8 Total Yield 2.87E+05 gP 2.05E+11 5889 49072

Table 5: Emergy evaluation of 100% H3PO4 ( 32 % P), per 908 kg H3PO4.

Page 4: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Reading an Emergy TableReading an Emergy Table

• Note number• Item

Unit Solar Solar Em$Input Data EMERGY EMERGY Value

Note Item and units (sej/unit) (E13 sej) (1996 $)

NONRENEWABLE STORAGES1 Air 3.76E+10 J 2.12E+03 80 6642 Water 3.74E+07 J 4.80E+04 2 15

Sum of free inputs (sun, rain omitted) 82 679

PURCHASED INPUTSOperational inputs

3 Electricity 1.25E+10 J 1.60E+05 199 16614 Labor 1.31E+06 J 2.46E+07 3 275 Silica 6.80E+05 g 9.70E+08 66 5506 Coke 3.40E+06 g 2.05E+09 697 58087 Phosphate 2.72E+06 gP 1.78E+10 4842 40347

Sum of purchased inputs 5807 48392

TRANSFORMITIES8 Total Yield 2.87E+05 gP 2.05E+11 5889 49072

Table 5: Emergy evaluation of 100% H3PO4 ( 32 % P), per 908 kg H3PO4.

Page 5: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Reading an Emergy TableReading an Emergy Table

• Note number• Item• Input data and

units

Unit Solar Solar Em$Input Data EMERGY EMERGY Value

Note Item and units (sej/unit) (E13 sej) (1996 $)

NONRENEWABLE STORAGES1 Air 3.76E+10 J 2.12E+03 80 6642 Water 3.74E+07 J 4.80E+04 2 15

Sum of free inputs (sun, rain omitted) 82 679

PURCHASED INPUTSOperational inputs

3 Electricity 1.25E+10 J 1.60E+05 199 16614 Labor 1.31E+06 J 2.46E+07 3 275 Silica 6.80E+05 g 9.70E+08 66 5506 Coke 3.40E+06 g 2.05E+09 697 58087 Phosphate 2.72E+06 gP 1.78E+10 4842 40347

Sum of purchased inputs 5807 48392

TRANSFORMITIES8 Total Yield 2.87E+05 gP 2.05E+11 5889 49072

Table 5: Emergy evaluation of 100% H3PO4 ( 32 % P), per 908 kg H3PO4.

Page 6: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Reading an Emergy TableReading an Emergy Table

• Note number• Item• Input data and

units• Unit emergy

Unit Solar Solar Em$Input Data EMERGY EMERGY Value

Note Item and units (sej/unit) (E13 sej) (1996 $)

NONRENEWABLE STORAGES1 Air 3.76E+10 J 2.12E+03 80 6642 Water 3.74E+07 J 4.80E+04 2 15

Sum of free inputs (sun, rain omitted) 82 679

PURCHASED INPUTSOperational inputs

3 Electricity 1.25E+10 J 1.60E+05 199 16614 Labor 1.31E+06 J 2.46E+07 3 275 Silica 6.80E+05 g 9.70E+08 66 5506 Coke 3.40E+06 g 2.05E+09 697 58087 Phosphate 2.72E+06 gP 1.78E+10 4842 40347

Sum of purchased inputs 5807 48392

TRANSFORMITIES8 Total Yield 2.87E+05 gP 2.05E+11 5889 49072

Table 5: Emergy evaluation of 100% H3PO4 ( 32 % P), per 908 kg H3PO4.

Page 7: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Reading an Emergy TableReading an Emergy Table

• Note number• Item• Input data and

units• Unit emergy• Emergy

Unit Solar Solar Em$Input Data EMERGY EMERGY Value

Note Item and units (sej/unit) (E13 sej) (1996 $)

NONRENEWABLE STORAGES1 Air 3.76E+10 J 2.12E+03 80 6642 Water 3.74E+07 J 4.80E+04 2 15

Sum of free inputs (sun, rain omitted) 82 679

PURCHASED INPUTSOperational inputs

3 Electricity 1.25E+10 J 1.60E+05 199 16614 Labor 1.31E+06 J 2.46E+07 3 275 Silica 6.80E+05 g 9.70E+08 66 5506 Coke 3.40E+06 g 2.05E+09 697 58087 Phosphate 2.72E+06 gP 1.78E+10 4842 40347

Sum of purchased inputs 5807 48392

TRANSFORMITIES8 Total Yield 2.87E+05 gP 2.05E+11 5889 49072

Table 5: Emergy evaluation of 100% H3PO4 ( 32 % P), per 908 kg H3PO4.

