endocochlear inflamation

Embed Size (px)

Citation preview

  • 8/9/2019 endocochlear inflamation

    1/9

    Review article

    Endocochlear 

    inflammation 

    in cochlear 

    implant 

    users: 

    Case 

    report 

    andliterature

     

    review

    Alice Benatti a,*,  Alessandro Castiglione b, Patrizia Trevisi b, Roberto Bovo a, Monica Rosignoli c,Renzo Manarad, Alessandro Martini e

    aOperative  Unit   of   Otolaryngology  and  Otosurgery,  Padua  University,  Via  Giustiniani,   2,  Padua,  ItalybDepartment   of   Neurosciences,  Padua  University,  Via  Giustiniani,   2,  Padua,  ItalycENT   Department,   Audiology  Service,  Ferrara  University,  Cso  Giovecca   203,  Ferrara,  ItalydNeuroradiology,  Padua  University,  Via  Giustiniani   2,  Padua,  ItalyeDepartment   of   Neurosciences,  Operative  Unit   of   Otolaryngology  and  Otosurgery,  Padua  University,  Via  Giustiniani,   2,  Padua,  Italy

    International   Journal  of   Pediatric  Otorhinolaryngology  77  (2013)  885–893

    A  R   T  I   C  L   E  I  N  F   O

     Article history:

    Received  7   January  2013

    Received in revised form 7 March 2013

    Accepted  10  March  2013

    Available online 8 April 2013

    Keywords:

    Cochleitis

    Endocochlear  phlogosis

    Implant  complications

    Granulating 

    labyrinthitis

    A   B  S  T  R   A   C  T

    Objectives:  Cochlear implantation is a relatively safe procedurewith a lowcomplication rate. Theoverall

    rate of complications among cochlear implant patients ranges from 6% to 20%. Major complications are

    those that are life-threatening or require surgery, whereas minor complications are those that can be

    medically treated. Nonetheless, certain complications, even if highly rare, may require specific

    investigations and treatments. Among these rare complications are those with endocochlear

    involvement, such as cochleitis or labyrinthitis, with fibrosis or ossification that could lead to

    explantation. The aims of the present study 

    were to report a particular case of post-operative cochleitis

    and to review the rate of complications after cochlear implantation, emphasising those conditionswith

    proven endocochlear involvement.

    Methods: We refer to the case of an eight-year-old Ital ian boy affected 

    by the sudden 

    onset of  

    headache, 

    ipsilateral 

    otalgia and facial 

    paresis, who presented to our clin ic for inexplicable

    worsening of the performance of his implant and his residual hearing, six years after surgery. 

    A

    complete 

    investigation including (clinical history, 

    routine, autoimmune 

    and serological bloodtests, electrophysiological measurements

     

    from the cochlear 

    implant and neuroimaging) was

    performed and is herein 

    described. 

    Additionally, a comprehensive 

    review 

    of the literature was

    conducted using internet search engines; 274 papers 

    were selected, 

    88 of which were best suited to

    our purposes.

    Results: In our case, the progression of the symptoms and the performance decrement required

    explantation, 

    followed by a complete 

    recovery. Reviewing the literature revealed only three reports

    concerning 

    cases of proven 

    endocochlear phlogosis that required revision surgery. 

    Wound swelling/

    infection and vertigo remain 

    the two most common complications of cochlear implantation. Failure

    of the device 

    is the third most frequent complication (10.06% of all complications and 1.53% of 

    cochlear implantations). 

    Other rare conditions (such as granulating labyrinthitis with cochlear

    fibrosis, ossification and erosion, silicone 

    allergy and the formation of a biofilm around the internal

    device) are possible and unpredictable. Although 

    rare (approximately 1%), such 

    cases may require

    explantation.

    Conclusions: Despite efforts by both surgeons and manufacturers, device-related and surgical

    complications still occur. These and other rare conditions demand specific management, and their

    frequency may be underestimated. Further studies are needed to assess more realistic rates of  complications and devise more efficient strategies for early diagnosis and treatment.

    2013 

    Elsevier Ireland Ltd. All rights reserved.

    *  Corresponding  author  at:  Operative  Unit  of   Otolaryngology  and  Otosurgery,  Giustiniani,  2,  Padua  35128,  Italy.  Tel.:  +39  339  6657486;  fax:  +39  049  821  1994.

    E-mail  addresses:  [email protected]  (A.  Benatti),  [email protected]  (A.  Castiglione),  [email protected]  (P.   Trevisi),

    [email protected]  (R.  Bovo),   [email protected]  (M.  Rosignoli),  [email protected]  (R.  Manara),  [email protected]  (A.  Martini).

    Contents 

    lists 

    available 

    at 

    SciVerse 

    ScienceDirect

    International Journal of Pediatric Otorhinolaryngology

    jo urn al  hom ep ag e:  www.els evier  . c om/locat  e/ i jp  o r  l

    0165-5876/$  –   see  front  matter    2013  Elsevier   Ireland  Ltd.  All  rights  reserved.

