23
6-Mar-15 Rohit Gupta/IIT(BHU), Varanasi 1 Energy Efficient Ceramic Electrolyte fuel cell system with enhanced Power Density for IT-SOFC application Rohit Gupta Senior Undergraduate Student Indian Institute of Technology(BHU), Varanasi

Energy Efficient Ceramic Electrolyte fuel cell system with enhanced

  • Upload
    dodang

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

  • 6-Mar-15 Rohit Gupta/IIT(BHU), Varanasi 1

    Energy Efficient Ceramic Electrolyte fuel cell system with enhanced Power Density for IT-SOFC application

    Rohit Gupta Senior Undergraduate Student

    Indian Institute of Technology(BHU), Varanasi

  • 6-Mar-15 1 Rohit Gupta/IIT(BHU), Varanasi

    INTRODUCTION AND WORKING

  • WHY SOFC ?

    6-Mar-15 2 Rohit Gupta/IIT(BHU), Varanasi

    Various salient features Fuel cell stack(SOFC) Conventional Power Source Charge carrier Ions Electrons Power transfer Easy and economical as Fuel cell

    can be carried along Neither easy nor economical

    Eco-friendly Yes No Fuel Natural gas, Biogas, propane etc. Conventional sources

    Harmful Emission No Yes Long-term stability Yes No

    Fuel flexibility Yes No By products Heat and water No such useful by product Efficiency Max 70% Max 30%-40%

    Power Transmission Loss Negligible Significant

    Table 1 - Comparative study of fuel cell and conventional power source

  • APPLICATIONS OF SOFC

    6-Mar-15 3 Rohit Gupta/IIT(BHU), Varanasi

    Solid oxide Fuel Cell

  • WHY SOFC ? (Contd.)

    6-Mar-15 4 Rohit Gupta/IIT(BHU), Varanasi

  • CHALLENGES

    6-Mar-15 5 Rohit Gupta/IIT(BHU), Varanasi

    Two class of challenges

    Challenges associated with:

    1. Electrolyte 2. Cathode Optimization of sintering temperature Density Porosity

    Ionic Mobility Surface Area Working Temperature Current Density

  • SYNTHESIS PROCESS OF ELECTROLYTE

    6-Mar-15 6 Rohit Gupta/IIT(BHU), Varanasi

    Powder (10 gm)

    Binder Alumina

    balls Solvent

    Ball milling

    Slurry Filtering Slurry

    Kept at hot plate at 80 C for 1 day

    Granulating

    0.5 gm for each sample Compacted sample Final sintered sample

    Compaction

  • RESULTS AND DISCUSSION (Electrolyte) XRD Analysis

    6-Mar-15 7 Rohit Gupta/IIT(BHU), Varanasi

  • RESULTS AND DISCUSSION (Electrolyte) Density Measurement

    6-Mar-15 8 Rohit Gupta/IIT(BHU), Varanasi

    Sintering Temperat

    ure

    Dry Weight (W1)

    Weight in air

    (W2)

    Weight in

    Water (W3)

