39
1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota, a Hans v. Berlepsch, b Christoph Böttcher b and Rainer Haag a* a Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany. b Forschungszentrum für Elektronenmikroskopie,and Core facility Biosupramol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 36a, 14195 Berlin, Germany . Content: 1) General synthetic and Analytic methods 2) Synthetic procedures and Characterization data 3) Critical aggregation concentration (CAC) measurements 4) Dye encapsulation experiments and calculation of transport capacity 5) Dynamic light scattering measurements 6) Cryo-TEM experiments 7) Packing parameter approach 8) Additional cryo-TEM images 9) Representation NMR spectra for final compounds 1) General synthetic and Analytic methods All commercially available compounds were used as received without further purification. Millipore water was obtained from a Merck Millipore Milli-Q Integral System. UV/Vis measurements were performed on a PerkinElmer LAMBDA 950 UV/Vis/NIR spectrophotometer. Standard disposable PMMA UV/Vis cuvettes with a path length of 1 cm from PLASTIBRAND were used. DLS measurements were performed on Malvern Zetasizer ZS. Disposable BRAND UV-Cuvettes micro were used. NMR spectra were recorded on JOEL ECX400, JOEL ECP500 and BRUKER AV500 spectrometers. IR spectra were recorded on a JASCO FT/IR 4100 spectrometer. Mass analyses were performed on an Agilent 6210 ESI-TOF, Agilent Technologies, Santa Clara, CA, USA. Surface tension measurements were performed on a Dataphysics OCA 20. Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

1

Towards engineering of self-assembled nanostructures

using non-ionic dendritic amphiphiles Bala N. S. Thota,

a Hans v. Berlepsch,

b Christoph Böttcher

b and Rainer Haag

a*

a Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany. b Forschungszentrum für Elektronenmikroskopie,and Core facility Biosupramol, Institut für Chemie und Biochemie, Freie Universität

Berlin, Fabeckstrasse 36a, 14195 Berlin, Germany .

Content:

1) General synthetic and Analytic methods

2) Synthetic procedures and Characterization data

3) Critical aggregation concentration (CAC) measurements

4) Dye encapsulation experiments and calculation of transport capacity

5) Dynamic light scattering measurements

6) Cryo-TEM experiments

7) Packing parameter approach

8) Additional cryo-TEM images

9) Representation NMR spectra for final compounds

1) General synthetic and Analytic methods

All commercially available compounds were used as received without further purification. Millipore

water was obtained from a Merck Millipore Milli-Q Integral System. UV/Vis measurements were

performed on a PerkinElmer LAMBDA 950 UV/Vis/NIR spectrophotometer. Standard disposable

PMMA UV/Vis cuvettes with a path length of 1 cm from PLASTIBRAND were used. DLS measurements

were performed on Malvern Zetasizer ZS. Disposable BRAND UV-Cuvettes micro were used. NMR

spectra were recorded on JOEL ECX400, JOEL ECP500 and BRUKER AV500 spectrometers. IR spectra

were recorded on a JASCO FT/IR 4100 spectrometer. Mass analyses were performed on an Agilent 6210

ESI-TOF, Agilent Technologies, Santa Clara, CA, USA. Surface tension measurements were performed

on a Dataphysics OCA 20.

Electronic Supplementary Material (ESI) for ChemComm.This journal is © The Royal Society of Chemistry 2015

Page 2: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

2

2) Synthetic procedures and Characterization data

Synthesis of glycerol symmetric esters:

To a solution of Glycerol (1 equiv.) in THF, vinyl ester of the corresponding alkyl chain (2.5 equiv.) was

added followed by addition of the enzyme (20% wt. of the glycerol), Novozyme 435. The reaction

mixture was left stirring at room temperature, without breaking the beads of the enzyme. The progress of

the reaction was followed by TLC. After complete conversion of the starting materials, stopped stirring,

filtered the reaction mixture and washed the beads with excess THF. The filtrate was concentrated, dried

and purified by column chromatography to obtain the pure product as a white solid.

Compound 7: 4.3 g of the product was obtained from 1 g of glycerol. Yield 86%.

1H NMR (500 MHz, CDCl3 ) δ 4.19 (dd, J= 4, 11Hz, 2H, -COOCH2-), 4.14 (dd, J= 6, 11Hz, 2H,

COOCH2-), 4.08 (m, 1H, HOCH(CH2O-)2), 2.35 (t, J=7.5 Hz, 4H, -CH2COO-), 1.63 (m, 4H, -

CH2CH2COO-), 1.33-1.22 (m, 32H, Alkyl chain), 0.88 (t, J= 7Hz, 6H, -CH3). 13

C NMR (126 MHz,

CDCl3) δ 174.08, 77.38, 68.58, 65.20, 34.26, 32.06, 29.75, 29.60, 29.48, 29.40, 29.28, 25.05, 22.83,

14.26. MS (ESI) m/z = 479.3709 [M+Na]+ (calcd. 479.3712). IR: 2911, 2845, 1722,1182.

Compound 8: 5.0 g of product was obtained from 1g of glycerol. Yield 76%.