    http://dx.doi.org/10.1016/j.ijporl.2013.03.016

    http://dx.doi.org/10.1016/j.ijporl.2013.03.016http://dx.doi.org/10.1016/j.ijporl.2013.03.016http://dx.doi.org/10.1016/j.ijporl.2013.03.016http://dx.doi.org/10.1016/j.ijporl.2013.03.016http://dx.doi.org/10.1016/j.ijporl.2013.03.016http://dx.doi.org/10.1016/j.ijporl.2013.03.016http://dx.doi.org/10.1016/j.ijporl.2013.03.016http://dx.doi.org/10.1016/j.ijporl.2013.03.016http://dx.doi.org/10.1016/j.ijporl.2013.03.016http://dx.doi.org/10.1016/j.ijporl.2013.03.016http://dx.doi.org/10.1016/j.ijporl.2013.03.016http://dx.doi.org/10.1016/j.ijporl.2013.03.016http://dx.doi.org/10.1016/j.ijporl.2013.03.016http://dx.doi.org/10.1016/j.ijporl.2013.03.016http://dx.doi.org/10.1016/j.ijporl.2013.03.016mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]://www.sciencedirect.com/science/journal/01655876http://www.sciencedirect.com/science/journal/01655876http://www.sciencedirect.com/science/journal/01655876http://dx.doi.org/10.1016/j.ijporl.2013.03.016http://dx.doi.org/10.1016/j.ijporl.2013.03.016http://www.sciencedirect.com/science/journal/01655876mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]://dx.doi.org/10.1016/j.ijporl.2013.03.016

  • 8/9/2019 endocochlear inflamation

    2/9

  • 8/9/2019 endocochlear inflamation

    3/9

    failure,   dizziness/vertigo and infections represent  the  most

    common  complications (Table 2); however,  certain   complica-

    tions  may require  specific   investigations   and treatments  [6,41–

    44]. 

    Such cases are very 

    rare 

    and not usually reported in 

    casestudies;   they  include  (Table   3) [10,45–60]: cochleitis, granulating

    labyrinthitis,   pneumocoele, pneumolabyrinth,  surgical emphy-

    sema, particular  malpositioning or  migration, biofilm array

    infections and  allergic reactions to internal device  [43,61–74].

    Although these are rare  complications, they  should  be considered

    as  major complications  because   explantation   may be  required

    [61,62]. As   a  consequence  of   pathological   and inflammatory

    processes,   cochlear erosion  [75], fibrosis and/or ossification  may

    occur,  leading to  device  malfunction,   extrusion of   electrodes or

    displacement   of   the  intracochlear array,  with   unpredictable

    consequences for the  patient’s   health   and  the performance of   the

    implant   [63,76–80].

    The  aims  of   this   study  were  to  review  the  complication   rate

    after 

    cochlear 

    implantation 

    and 

    to 

    investigate 

    the 

    causes 

    of 

    unexpected   clinical   manifestations  in  an  eight-year-old  Italian  boy

    six  years  after  cochlear   implantation  surgery,  who  was  charac-

    terised  by  headache,   ipsilateral  otalgia  and  facial  paresis  and

    worsening 

    of  

    his 

    residual 

    hearing 

    and 

    the 

    performance 

    of  

    hiscochlear   implant.

    2.  Materials  and  methods

     2.1. 

    Clinical, 

    audiological 

    and 

     genetic  

    data

    A  detailed  family  and  clinical  history  was  obtained   from  the

    young  patient  and his  parents. Acquired   and  environmental  factors

    that  might be  related  to  hearing   loss were  investigated.  A  complete

    audiological  evaluation  was  performed  using  micro-otoscopy,

    pure-tone   (250–8000  Hz)  audiometry   to  evaluate  air  and  bone

    conduction,   speech  audiometry   to  determine  the  speech   recogni-

    tion  threshold  and  impedancemetry   (tympanometry   and  acoustic

    stapedial 

    reflexes). 

    Other 

    clinical 

    data 

    were 

    collected, 

    including

     Table  2

    Complications  after/during  cochlear   implant  surgery.  The  percentages  refer  to  the  total  number  of   cases  for  which  data  analysis  was  possible  (the  studies  with  unspecified

    and/or unavailable data were  excluded  from  the  total  number  of   cases); % = percentage  of   total  complications  (1083,  including unusual  complications); %* percentages  of   total

    cochlear  implants  (7132).

    Type  of   complication   No.  %  (of   1083  complications)  %*  (of   7132  cochlear   implants)

    Wound  complications  223  20.59  3.13

    Infections, 

    swelling, 

    haematoma, 

    suture 

    rupture 

    153 

    14.13 

    2.15

    Subcutaneous  haematoma,  seroma,  emphysema  57  5.26  0.80

    Keloid  11  1.02  0.15

    Thin 

    flap 

    0.18 

    0.03Equilibrium  disorders  113  10.43  1.58

    Vertigo  111  10.25  1.56

    Nystagmus  1   0.09  0.01

    Neuritis,  labyrinthitis  1   0.09  0.01

    Device  complications  311  28.72  4.36

    Failure  109  10.06  1.53

    Gain 

    reduction, 

    Absence 

    of  

    stimulation 

    57 

    5.26 

    0.80

    Infections  4   0.37  0.06

    Malpositioning,  migration,  kinking  102  9.42  1.43

    Extrusion 

    39 

    3.60 

    0.55

    Leaks  90  8.31  1.26

    Gusher  62  5.72  0.87

    Csf   (cerebrospinal  fluid)  14  1.29  0.20

    Fistula  9   0.83  0.13

    Dural  tear   4   0.37  0.06

    Rhinoliquorrea  1   0.09  0.01

    External,  middle  ear   complications  92  8.49  1.29

    External,  media  otitis,  tympanic  membrane  perforation  58  5.36  0.81

    Cholesteatoma  13  1.20  0.18

    External 

    auditory 

    canal 

    injury 

    0.55 

    0.08

    Acute  otomastoiditis  14  1.29  0.20

    Pocket  retraction  1   0.09  0.01

    Peripheral  nerve  complications  115  10.62  1.61

    Temporary  facial  nerve  palsy  46  4.25  0.64

    Permanent  facial   nerve  palsy  12  1.11  0.17

    Facial  stimulation  20  1.85  0.28

    Chorda  tympani  injury  20  1.85  0.28

    Change  in   taste  3   0.28  0.04

    Post-operative  pain,  transient  neuralgia  10  0.92  0.14

    Alteration 

    in 

    facial 

    sensibility 

    0.37 

    0.06

    Other   63  5.82  0.88

    Worsening/increase/onset  of   tinnitus  16  1.48  0.22

    Haemorrhage 

    13 

    1.20 

    0.18

    Unspecified  intraoperative  complications  13  1.20  0.18

    Cerebritis  (1  case)/meningitis  (7   cases)  8   0.74  0.11Non   user  5   0.46  0.07