    Experimental Density

    % Relative Density

    1350oC 0.9754 0.9801g

    0.8288g

    6.44gm/cc

    88.95

    1400 oC 0.9163g

    0.9695g

    0.8230g

    6.50gm/cc

    89.77

    1450 oC 0.8927g

    0.9734g

    0.8342g

    6.32gm/cc

    87.3

    1550 oC 0.9529g

    0.9598g

    0.8018g

    6.80gm/cc

    93.93

    1600 oC 0.4789g

    0.5350g

    0.4560g

    6.31gm/cc

    87.1 1350 1400 1450 1500 1550 1600 165087

    88

    89

    90

    91

    92

    93

    94

    95

    96

    97

    Rel

    ativ

    e D

    ensi

    tySintering Temperature

  • 6-Mar-15 9 Rohit Gupta/IIT(BHU), Varanasi

    RESULTS AND DISCUSSION (Electrolyte) SEM Micrographs

    Sintered at 1350 C

    Sintered at 1550 C

    Sintered at 1400 C

    Sintered at 1600 C

  • 6-Mar-15 10 Rohit Gupta/IIT(BHU), Varanasi

    RESULTS AND DISCUSSION (Electrolyte) Impedance Analysis

  • 6-Mar-15 11 Rohit Gupta/IIT(BHU), Varanasi

    RESULTS AND DISCUSSION (Electrolyte) Ionic Conductivity and Power Density

  • 6-Mar-15 12 Rohit Gupta/IIT(BHU), Varanasi

    SYNTHESIS PROCESS OF CATHODE

    Strontium (II) Nitrate

    (aq.) Cobalt (II)

    Nitrate Hexahydrate

    (aq.)

    Iron (III) Nitrate Nonahydrate

    (aq.)

    Lanthanum (III) Nitrate

    Hexahydrate (aq.)

    Stirred on a hot plate

    L-alanine

    After vigorous stirring

    Viscous gel formed

    On instantaneous burning

    Produce Ash

    Calcination at 800 C for 4 hours in air

    Calcined powder

  • 6-Mar-15 13 Rohit Gupta/IIT(BHU), Varanasi

    SYNTHESIS PROCESS OF CATHODE (Contd.)

    Calcined powder

    Phase pure batch A

    Ball milling

    Composite Paste

    Dried paste Binder Pressing Sample

    Sintering (1050-

    1150 C)

    Final Samples

    La0.54Sr0.4Co0.8Fe0.2O3

    La0.54Sr0.4Co0.6Fe0.4O3

    La0.54Sr0.4Co0.5Fe0.5O3

    CF-1

    CF-2

    CF-3

  • 6-Mar-15 14 Rohit Gupta/IIT(BHU), Varanasi

    RESULTS AND DISCUSSION (Cathode) XRD Analysis

  • 6-Mar-15 15 Rohit Gupta/IIT(BHU), Varanasi

    RESULTS AND DISCUSSION (Cathode) Density Measurement

    S. no.

    Sample

    1050 C

    1100 C

    1150 C

    1. CF-3 5.5822 5.975 6.1766

    2. CF-2 5.5272 5.858 6.1151

    3. CF-1 5.4336 5.803 6.0401

    Density (g/cm3) in the following sintering temperatures

  • 6-Mar-15 16 Rohit Gupta/IIT(BHU), Varanasi

    RESULTS AND DISCUSSION (Cathode) Surface Area

    Sample name Surface area

    (m2/g)

    CF 1 14.579 CF 2 10.778 CF 3 2.434

  • 6-Mar-15 17 Rohit Gupta/IIT(BHU), Varanasi

    RESULTS AND DISCUSSION (Cathode) D.C. Conductivity

    Sample Name

    CF 1

    CF 2

    CF 3

    Sintering Temperatu

    re ( C)

    400

    500

    600

    700

    800

    1050 673 683 652 574 478 1100 536 550 535 489 413 1150 516 541 530 481 409 1050 535 543 526 477 398 1100 504 509 485 437 364 1050 330 330 321 295 251 1100 421 428 420 393 341 1150 507 526 518 484 411

    Conductivity (S/cm) at temperature

  • 6-Mar-15 18 Rohit Gupta/IIT(BHU), Varanasi

    RESULTS AND DISCUSSION (Cathode) D.C. Conductivity

    Activation energy = 0.1986 * slope

    Sample Name Sintering Temperature

    High Temperature Low Temperature Activation Energy (10-5

    eV) Activation Energy (10-5

    eV) CF-1A 1050C 8.3436 8.3301

  • 6-Mar-15 19 Rohit Gupta/IIT(BHU), Varanasi

    RESULTS AND DISCUSSION (Cathode) Current and Power Density

    Electrochemical

    property

    800

    750

    700

    Current density

    (A/cm2)

    2.11 1.33 0.729

    Power

    Density(W/cm2)

    1.47 0.936 0.510

    Temperature ( C)

  • 6-Mar-15 20 Rohit Gupta/IIT(BHU), Varanasi

    CONCLUSIONS

    Challenges - Solutions -

    i. Density of solid electrolyte. i. Relative Density as high as 93.93 % is

    achieved. ii. Ionic mobility. ii. Increase in ionic conductivity signifies

    increase in ionic mobility

    iii. Surface area of cathode. iii. Surface area as high as 14.79 m2/g is

    achieved. iv. Current and power density. iv. 2.11 A/cm2 and 1.47 W/cm2 v. Working temperature. v. Maximum ionic conductivity was

    achieved at 500 C.