1H NMR (500 MHz, CDCl3) δ 4.19 (dd, J= 4.5, 11 Hz, 2H, -COOCH2-), 4.14 (dd, J= 6, 11 Hz, 2H,

COOCH2-), 4.08 (m, 1H, HOCH(CH2O-)2), 2.34 (t, J= 7.5 Hz, 4H, -CH2COO-), 1.62 (m, 4H,

Scheme S1. Synthesis of lipophilic azides

Page 3: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

3

CH2CH2COO-), 1.32-1.22 (m, 56H, Alkyl chain), 0.88 (t, J= 7 Hz, 6H, -CH3). 13

C NMR (126 MHz,

CDCl3) δ 174.09, 77.36, 68.56, 65.19, 34.26, 32.08, 29.85, 29.83, 29.81, 29.80, 29.75, 29.61, 29.51,

29.40, 29.28, 25.04, 22.84, 14.27. MS (ESI) m/z = 647.5607 [M+Na]+ (calcd. 647.5590). IR: 2915, 2849,

1756,1149.

Synthesis of azido derivatives: To a solution of alcohol (7/8) in dichloromethane, triethyl amine (1.2

equiv.) and methanesulfonyl chloride (1.2 equiv.) were added at 0 °C. Reaction mixture was allowed to

warm-up to room temperature during the progress of the reaction. After complete conversion of the

alcohol, the reaction mixture was quenched by adding water and both the phases were separated.

Compound was extracted from aqueous phase using DCM. The combined organic phase was washed

further with dil. HCl, satd. NaHCO3 and water, then dried over anhyd. Na2SO4. The reaction mixture was

concentrated and subjected for the next step.

The mesylate was dissolved in DMF followed by addition of sodium azide (5 equiv.). The reaction

mixture was left stirring at 90 °C. Progress of the reaction was monitoring by TLC. After completion of

the reaction, the reaction mixture was filtered and DMF was removed under reduced pressure. Reaction

mixture was dissolved in DCM and washed with water, and dried over anhyd. Na2SO4. The crude mixture

was purified by column chromatography using DCM/Hexane.

Compound 9: 3.2 g of product was obtained from 3.1 g of compound 7. Yield 95%.

1H NMR (500 MHz, CDCl3) δ 4.23 (dd, J= 4.5, 11.5 Hz, 2H, -COOCH2-), 4.14 (dd, J= 6.5, 11.5 Hz, 2H,

COOCH2-), 3.87 (m, 1H, N3CH(CH2O)2), 2.35(t, J= 7.5 Hz, 4H, -CH2COO-), 1.63 (m, 4H,

CH2CH2COO-), 1.33-1.25 (m, 32H, Alkyl chain), 0.88 (t, J= 7Hz, 6H, -CH3). 13

C NMR (126 MHz,

CDCl3) δ 173.41, 77.36, 63.15, 58.84, 34.16, 32.05, 29.73, 29.58, 29.47, 29.37, 29.24, 24.96, 22.82,

14.25. MS (ESI) m/z = 504.3781 [M+Na]+ (calcd. for C27H51N3NaO4: 504.3777). IR: 2923, 2853, 2116,

1743.

Compound 10: 5 g of product was obtained from 5.2 g of compound 7. Yield 92%.

1H NMR (500 MHz, CDCl3) δ 4.23 (dd, J= 4.5 Hz, 11.5 Hz, -COOCH2-), 4.14 (dd, J= 7, 11.5 Hz, 2H,

COOCH2-), 3.87 (m, 1H, N3CH(CH2O)2-), 2.35 (t, J= 7.5 Hz, 4H, -CH2COO-), 1.61 (m, 4H,

CH2CH2COO-), 1.33-1.20 (m, 56H, Alkyl chain), 0.88 (t, J= 7 Hz, 6H, -CH3).13

C NMR (126 MHz,

CDCl3) δ 173.42, 63.16, 58.82, 34.16, 32.07, 29.85, 29.82, 29.80, 29.80, 29.74, 29.60, 29.51, 29.38,

29.25, 24.96, 22.84, 14.27. MS (ESI) m/z = 672.5667 [M+Na]+ (calcd. for C39H75N3NaO4: 672.5655). IR:

2917, 2850, 2126, 1741.

Page 4: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

4

Synthesis of dissymmetric azide (11): To a solution of protected glycerol (4.05g, 36.9 mmol) in DCM,

triethylamine (1.2 equiv.) and methanesulfonyl chloride (1.2 equiv.) were added at 0 °C and left stirring

in the ice bath. Reaction mixture was allowed to warm-up to room temperature during the progress of the

reaction and monitored the conversion using TLC. After completion of the reaction, it was quenched by

adding water and both the phases were separated and organic compound was extracted from aqueous

phase using DCM. Combined organic phase was washed with dil. HCl, satd. NaHCO3 solution and water.

Finally the reaction mixture was dried over anhyd. Na2SO4. The reaction mixture was concentrated and

dried, and the crude product was subjected for the next step by dissolving in DMF and adding sodium

azide (5 equiv.). The reaction mixture was left stirring at 90 °C overnight and the reaction mixture was

filtered to remove excess sodium azide. DMF was removed under reduced pressure and the reaction

mixture was dissolved in DCM. This organic phase was washed with water and dried over anhyd.