    Respiratory  distress,  laryngospasm  3   0.28  0.04

    Ocular  disorders  2   0.18  0.03

    Hypertension  1   0.09  0.01

    Burn 

    0.09 

    0.01

    Tachycardia,  hyperthermia  1   0.09  0.01

    Abdominal  distension  1   0.09  0.01

    Unusual 

    complications 

    (Tab 

    3) 

    76 

    7.01 

    1.07

    Total   1083  100  15.19

     A. Benatti  et   al.  /   International   Journal  of   Pediatric   Otorhinolaryngology  77   (2013)  885–893  887

  • 8/9/2019 endocochlear inflamation

    4/9

    routine,   autoimmune   and  serological  blood  tests,  evaluation  of   the

    thyroid  and  renal  functions,   electrophysiological  measurements

    from   the  cochlear   implant  and neuroimaging   of   the  temporal  bone.

    Behavioral   audiometry   and  auditory   brainstem  response  (ABR)

    testing  were  useful  to  define   the  clinical  indications  for  a  cochlear

    implant  at  the  age  of   2  years,  when   he  underwent   the  first

    implantation  surgery  (2006).  Direct   sequencing   of   the  GJB2  gene

    was  also  performed   to  investigate  the  genetic  cause  of   his  hearing

    loss.

     2.2.  Neuroimaging 

    Axial  and  coronal   imaging  with  a  high   resolution  computed

    tomography   (HRCT)   scanner   and  a  1.5-tesla  magnetic  resonanceimaging  (MRI)  system  was  repeated  during   this  young   patient’s

    life.  In  2006,  the  patient  underwent   preoperative  HRCT  and  MRI

    scans   for  diagnostic  and  surgical  purposes.  In  2012,  due  to  the

    onset  and  progression  of   his  symptoms,  two  temporal   bone  HRCT

    scans  were  conducted,   one month  apart. He  also underwent   an MRI

    of   the  temporal   bone  24  h  after  explantation  surgery  for  diagnostic

    and  prognostic  purposes.

     2.3.  Literature  review

    A  complete   review  of   the  literature  was  conducted   using

    computer   search  engines  and  internet   databases;  the  search  terms

    ‘fibrosis’,  ‘ossification’,  ‘cochlear  implant’,  ‘complications’,  ‘cochlei-

    tis’ 

    and 

    ‘labyrinthitis’ 

    were 

    combined 

    as 

    follows: 

    ‘(fibrosis 

    orossification)  and  (cochlear   implant)’,   ‘(cochleitis  or  labyrinthitis)

    and  (cochlear   implant  and/or   complications)’.   A  second   search  was

    performed  using  a  combination  of   the  search  terms  ‘cochlear

    implant’   and  ‘complications’.  The  English,  Italian,  Spanish,  German

    or  French  language  articles  were  retrieved  and  included   in  the

    review  they  reported   cases  of   particular  interest  or  research

    published  between  1996  and  2012.

    3. 

    Case 

    report

     3.1.  Clinical,  audiological  and   genetic   data

    The  patient  is  an  8-year-old  Italian  boy  affected  by  profound

    congenital 

    bilateral 

    sensorineural 

    hearing 

    loss 

    of  

    unknown 

    origin.

    Born  at  term   after  a normal  pregnancy   from unrelated parents with

    no  familial  hearing  loss,  he  underwent   a  left  cochlear   implantation

    (Nucleus   Freedom  Contour,   CI24RE)  at  the  age  of   two  years  (2006).

    Pre-operative  click-evoked  ABRs   for  bilateral  ear  stimuli  at  a  level

    of   95  dB  nHL   (normal   Hearing  Level)  were  absent.  No  GJB2

    mutations   were   found.

    The  operation  was  uneventful   and  all  of   the  electrodes   were

    properly   inserted  through   the  cochleostomy,   achieving  good

    impedance   values.  The  electrically  evoked  compound  action

    potential  (ECAP)   thresholds  were  measured   intraoperatively  using

    the  neural   response  telemetry  (NRT)  capabilities  of   Cochlear

    Corporation’s   (Cochlear1,   Lane   Cove,  New  South  Wales,  Australia)

    CI24RE-CA   device.  The  correct   array  position  was  documented   by

    postoperative  skull  radiography.   He  obtained   good  results  and  hewas  followed-up  regularly  without  problems  until  December

    2011,  when  the  device  was  tested  and  all  of   the  electrodes  were

    found  to  have   low  impedance   values  and  normal   NRT  thresholds.

    At  that   time,  the  pure-tone   and  speech   audiometry   (with  cochlear

    implant)   results were  within normal   ranges.  The  pure  tone  average

    (PTA0.5,1,2 

    kHz),  the  average  of   the  pure-tone   thresholds   at  500  Hz,

    1  kHz,   and  2  kHz,   was  25  dB  nHL   and  speech  recognition  at  30  dB

    SPL   (sound   pressure  level)  was  80%  of   the  words   in  an  open   set

    (Fig.  1).