SPECIFIC EMERGY CALCULATION

Page 8: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Reading an Emergy TableReading an Emergy Table

• Note number• Item• Input data and

units• Unit emergy• Emergy• Emdollars

Unit Solar Solar Em$Input Data EMERGY EMERGY Value

Note Item and units (sej/unit) (E13 sej) (1996 $)

NONRENEWABLE STORAGES1 Air 3.76E+10 J 2.12E+03 80 6642 Water 3.74E+07 J 4.80E+04 2 15

Sum of free inputs (sun, rain omitted) 82 679

PURCHASED INPUTSOperational inputs

3 Electricity 1.25E+10 J 1.60E+05 199 16614 Labor 1.31E+06 J 2.46E+07 3 275 Silica 6.80E+05 g 9.70E+08 66 5506 Coke 3.40E+06 g 2.05E+09 697 58087 Phosphate 2.72E+06 gP 1.78E+10 4842 40347

Sum of purchased inputs 5807 48392

TRANSFORMITIES8 Total Yield 2.87E+05 gP 2.05E+11 5889 49072

Table 5: Emergy evaluation of 100% H3PO4 ( 32 % P), per 908 kg H3PO4.

Page 9: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

• Clumping inputs

Data Solar EMERGY

Note Description (per ha-1 yr-1) (E13 sej/yr)Renewable Inputs

1 Sun 6.35E+13 J 62 Rain 6.30E+10 J 1913 Et 6.50E+10 J 168

Non-renewable Inputs4 Net Topsoil Loss 6.33E+08 J 8

Purchased Inputs5 Fuel 1.51E+07 J 06 Electricity 2.96E+08 J 87 Potash 7.45E+04 g K 148 Lime 3.73E+05 g 639 Pesticides 7.20E+03 g 18

10 Phosphate 2.11E+04 g P 7811 Nitrogen 4.88E+04 g N 11812 Labor 6.34E+07 J 113 Services 2.11E+03 $ 34414 Total EMERGY 819

15 Total Yield, dry weight 8.00E+05 g16 Total Yield, energy 2.30E+10 J

17 Emergy per mass 1.02E+10 sej/g18 Transformity w/services 3.56E+05 sej/J19 Transformity wo/services 2.06E+05 sej/J20 Empower Density 8.19E+15 sej/ha/yr

Table 1.24: Emergy Evaluation of Pecans, per ha per year(Brandt-Williams, revised 2002)

Yields

Calculated ratios

<1

Reading an Emergy TableReading an Emergy Table

Page 10: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

• Clumping inputs• Output energy/yields

Data Solar EMERGY

Note Description (per ha-1 yr-1) (E13 sej/yr)Renewable Inputs

1 Sun 6.35E+13 J 62 Rain 6.30E+10 J 1913 Et 6.50E+10 J 168

Non-renewable Inputs4 Net Topsoil Loss 6.33E+08 J 8

Purchased Inputs5 Fuel 1.51E+07 J 06 Electricity 2.96E+08 J 87 Potash 7.45E+04 g K 148 Lime 3.73E+05 g 639 Pesticides 7.20E+03 g 18

10 Phosphate 2.11E+04 g P 7811 Nitrogen 4.88E+04 g N 11812 Labor 6.34E+07 J 113 Services 2.11E+03 $ 34414 Total EMERGY 819

15 Total Yield, dry weight 8.00E+05 g16 Total Yield, energy 2.30E+10 J

17 Emergy per mass 1.02E+10 sej/g18 Transformity w/services 3.56E+05 sej/J19 Transformity wo/services 2.06E+05 sej/J20 Empower Density 8.19E+15 sej/ha/yr