  • 6-Mar-15 21 Rohit Gupta/IIT(BHU), Varanasi

    Minh NQ. Ceramic fuel cells. J Am Ceram Soc 1993;76:56388. Steele BCH. Materials for fuel cells. Nature 2001;414:34552. 3. N.P. Brandon, S. Skinner, B.C.H. Steele, Annu. Rev. Mater. Res. 33 (2003) 183

    213. Recent trend in fuel cell science and technology, New York Springer, (2007)286-331. Raja, M.W., Mahanty, S., Ghosh, P., Basu, R. N. and Maiti, H. S., Alanineassisted low-temperature combustion synthesis of nanocrystalline

    LiMn2O4 for lithium-ion batteries. Mater. Res. Bull., 2007, 42, 14991506. Basu, R. N., Materials for Solid Oxide Fuel Cells in Recent Trends in Fuel Cell Science and Technology. Jointly published by Anamaya Publisher

    and Springer,NewDelhi (India) and NewYork, 2006 [Chapter 12], pp. 284329. Basu, R. N., Sharma, A. D., Dutta, A. and Mukhopadhyay, J., Processing of high performance anode-supported planar solid oxide fuel cell. Int.

    J. Hydrogen Energy, 2008, 33, 57485754. Dutta A., Mukhopadhyay J., Basu R. N. , Journal of European Ceramic Society 29 (2009), 2003-2011. Cho JY, Hyun SH. Fabrication and characterization of g-Al2O3 materials using an aqueous tape-casting process. J Am Ceram Soc 2001;84:93740. Snijkers F, Ferreira JSM, Luyten J. Aqueous tape casting of yittria stabilized zirconia using natural product binder. J Eur Ceram Soc 2004;24:110710. Ramanathan S, Krishnkumar KP, De PK, Jee SB. Powder dispersion and aqueous tape casting of YSZ-NiO composite. J Mater Sci 2004;39:333944. Fu YP, Chen SH, Tsai FY, Hu SH. Aqueous tape casting and crystallization kinetics of Ce0.8La0.2O1.9 powders. Ceram Int 2009;35:60915. Albano MP, Garrido LB. Aqueous tape casting of yittria stabilized zirconia. Mat Sci Eng A 2006;420:1718. Zha SW, Rauch W, Liu ML. Ni-Ce0.9Gd0.1O1.95 anode for GDC electrolyte-based low temperature SOFCs. Solid State Ionics 2004;166:24150. Suzaki T, Hasan Z, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M. Fabrication and characterization of microtubular SOFCs with multilayered

    electrolyte. Electrochem Solid-State Lett 2008;11:B8790. Leng YJ, Chan SH, Jiang SP, Khor KA. Low temperature SOFC with thin film GDC electrolyte prepared in situ by solid state reaction. Solid State Ionics

    2004;170:915. Nagamori M, Shimonosono T, Sameshima S, Hirata Y, Matsunaga N, Sakka Y. Densification and cell performance of gadolinium-doped ceria (GDC)

    electrolyte/NiO-GDC anode laminates. J Am Ceram Soc 2009;92:S11721. Mcdonald JR. Impedance spectroscopy. New York: Wiley; 1987. p. 197. Conway BE, Bockris JOM, White RE. New York: plenum publishers. Modern aspects of electrochemistry, vol. 32. , New York: Kluwer Academic; 1999.

    p. 143. Dusastre V, Kilner JA. Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics 1999;126:16374.

    REFERENCES

  • Questions?

    Thank You.

    6-Mar-15 22 Rohit Gupta/IIT(BHU), Varanasi

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23