    In  February  2012,  six  years  after  the  surgery,  he  presented  to

    our  tertiary  care  hospital   complaining   of   ipsilateral  otalgia,

    headache   and  cochlear   implant  ‘‘discomfort’’.  No  potential  causes

    were  identified  in  the  first  examination;  no  signs  of   infection,

    extrusion, 

    migration, 

    neuritis 

    or 

    vestibular 

    concerns 

    were 

    found.The  results  of   micro-otoscopy   and  tympanometry   were  normal;

    the  acoustic  reflex  was  absent  as  expected,   due  to  the  pre-existing

    conditions.  Nevertheless, a  temporal  bone CT  scan was  ordered  and

    steroid  treatment  (with  partial  symptom  remission)  was  pre-

    scribed.  Technical   analysis  of   the  device  was  conducted,   revealing

    impedance   variations  of   three   electrodes   and  undetectable   NRT

    thresholds.  The  pure-tone   audiometry   results  were  still  acceptable

    with  the  cochlear   implant  (PTA   =  32  dB  nHL)  but  the  young   boy

    presented  severe  tone-speech  dissociation  (Fig.  1).  When   provid-

    ing  a  history,  the  patient  and  his  parents   did  not  refer  to  any

    particular   event,  except   for  a  violent  head   injury   on  the  right  side

    that  occurred   three   weeks  before  and  a  minor  head  injury   on  the

    left  side  (the   implanted  side)  that  occurred   a  few  days  later.  After

    one 

    month, 

    he 

    returned 

    to 

    the 

    clinic 

    for 

    clinical 

    aggravation 

    with

     Table  3

    Unusual  post-operative  complications  of   cochlear  implantation.  The  number  of   cases   should  be  considered  an   underestimate.? = unavailable  or  unspecified  data.

    Unusual  post-operative

    complications

    No.  of 

    cases

    Explantation  Children

    (18  years)

    References

    Cochlear   complications

    Pneumolabyrinth  3  None  Rother  et  al.  [65];  Ott  et  al.  [69];  Hempel  et  al.  [45]

    Oesteolisys/erosion 

    4/5 

    Neilan 

    et 

    al. 

    [46]; 

    Ho 

    et 

    al. 

    [71]; 

    Cervera-Paz 

    &

    Linthicum  [75];  Doherty  &  Linthicum  [84];

    personal  observation  (2012,  unpublished  data)

    Chronic 

    granulating 

    labyrinthitis 

    3/3 

    Levi 

    et 

    al. 

    [63]; 

    Ho 

    et 

    al. 

    [62]; 

    Bertuleit 

    et 

    al. 

    [61]Fibrosis/oesteogenesis  19  19/19  Côté  et  al.  [47]

    Silicone  allergy/foreign

    body   reaction

    25  14/25  3  Ciorba  et  al.  [43];  Lim  et  al.  [68];  Pirzadeh  et  al.   [10];

    Liu   et  al.  [48]; Kunda  et  al.   [70]; Migirov  et  al.   [25];

    Puri  et  al.  [49];  personal  observation  (2012,

    unpublished  data)

    Bacterial/fungal  biofilm

    formation

    5 4/5  2  Neelam  et  al.   [50];  Ruellan  et  al.   [51];  Pawlowski  et  al.  [52];

    Cristobal 

    et 

    al. 

    [53]; 

    Makarem 

    et 

    al. 

    [74]

    Pneumocoele  4  None  2  2  Qiu  S.  et  al.  [64];

    Epidural/subdural  haematoma  4  None  1  Gosepath  et  al.  [54];  Sunkaraneni  et  al.   [55]; Dodson  et  al.  [21];

    Stamatiou 

    et 

    al. 

    [56]

    Misplacement  into  the

    carotid  canal

    8  8/8  1  1  Nevoux  et  al.  [66];  Son  et  al.  [57]; Tange  et  al.   [58];

    Gastman  et  al.,   [59];   Jain  &  Mukherji  [60];  personal  observation

    (2012,  unpublished  data)

     Total  (%)  76  52/76  (68.42%  of   76)  4  (?)  12  (?)

     A.  Benatti  et   al.  /   International   Journal  of   Pediatric   Otorhinolaryngology  77   (2013)  885–893888

  • 8/9/2019 endocochlear inflamation

    5/9

    fever  (38.5  8C)  and  hyperemia   of   the  external  auditory   canal   and

    cheeks.  The  patient  was  treated  with  the  oral  nonsteroidal   anti-

    inflammatory   drugs  cephalosporin  and  betamethasone  for  7  days,

    but  they  produced   only  a  modest  and  transient  benefit.

    Given  the  fluctuating   course   of   the  symptoms,  the  patient

    continued   steroid  therapy,   30  mg  of   Deflazacort   per  day,  and

    experienced  partial  improvement,   but  the  hearing  threshold  of   his

    implant  gradually  worsened  (Fig.  1).

    After  approximately  one  month,   the  patient  had  thinning   or

    disruption   of   the  posterior  wall  of   the  external  auditory   canal  with

    reacutisation  of   symptoms,  likely  due  to  contact   with  a  part  of   theinternal   device  array  causing  a  ‘‘granuloma’’  of   approximately

    2  mm  in  diameter  in  the  posterior  wall  of   the  external  auditory

    canal,   near  the  annulus.

    A few  days  later,  the  patient  developed  acute  left  facial  nerve

    paralysis  (grade  III  on  the  House-Brackmann   scale).

    Technical   analysis  of   the  device  revealed  high   impedance   of   3

    apical   electrodes   (20,  21  and  22)  and  basal  electrode  1.  The

    external   device   functioned   normally.  Subsequently,  an  integrity

    test  on  the  CI24RE   cochlear   implant  was  performed  by  Cochlear

    Italia  SRL   and  it  was  concluded   that  the  receiver–stimulator  and  all

    of   the  electrodes   were  functioning   within  the  specifications

    (Normal   Device   Function)   according   to  the  ‘‘European   consensus

    statement  on  cochlear   implant  failures  and  explantations’’  [81].