Table 1.24: Emergy Evaluation of Pecans, per ha per year(Brandt-Williams, revised 2002)

Yields

Calculated ratios

<1

Reading an Emergy TableReading an Emergy Table

Page 11: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

• Clumping inputs• Output energy/yields• Calculated values

Data Solar EMERGY

Note Description (per ha-1 yr-1) (E13 sej/yr)Renewable Inputs

1 Sun 6.35E+13 J 62 Rain 6.30E+10 J 1913 Et 6.50E+10 J 168

Non-renewable Inputs4 Net Topsoil Loss 6.33E+08 J 8

Purchased Inputs5 Fuel 1.51E+07 J 06 Electricity 2.96E+08 J 87 Potash 7.45E+04 g K 148 Lime 3.73E+05 g 639 Pesticides 7.20E+03 g 18

10 Phosphate 2.11E+04 g P 7811 Nitrogen 4.88E+04 g N 11812 Labor 6.34E+07 J 113 Services 2.11E+03 $ 34414 Total EMERGY 819

15 Total Yield, dry weight 8.00E+05 g16 Total Yield, energy 2.30E+10 J

17 Emergy per mass 1.02E+10 sej/g18 Transformity w/services 3.56E+05 sej/J19 Transformity wo/services 2.06E+05 sej/J20 Empower Density 8.19E+15 sej/ha/yr

Table 1.24: Emergy Evaluation of Pecans, per ha per year(Brandt-Williams, revised 2002)

Yields

Calculated ratios

<1

Reading an Emergy TableReading an Emergy Table

Page 12: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Reading an Emergy TableReading an Emergy Table

• Clumping inputs• Output energy/yields• Calculated values• Arranging rows• Notes

Notes, Table 1.24

1 Sun, JAnnual energy = (Avg. Total Annual Insolation J/yr)(Area)(1-albedo)

Insolation: 6.90E+09 J/m2/yr

Area: 1.00E+04 m2Albedo: 0.08 (NASAeosweb 2002)

Annual energy: 6.35E+13 JEmergy per unit input = 1 sej/J (Odum 1996)

2 Rain, JAnnual energy = ( in/yr)(Area)(0.0254 m/in)(1E6g/m3)(4.94J/g)(1 - runoff)

in/yr: 54Area, m2: 10000

runoff coefficient: 7.00E-02 (AFSIRS estimate, Smajstrla, 1990)Annual energy: 6.30E+10

Emergy per unit input = 1.80E+04 sej/J (Odum 1996)3 Evapotranspiration, J

Annual energy = (J/acre)(2.47acre/ha)(area)J/acre: 2.63E+10 (AFSIRS estimate, Smajstrla, 1990)

Area, ha: 1Annual energy: 6.50E+10

Emergy per unit input = 1.54E+04 sej/J (Odum 1996)4 Net Topsoil Loss, J

Erosion rate = 70 g/m2/yr

% organic in soil = 0.04 [Pimentel et al., 1995, p.1118]Energy cont./g organic= 5.40 kcal/g

Net loss of topsoil = (farmed area)(erosion rate) Organic matter in topsoil used up= (total mass of topsoil)(% organic)Energy loss= (loss of organic matter)(5.4 kcal/g)(4186 J/kcal)

Emergy per unit input = 7.38E+04 sej/J (Odum 1996)5 Fuel, J per ha (includes diesel, gasoline, lubricants)

Annual energy = (gallons fuel) * (1.32E8 J/gal)Gallons: 9.97E+01 FAECM data (Fluck, 1992 )

Annual energy: 1.51E+07Emergy per unit input = 6.60E+04 sej/J (Odum 1996)

6 Electricity, JAnnual energy =KWh*3.6E6 J/KWh

KWh: 8.21E+01 FAECM data (Fluck, 1992 )Annual energy: 2.96E+08

Emergy per unit input = 1.60E+05 sej/J (Odum 1996)

[estim. from Pimentel et al.1995; Moore and Wilson 1992; Griffen et al. 1988]

(calculated using solar constant of 2 Langleys/sec and integrating over changing surface area for one year,

Page 13: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Matching Table to DiagramMatching Table to Diagram