    The 

    results 

    of  

    the 

    blood 

    tests 

    were 

    all 

    within 

    the 

    normal 

    rangeswith  the  exception  of   the  serum  biochemistry,  which   showed  an

    increase   in  acute-phase   reactants   and  the  presence   of   IgM  and  IgG

    specific  for  paramyxovirus   type  1  that  became   negative  to

    subsequent   one  month   control,   exception  for  (obviously)  IgG.

    The  worsening  of   his  clinical  condition,   with  left  facial  paralysis

    grade  IV,  fever  and  persistent  tone-speech  dissociation,  led  to

    hospitalisation  for  the  removal  of   the  internal   device.

    The  presence   of   a  small  granuloma,  most  likely  due  to  the  array

    having   rotated,   was  confirmed   intraoperatively;  the  inflammatory

    reaction   was  essentially  limited  to  the  external   auditory  canal,

    with  no  evidence   of   middle   ear  involvement.

    After  surgery  and  antibiotic  therapy,  complete   regression  of   the

    symptoms  was  achieved. A  temporal  bone MRI was performed 24  h

    after 

    the 

    explantation 

    to 

    evaluate 

    the 

    inner 

    ear 

    and 

    the 

    VII/VIII

    nerve  complex.   Histological  examination  confirmed   the  presence

    of   fibrotic  tissue  around  the  array.  Two  months   later,  the  patient

    underwent   a  right  cochlear   implantation  without   complications.

     3.2.  Neuroimaging 

    Temporal   bone   MRI  and  CT  scans   conducted   in  2006,  before  the

    first  cochlear   implantation,  were  normal   with  the  exception  of 

    mild  plagiocephaly  that   was  clinically  insignificant.  In  2012,  two

    months   after  the  onset  of   symptoms,  the  patient  underwent

    another   CT  scan  of   the  temporal   bone,   without   contrast,   whichshowed   the  following:  (1)  normal   post-surgical  anatomy  and

    correct   array  positioning;  (2)  presence   of   phlogistic  material  in  the

    left  mastoid  air-cells  with  preservation  of   the  trabecular  bone

    microarchitecture   and  (3)  presence   of   a  granuloma  in  the  posterior

    wall  of   the  external   auditory  canal,   near  the  tympanic   membrane,

    with  partial  bone   erosion  (Fig.  2).  No  other   significant  alterations

    were  observed.  Because   his  clinical  condition   worsened  and  his

    facial  nerve  paralysis  was  aggravated,  with  both  refractory  to  the

    usual   therapy,  a  HRCT  exam  was  repeated  one  month   later,

    confirming   the  previous   findings   and  showing  a  slight  improve-

    ment  of   the  radiologic  inflammatory  signs.  However,  the  HRCT

    scans   revealed  hyperdensity   in  the  left  cochlea,   likely  attributable

    to  the  initial  fibrosis/ossification  of   the  basal  and  apical  turns

    (Fig. 

    3).The  post-explantation  MRI  revealed  (Fig.  4) left  cochlear

    ossification  and  fibrosis  with  partial  involvement  of   the  internal

    auditory   canal.  The  VII/VIII nerve  complex was not  clearly  visible  in

    the  distal  portion  of   the  internal   auditory  canal.

    4. 

    Discussion

    A  total  of   274  reports  were  including   in  our  metanalysis,  88  of 

    which   best  matched   our  purposes.  Most  of   them  referred  to  the

    common   or  predictable  (even  if   rare)  complications   of   cochlear

    implant  surgery  (Tables  1  and  2) and  lacked  insight  into  the

    aetiology  and  management   of   particular   cases  because  they

    focused  on  the  occurrence   and  classification  of   major  and  minor

    complications 

    [6,41–43]. 

    The 

    collective 

    data 

    confirmed 

    the

    Fig.  1.  Audiological  data  before  explantation  surgery.  Tonal  and  speech  audiometry  showed  the  constant  decline  of   implant  benefits  compared  to  the  good  performance

    demonstrated  at  the  end  of   2011;  (a)  tonal  audiometry  results  with  the  left  cochlear  implant  (open   set)  and  residual  hearing  without  the  cochlear   implant  (headphones);  (b)

    speech  audiometry  results  with  the  left  cochlear   implant,  using  an  open  set  of   words,  revealed  an  SRT  equal  to  25  dB  SPL   before  the  onset  of   symptoms,  with  worsening

    performance  in  subsequent  tests,  so  that  there  was  a   severe  discrepancy  between  the  tonal  and  speech  audiometric  results  (SRT  =  Speech  Recognition   Threshold,  the  lowestlevel  at  which  the  speech  signal  can   be  correctly  identified  50%  of   the  time).

     A.  Benatti  et   al.  /   International   Journal  of   Pediatric   Otorhinolaryngology  77   (2013)  885–893  889

  • 8/9/2019 endocochlear inflamation

    6/9

    complications   rates  reported   in  single  studies.  Device  failure

    remains  the  third  most  frequent   complication  (10.06%  of   the  total

    complications   and  1.53%  of   the  complications   of   cochlear

    implantation)  after  wound-related  complications   and  vertigo

    (Table  2). However,  these  last  two  complications   (vertigo  and

    wound  involvement)  are  usually  temporary   and  medically

    treatable,  whereas  device  failure  necessitates  surgical  revision.  It

    can  be  deduced   that  device  failure  is  the  principal   cause  of 

    explantation/reimplantation  (Table 1). Vertigo  is most  likely due  to

    surgical  trauma   to  the  vestibular  labyrinth:  its  residual  function

    causes   equilibrium  disorders,  which  generally  are  self-limited  and

    resolve  within  a  few  weeks,  as  occurs   in  other  vestibular  disorders.Permanent   facial  palsy  is  a  very  rare  complication   (0.17%),  most

    likely  due  to  intraoperative  monitoring   of   the  intratympanic  and

    mastoid  portions   of   the  facial  nerve.  In  addition,  the non-users   (the

    implant  recipients   who  do  not  use  them)   are  very  rare  (0.07%),

    underlining   the  benefit   and  usefulness  of   cochlear   implant,  even  if 

    it  is  possible  that   they   are  not  always  included   in  case  studies  on

    post-operative  complications.   Cerebritis  (1  case)  and  meningitis  (7

    cases)  have  an  occurrence   rate  of   0.01%  and  0.10%,  respectively

    (Table  2); nevertheless,  the  risk  of   meningitis  among   implanted

    patients   (100/100,000)  is  higher  than   that   of   the  general

    population   (1.38/100,000)  [82].

    The particular   cases  reported  in  single papers   range  from  simple

    wound  infection  to  meningeal  involvement  without   distinction

    being  made  between  endocochlear   or  extracochlear  complications[43,64–74].  Pneumolabyrinth,   pneumocoele   and  epidural   or

    subdural   haematoma   appear   to  not  require  explantation

    (Table  3). Only  three   reports  [61–63]  discovered  in  our  literature

    search  involved  proven  endocochlear   phlogosis  in  cochlear

    implant  users  that  resulted  in  explantation,  of   which  two

    [61,62]  concerned   fibrotic  and  oesteogenic  processes  (Tables  2

    and  3). It  is  interesting  that   endocochlear   involvement  was  usually

    preceded   or  accompanied   by  bone   erosion  in  the  external  auditory

    canal   [61–63].

    In summary,  our  case report describes a  late   post-operative

    complication leading to explantation because of   extensive

    cochlear involvement with  fibrosis and ossification and, conse-

    quently, malfunction  of   the  implant.   The clinical, neuroimaging

    andsurgicalfindings 

    suggesteda 

    secondary 

    inflammationprocessof   unknown  origin with  endocochlearand  internal auditory  canal

    phlogosis.   Consequently, granulating  formations   in  the middle

    and inner  ear  gave  rise   to partial  erosion of   the cochlea and

    massive fibrosis/ossification  of   the basal and apical  turns.

    Contralateral cochlear  implantation   (Nucleus   Freedom   Contour)

    was  performed   2  months after the  explantation   (5  months after

    the onset  of   symptoms). This operation  was uneventful  and all of 

    the electrodes  were   properly   inserted   through  the  promontorial

    cochleostomy,   achieving   good impedance  values and  NRTthresh-

    olds.   Subsequently   control  showed   a  quick recovery to  implant

    benefits   (Fig. 5). The correct array position was  documented by

    postoperative   skull   radiography.

    Fibrotic  and  oesteogenic  processes  subsequent   to  inflammation

    of  

    the 

    labyrinth 

    are 

    well 

    known 

    events 

    occurring 

    after 

    meningitis

    Fig.  3.  The  second  temporal  bone  HRCT  scan  showed:  (A  and  B)  slight  improvement

    of   the  radiologic   inflammatory  signs  and  (C  and  D)  hyperdensity  of   the  cochlea

    likely 

    attributable 

    to 

    the 

    initial 

    fibrosis/ossification 

    of  

    the 

    basal 

    and 

    apical 

    turns.

    Fig.  4.  A  temporal  bone  MRI  performed  24  h  after  explantation  revealed:  (A–C)

    cochlear  ossification  and  fibrosis  with  partial  involvement  of   the  internal  auditory

    canal  (white  arrowheads);  (C  and  D)  reactive   tissue  formation  in  the  mastoid  with

    air-fluid  levels   in   the  surgical  cavity  (white  asterisk).  The  integrity  of   the  explanteddevice  was   tested  by  the  manufacturer  and  it  was reported  to  be  normal.

    Fig.  2.  Axial   temporal  bone  HRCT  scans  showing  the  array  position  and  the

    phlogistic  findings  in  the  mastoid  and  external  auditory  canal.  (A  and  B)  There  is   no

    evidence  of   electrode  extrusion  or  migration;  (C)  a  granuloma  and  adjacent  eroded

    bone  (white  arrow)  are  present  in  the  posterior  wall   of   the  external  auditory  canal,

    near 

    the 

    tympanic 

    membrane; 

    (D) 

    the 

    mastoid 

    air-cells 

    are 

    full 

    of  

    phlogisticmaterial.

     A.  Benatti  et   al.  /   International   Journal  of   Pediatric   Otorhinolaryngology  77   (2013)  885–893890

  • 8/9/2019 endocochlear inflamation

    7/9

    or  during   otosclerosis  [76–79]. It  is  well  known  that  fibrotic

    phenomena   occur  near   the  array,  but  the  cochlear   abnormalities

    induced   by  an  implant  are  mainly  of   little  clinical   significance  and

    do  not  compromise   the  device’s   functions   [80,83–86]. While

    middle   ear  infections  can  lead  to  meningitis,  in  this   case,  the

    patient  never  showed   the  pathognomonic   symptoms   of   meningitis

    or  mastoiditis.  Therefore,   his  endocochlear   involvement  seems

    more  likely  to  be  due  to  (unpredictable)  reactive  processes  that   are

    very  similar  to  a  foreign  body   reaction,   which   was  initiated  and

    sustained  by  traumatic  events  [75].  In  our  case,  a  manufacturer’s

    report   to  rule  out  direct  damage  of   the  device  causing  its  failurewas  obtained   from  Cochlear   Italia  SRL.   Furthermore,   his  para-

    myxovirus  infection  may  have  provoked  phlogistic  activity

    resembling  an  autoimmune   cross-reaction  [87,88],  which  would

    explain  all  of   the  early  and  late  symptoms.  It  is  also  possible  that

    those   events  can  be  attributed  to  predisposing  conditions.