• Diagram first• Labeling components

Page 14: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Example of State DiagramExample of State Diagram

Page 15: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

• Labeling components

Matching Table to DiagramMatching Table to Diagram

Page 16: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

PlanetPlanetEarthEarth

Ocean &Ocean &AtmosphereAtmosphere

LandLandAreaArea

DeepDeepHeatHeat

TideTide

LocalLocalAnalysisAnalysis

SunSun

SunSun

WindWind

WindWind

SunSun

RainRain

RainRain

Earth cycleEarth cycle

Earth cycleEarth cycle

Identifying Key ComponentsIdentifying Key Components

• List but don’t double count

Note Item Raw Units Transformity Solar Emergy (sej/unit) (E12 sej)

Global baseline: 15.83RENEWABLE RESOURCES:

1 Sunlight 4.40E+13 J 1 442 Rain, chemical 5.19E+10 J 30574 15863 Rain, geopotential 3.43E+07 J 46828 24 Wind, kinetic energy 2.36E+11 J 2513 5945 Waves 9.95E+09 J 51324 5116 Tide 3.67E+10 J 28295 10377 Earth Cycle 1.00E+10 J 57753.4 578

Renewable Inputs 1586

Table 1. EMERGY Evaluation of Somwhere

Page 17: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Different TablesDifferent Tables• Transformity

– Are all inputs necessary?

Unit Solar Solar Em$Input Data EMERGY EMERGY Value

Note Item and units (sej/unit) (E13 sej) (1996 $)

NONRENEWABLE STORAGES1 Air 3.76E+10 J 2.12E+03 80 6642 Water 3.74E+07 J 4.80E+04 2 15

Sum of free inputs (sun, rain omitted) 82 679

PURCHASED INPUTSOperational inputs

3 Electricity 1.25E+10 J 1.60E+05 199 16614 Labor 1.31E+06 J 2.46E+07 3 275 Silica 6.80E+05 g 9.70E+08 66 5506 Coke 3.40E+06 g 2.05E+09 697 58087 Phosphate 2.72E+06 gP 1.78E+10 4842 40347

Sum of purchased inputs 5807 48392

TRANSFORMITIES8 Total Yield 2.87E+05 gP 2.05E+11 5889 49072

Table 5: Emergy evaluation of 100% H3PO4 ( 32 % P), per 908 kg H3PO4.

Page 18: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Different TablesDifferent Tables• Net benefits

– List everything, positive or negative

– Use labels to define benefits minus costs from different perspectives

Benefit to farm:A+B+D+H+F+J-cropBenefit to Region:A+B+C+I-L-exported crop

Page 19: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Different TablesDifferent Tables• Storages

– Not annual flows, anything more than a year in turnover time

Note3 SURFACE WATER

(volume)(Gibb's free energy of rain)(average density of water)Lake or res. volume, m3 Gibb's density, kg/m3 energy data source

Erie 1.92E+09 4.74E+00 1.00E+03 9.10E+12 (NOAA, 2003)Francis Walter Resevoir 1.33E+08 4.74E+00 1.00E+03 6.31E+11 USGS 01447780

Beltzville Lake 5.06E+07 4.74E+00 1.00E+03 2.40E+11 USGS 01449790Cowanesque Lake 4.02E+07 4.74E+00 1.00E+03 1.91E+11 USGS 01519995Curwensville Lake 1.23E+08 4.74E+00 1.00E+03 5.84E+11 USGS 01541180

Raystown Lake 6.34E+08 4.74E+00 1.00E+03 3.00E+12 USGS 01563100total energy 1.38E+13 J

emergy per unit 1.03E+04(Brandt-Williams, 1999)

total emergy 1.42E+174 PEAT

(total area of wetlands)(average depth of peat)(energy content of peat)(density of peat)Forested wetlands 8.94E+08 m2 (PADEP, 2001)

Scrub/Shrub wetlands 5.62E+08 m2 (PADEP, 2001)Emergent wetlands 2.81E+08 m2 (PADEP, 2001)