    The  impedance   of   the  most  apical  and  basal  electrodes   was

    high,   which   mimics   in  implanted  patients  [85]  the  evolution  of   the

    oesteodystrophic  process  in  patients  affected  by  otosclerosis  [89–

    93].  It  is  important   to  note  that  if   predisposing  conditions   are

    identified,   they   should   be  investigated  prior  to  surgery.

    5. 

    Conclusions

    Cochlear 

    implantation 

    is 

    relatively 

    safe 

    procedure 

    with 

    acomplication   rate   of   6–20%.  The  frequency   of   complications   has

    consistently  declined   over  the  last  15  years  settling  and,   to  date,  is

    approximately  15%  among   cochlear   implant  patients.  Reviewing

    the  literature  (Tables  2  and  3) revealed  that  the  majority  of 

    complications   are  minor   ones  that  do  not  affect  the  final   outcome;

    however,   the  classification  criteria  used  to  define   minor  and  major

    complications   may  be  different.  Furthermore,   inner  ear  malforma-

    tions   or  comorbidity   may  increase  the  risk  of   complications   (such

    as  meningitis  or  gusher)  [20],  and  the  length  of   the  follow-up

    period   may  influence   the  reported  occurrence   rates.  For  these

    reasons,  the  reported percentages  of   complications   can vary widely

    among   the  studies.

    Unusual   complications   are  rare   and  unpredictable  situations

    that 

    must 

    be 

    considered 

    major 

    complications 

    because 

    they 

    usually

    require  revision  surgery  (Table  3).  Although   massive  fibrosis  and

    ossification  of   the  cochlear   lumen  is  a  rare  complication  after

    cochlear   implantation,  explantation  may  be  required   in  such   cases,

    with  specific  treatment  being  administered  to  counteract   the

    pathophysiological   process  and  reduce   the  overall  symptoms.

    The  pathophysiological   mechanisms   underlying   acquired   or

    congenital   factors  that  constitute,   in  selected  cases,  a  contraindi-

    cation   to  bilateral  cochlear   implantation  need  to  be  identified.

    Further   studies  are necessary  to manage   the  events  similar  to  those

    of   the  case  presented  here,  which  may  have   resulted  from

    predisposing  conditions,  and  to  refine   diagnostic  procedures   andtreatment   options.

    Consent

    Written  informed   consent   was  obtained  from  the  family

    according   to  current   national   rules  and  laws  for  publication  of 

    this   case  and  any  accompanying   images.

    Competing   interests

    The  authors   declare  that   they   have  no  competing   interests.

    References

    [1] J.T. Roland, Complication of cochlear implant surgery, in: S.B. Waltzman, N.L.Cohen   (Eds.), Thieme, Cochlear Implants, New York, 1997, pp. 171–175.

    [2]  A.A. Lassig, T.A. Zwolan, S.A. Telian, Cochlear implant failures and revision, Otol.Neurotol.   26 (4) (2005) 624–634.

    [3]  Y. Bajaj, N. Gibbins, K. Fawkes, B. Hartley, C. Jephson, N. Jonas, et al. , Surgicalaspects  of cochlear implantationin syndromicchildren, Cochlear Implants Int.13(3)  (2012) 163–167.

    [4] R. Bovo, A. Ciorba, P. Trevisi, C. Aimoni, L. Cappiello, A. Castiglione, et al., Cochlearimplant  in cogan syndrome, Acta Otolaryngol. 131 (5) (2011) 494–497.

    [5] 

    A. Ciorba, R. Bovo, P. Trevisi, C. Bianchini, R. Arboretti, A. Martini, Rehabilitationand  outcome of severe profound deafness in a group of 16 infants affected bycongenital cytomegalovirus infection, Eur. Arch. Otorhinolaryngol. 266 (10)(2009)  1539–1546.

    [6] M. Palmieri, S. Berrettini, F. Forli , P. Trevisi, E. Genovese, A.M. Chilosi, et al. ,Evaluating benefits of cochlear implantation in deaf children with additional

    disabilities, Ear Hear. 33 (6) (2012) 721–730.

    Fig.  5.  Audiological  data  after  reimplantation  surgery  in  July  2012.  Tonal   and  speech  audiometry  showed  a  rapid  increase  of   implant  benefits  reaching  the  performances  of 

    previous  contralateral  implanted  ear;  (a)   tonal audiometry with  right  cochlear  implant  (open  set) and  residual hearing without  cochlear  implant  (headphones);  (b)  the  speech

    audiometry  with  right  cochlear  implant,  in  an   open  set  words,  revealed  a  SRT  equal  to  45  dB  SPL   after  5  months  from  revision  surgery  (SRT  =  Speech  Recognition   Threshold  isthe  lowest  level   at  which  the  speech  signal  can  be  correctly  identified  50%  of   the  time).

     A. Benatti  et   al.  /   International   Journal  of   Pediatric   Otorhinolaryngology  77   (2013)  885–893  891

  • 8/9/2019 endocochlear inflamation

    8/9

  • 8/9/2019 endocochlear inflamation

    9/9

    [71] E.C. Ho, D. Proops, P. Andrews, J. Graham, Unexpected exit of a cochlear implantelectrode through the wall of the basal turn of the cochlea – a report on twopatients,  Cochlear Implants Int. 8 (3) (2007) 162–171.

    [72]  M.M. Khatwa, A. Khan, J. Osborne, Surgical emphysema: a rare complicationfollowing cochlear implantation, Cochlear Implants Int. 8 (3) (2007) 158–161.

    [73]  H. Staecker, H. Chow, J.B. Nadol Jr., Osteomyelitis, lateral sinus thrombosis, andtemporal lobe infarction causedby infection of a percutaneous cochlear implant,Am.   J. Otol. 20 (6) (1999) 726–728.

    [74]  A.O.Makarem, C.Schaudinn, P.Webster,F.H.Linthicum, Possible role of biofilminfulminant meningitisrelated to cochlear implantation of dysplastic innerear, Rev.Laryngol.  Otol. Rhinol. (Bord) 129 (4–5) (2008) 245–248.

    [75] 

    F.J. Cervera-Paz, F.H. Linthicum Jr., Cochlear wall erosion after cochlear implan-tation,  Ann. Otol. Rhinol. Laryngol. 114 (7) (2005) 543–546.[76]  H.X. Xu, S.S. Joglekar, M.M. Paparella, Labyrinthitis ossificans, Otol. Neurotol. 30

    (4)  (2009) 579–580.[77] B. Isaacson, T. Booth, J.W. Kutz Jr., K.H. Lee, P.S. Roland, Labyrinthitis ossificans:

    how  accurate is MRI in predicting cochlear obstruction? Otolaryngol. Head NeckSurg.  140 (5) (2009) 692–696.

    [78] M.Durisin,S. Bartling,C. Arnoldner,M.Ende,J. Prokein, A.Lesinski-Schiedat, etal.,Cochlear osteoneogenesis after meningitis in cochlear implant patients: a retro-spective  analysis, Otol. Neurotol. 31 (7) (2010) 1072–1078.

    [79]  M. Sainz, J. Garcia-Valdecasas, J.M. Ballesteros, Complications and pitfalls of cochlear implantation in otosclerosis: a 6-year follow-up cohort study, Otol.Neurotol.

     

    30 (8) (2009) 1044–1048.[80]  C.H. Choi, J.S. Oghalai, Predicting the effect of post-implant cochlear fibrosis on

    residual  hearing, Hear. Res. 205 (1–2) (2005) 193–200.[81]  European consensus statement on cochlear implant failures and explantations,

    Otol.  Neurotol. 26 (6) (2005) 1097–1099.[82]  M.C.Thigpen,C.G.Whitney,N.E.Messonnier, E.R.Zell, R. Lynfield, J.L.Hadler, et al.,

    Bacterial meningitis in the United States, 1998–2007, N. Engl. J. Med. 364 (21)

    (2011) 

    2016–2025.

    [83] F.H. Linthicum Jr. , F.R. Galey, Histologic evaluation of temporal bones withcochlear  implants, Ann. Otol. Rhinol. Laryngol. 92 (6 Pt 1) (1983) 610–613.

    [84]   J.K.   Doherty,  F.H. Linthicum   Jr., Cochlear  endosteal erosion  with  focalosteomyelitis  induced  by   cochlear implantation, Otol. Neurotol. 25  (6)(2004) 1029–1030.

    [85] J.N. Fayad, A.O. Makarem, F.H. Linthicum Jr. , Histopathologic assessment of fibrosis  and new bone formation in implanted human temporal bones using3D  reconstruction, Otolaryngol. Head Neck Surg. 141 (2) (2009) 247–252.

    [86]   J.B. Nadol Jr., D.K. Eddington, Histologic evaluation of the tissue seal and biologicresponse  aroundcochlear implantelectrodes in thehuman,Otol.Neurotol. 25 (3)(2004)  257–262.

    [87] M.D. Eaton, Autoimmunity induced by syngeneic splenocyte membranescarrying irreversibly adsorbed paramyxovirus, Infect. Immun. 27 (3) (1980)855–861.

    [88]  N.S. Asfandiyarova, Cell-mediated immunity to insulin: a new criterion fordifferentiation of diabetes mellitus? Med. Hypotheses 78 (3) (2012) 402–406.

    [89]  M. Polak, S.A. Ulubil, A.V. Hodges,T.J. Balkany, Revision cochlear implantation forfacial  nerve stimulation in otosclerosis, Arch. Otolaryngol. Head Neck Surg. 132(4)

     

    (2006) 398–404.[90] J.S. Toung, T. Zwolan, T.R. Spooner, S.A. Telian, Late failure of cochlear implanta-

    tion  resulting from advanced cochlear otosclerosis: surgical and programmingchallenges, Otol. Neurotol. 25 (5) (2004) 723–726.

    [91]  L.J . Rotteveel , D.W. Proops, R.T. Ramsden, S.R. Saeed, A.F . van Olphen, E.A.Mylanus,

     

    Cochlear implantation in 53 patients with otosclerosis: demographics,computed tomographic scanning, surgery, and complications, Otol. Neurotol. 25(6)  (2004) 943–952.

    [92] T.S. Huang,P.T. Yen, S.Y. Liu, Cochlear implantationin a patient with osteogenesisimperfecta and otospongiosis, Am. J. Otolaryngol. 19 (3) (1998) 209–212.

    [93]  S.A. Telian, S. Zimmerman-Phillips, P.R. Kileny, Successful revision of failedcochlear implants in severe labyrinthitis ossificans, Am. J. Otol. 17 (1) (1996)

    53–60.

     A.  Benatti  et   al.  /   International   Journal  of   Pediatric   Otorhinolaryngology  77   (2013)  885–893  893