Total 1.74E+09 m2average depth of peat 6.10E-01 m

energy content 1.93E+04 J/g (USGS, 1998)density of peat 1.90E+05 g/m2 (Connolly, 1998)

total energy stored in wetlands 3.89E+18emergy per unit 1.17E+05 (Odum 2000)

total emergy 4.56E+23

Storages Pennsylvania

Page 20: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Notes as MetadataNotes as Metadata

• Spreadsheet tracking

Notes, Table 1.24

1 Sun, JAnnual energy = (Avg. Total Annual Insolation J/yr)(Area)(1-albedo)

Insolation: 6.90E+09 J/m2/yr

Area: 1.00E+04 m2Albedo: 0.08 (NASAeosweb 2002)

Annual energy: 6.35E+13 JEmergy per unit input = 1 sej/J (Odum 1996)

2 Rain, JAnnual energy = ( in/yr)(Area)(0.0254 m/in)(1E6g/m3)(4.94J/g)(1 - runoff)

in/yr: 54Area, m2: 10000

runoff coefficient: 7.00E-02 (AFSIRS estimate, Smajstrla, 1990)Annual energy: 6.30E+10

Emergy per unit input = 1.80E+04 sej/J (Odum 1996)3 Evapotranspiration, J

Annual energy = (J/acre)(2.47acre/ha)(area)J/acre: 2.63E+10 (AFSIRS estimate, Smajstrla, 1990)

Area, ha: 1Annual energy: 6.50E+10

Emergy per unit input = 1.54E+04 sej/J (Odum 1996)4 Net Topsoil Loss, J

Erosion rate = 70 g/m2/yr

% organic in soil = 0.04 [Pimentel et al., 1995, p.1118]Energy cont./g organic= 5.40 kcal/g

Net loss of topsoil = (farmed area)(erosion rate) Organic matter in topsoil used up= (total mass of topsoil)(% organic)Energy loss= (loss of organic matter)(5.4 kcal/g)(4186 J/kcal)

Emergy per unit input = 7.38E+04 sej/J (Odum 1996)5 Fuel, J per ha (includes diesel, gasoline, lubricants)

Annual energy = (gallons fuel) * (1.32E8 J/gal)Gallons: 9.97E+01 FAECM data (Fluck, 1992 )

Annual energy: 1.51E+07Emergy per unit input = 6.60E+04 sej/J (Odum 1996)

6 Electricity, JAnnual energy =KWh*3.6E6 J/KWh

KWh: 8.21E+01 FAECM data (Fluck, 1992 )Annual energy: 2.96E+08

Emergy per unit input = 1.60E+05 sej/J (Odum 1996)

[estim. from Pimentel et al.1995; Moore and Wilson 1992; Griffen et al. 1988]

(calculated using solar constant of 2 Langleys/sec and integrating over changing surface area for one year,

Page 21: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Notes as MetadataNotes as Metadata

• Spreadsheet tracking

• Verbal for final

Notes Table 1

1. Transformity 1 by definition. Solar insolation calculated using solar constant of 2 Langleys/sec and integration over changing surface area for a one year period at latitude 27.00 N, longitude 82.00 W: 6.9 E9 J/m2/yr. Albedo 8% (NASAeosweb). Annual energy = (Avg. total annual insolation J/yr/m2)(Area m2)(1 - albedo).

2. Transformity for evapotranspiration 15,423 sej/J (Odum, 1996) corrected by factor of 1.68 (Odum et al., 2000). Grain evapotranspiration = 2.33 E10 J/acre/yr (ASFIRS estimate, Smajstrla, 1990). Annual energy = (evapotranspiration J/acre/yr)(area ha)(2.47 acres/ha).

3. Erosion rate estimated as less than 0.01 g/m2/yr for aquaculture.

4. Fuel includes diesel, gasoline and lubricants and uses petroleum products transformity 6.60 E4 sej/J (Odum 1996) corrected by factor of 1.68 (Odum et al., 2000). Gallons of fuel/ha/yr from FAECM data (Fluck, 1992). Annual energy = (Gallons fuel)(1.32 E8 J/gal).

5. Transformity for electricity from average U.S. coal plant 1.60 E5 sej/J (Odum, 1996)

Page 22: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Notes as MetadataNotes as Metadata

• Raw data and source

10 WAVE ENERGY: Shore length = 64372 m (RIGIS 1995)

Wave height = 0.9 m (ACE, Buzzard Bay, MA, 1990-2003)Depth = 9 m (ACE, Buzzard Bay, MA, 1990-2003)

Wave velocity = 9.391485505 m/sec (ACE, Buzzard Bay, MA, 1990-2003)

Energy(J) = (shore length)(1/8)(density)(gravity)(wave height)2(velocity)(3.14E7s/yr)= (_m)(1/8)(1.025 E3kg/m3)(9.8 m/sec2)(__m)2(__m/sec)(3.14E7s/yr)

Energy(J) = 1.93066E+16 J/yrEmergy per unit= 30550 sej/J (Odum 1996)

Closest monitored wave station for Rhode Island is Buzzard Bay, MA. This station is to the south of Cape Cod and in the same vicinity as open water on the coast of RI.

Page 23: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Notes as MetadataNotes as Metadata

• Conversion factors, equations, unit emergy ratios

4 RAIN, CHEMICAL POTENTIAL ENERGY: Land Area = 2.53E+10 m2

Shelf Area = 1.14E+11 m2 Rain (land) = 1.13E+00 m/yr (NOAA Website )Rain (shelf) = 5.09E-01 m/yr (45% of land rainfall)Energy (J)= (land area)(rainfall)(Gibbs energy of rain)

+ (Shelf area)(rainfall)(Gibbs energy of rain) = (____m2)(____m)(1000kg/m3)(4.94E+03J/kg)

Energy(J) = 4.28E+17 J/yrEmergy per unit= 18199 (Odum, 1996)

48 NATURAL GASAmount = 2.07E+08 Thous ft3 (www.eia.doe.gov, 2000)

Energy content = 1.10E+09 J/thous ft3 (Perry 1973)Energy (J) = (Thous ft3)(J/Thous ft3)

= 2.28E+17 J/yrEmergy per unit= 4.80E+04 sej/J (Odum 1996)

Page 24: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Converting DataConverting Data

• Joules for energy

Page 25: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Converting DataConverting Data

• Grams for materials

Page 26: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Accurate InputsAccurate Inputs

• Dry versus wet weight

•The point is to make sure you are calculating to the right endpoint, dry weight for food, active ingredients for chemical reactants, etc.

Page 27: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Physical Conversion CalculationsPhysical Conversion Calculations

• TidesEnergy(J) =(shelf)(0.5)(tides/y)(mean tidal range)2(density of seawater) (gravity)

=(____m2)(0.5)(____/yr)(____m)2(_____kg/m3)(9.8m/s2)

• Rain chemical potentialEnergy (J)= (land area + shelf area)(rainfall)(Gibbs energy of rain)

= (____m2)(____m)(1000kg/m3)(4.94E+03J/kg)

Page 28: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Finding DataFinding Data

• Websites– Will post

list on website

– In the notes

ENERGY DATA LINKS • U.S. Department of Energy – data and prices • USGS Energy Databases • Renewable Energy Policy Project • Distributed Energy Resources Center • U.S.D.O.E. Fossil Fuels • Hawaii Department of Business, Economics and

Tourism http://www.state.hi.us/dbedt/ert/energy.html http://www.hawaii.gov/dbedt/ert/ert_hmpg.html

Internet Resources--Government Agencies • United Nation's Food and Agricultural Organization • Weather Educational Material • US Dept. of Agriculture World Agricultural Outlook

Board • U.S. Geological Survey (USGS) Homepage • Etc., etc., etc.

Page 29: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

• $$ paid does not cover actual raw material or energy • Separating services

Using Money as DataUsing Money as Data

SunWind

RiverRain

Soil

Forest Harvest

FuelFertilizer

Services

Market

Page 30: EMERGY & ENERGY SYSTEMS Session 4 Short Course for ECO Interns, EPA and Partners

Annual Rates versus StoragesAnnual Rates versus Storages

• Determining annual flows from initial resources– Prorating use– Long term rates– Start up rates

• Storages– Turnover times >1 year