Na2SO4. The organic phase was concentrated under reduced pressure. To a methanolic solution of this

crude mixture, Dowex-H was added and left stirring at reflux for 5 h. Finally the reaction mixture was

cooled to room temperature and filter to remove Dowex. The filtrate was concentrated and purified by

column chromatography using EtOH/DCM, yield-81%.

1H NMR (400 MHz, CDCl3 ) δ 3.85 (m, 1H, HOCH-), 3.65 (dd, J= 3.6, 12 Hz, 1H, HOCH2-), 3.55 (dd,

J= 6.4, 11.6 Hz, 1H, HOCH2-), 3.37-3.32 (m, 2H, N3CH2-). 13

C NMR (101 MHz, CDCl3) δ 71.13, 64.05,

53.47.

Compound 12: To compound 11 (2.3 g, 19.64 mmol) in THF (50 mL), vinyl stearate (1.2 equiv.) was

added, followed by addition of the enzyme (20% wt.), Novozyme 435. The reaction mixture was left

stirring at room temperature. After complete consumption of the starting material, the reaction mixture

was filtered to remove the enzyme. The filtrate was concentrated under reduced pressure and the crude

mixture was purified by column chromatography (10-25% EtOAc/Hexane) to obtain the compound 12

(5.9 g, yield 79%) as white solid.

1H NMR (400 MHz, CDCl3) δ 4.17 (dd, J= 4.4, 11.6 Hz, 1H, -COOCH2-), 4.12 (dd, J= 6, 11.6 Hz, 1H, -

COOCH2-), 4.01 (m, 1H, HOCH-), 3.4 (m, 2H, N3CH2-), 2.35 (t, J= 7.6 Hz, 2H, -OOCCH2-), 1.62 (m,

2H, -OOCCH2CH2-), 1.29-1.20 (m, 28H, Alkyl chain), 0.87 (t, J= 7.2 Hz, 3H, -CH3)

13C NMR (101 MHz, CDCl3) δ 174.18, 69.27, 65.64, 53.59, 34.22, 32.05, 29.83, 29.80, 29.77, 29.76,

29.73, 29.58, 29.50, 29.48, 29.37, 29.35, 29.24, 25.01, 22.82, 14.26, 14.24. MS (ESI) m/z = 406.3055

[M+Na]+ (calcd. for C21H41N3NaO3: 406.3046).

Compound 13: To a solution of the compound 12 (2.1 g, 5.3 mmol) in DCM, lauric acid (1.2 equiv.) was

added followed by addition of DMAP (0.2 equiv.). The reaction mixture was cooled to 0 °C and added

Page 5: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

5

DCC (1.2 equiv.), left stirring in the ice bath for 8 h. The reaction mixture was allowed to warm up to

room temperature during the progress of the reaction. The progress of the reaction was monitored by

TLC. Reaction mixture was filtered to remove the by-products and the precipitate was washed with

DCM/Hexane. The combined organic layer was washed with dil. HCl, satd. NaHCO3 solution, water and

dried over anhyd. Na2SO4. The reaction mixture was concentrated and purified by column

chromategraphy to obtain the compound 13 (2.2 g, yield 74%) as a white solid.

1H NMR (500 MHz, CDCl3) δ 5.17 (m, 1H. –COOCH-), 4.29 (dd, J= 4.5, 12 Hz, 1H, -COOCH2-), 4.15

(dd, J= 6, 12 Hz, 1H, -COOCH2-), 3.46 (m, 2H, -CH2N3), 2.35 (t, J=7.5 Hz, 2H, -CH2COO-), 2.31 (t, J=

7.5 Hz, 2H, -CH2COO-), 1.62 (m, 4H, -CH2CH2COO-), 1.32-1.22 (m, 44H, Alkyl chain), 0.88 (t, J= 7

Hz, 6H, -CH3). 13

C NMR (126 MHz, CDCl3) δ 173.38, 173.01, 70.01, 62.43, 51.03, 34.33, 34.19, 32.07,

32.05, 29.85, 29.83, 29.81, 29.77, 29.75, 29.62, 29.61, 29.51, 29.48, 29.47, 29.41, 29.40, 29.26, 29.21,

25.01, 24.96, 22.83, 14.26. MS (ESI) m/z = 588.4730 [M+Na]+ (calcd. for C33H63N3NaO4: 588.4716). IR:

2922, 2852, 2101, 1743, 1152.

Scheme S2. Synthesis of protected dendritic amphiphiles

Page 6: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

6

Synthesis of Propargyl ethers of dendrons (14/15): All the dendrons were synthesized by a literature

reported procedure.1 To a solution of protected dendron in THF, sodium hydride (5 equiv.) was added and

left stirring at 50 °C for 1h. To this reaction mixture, propargyl bromide was added slowly and left

stirring at the same temperature for 8 h. The progress of the reaction was checked by TLC and excess of

NaH was quenched by drop wise addition of water, keeping the reaction flask in ice bath. The reaction

mixture was concentrated under reduced pressure and diluted with water. The compound was extracted

into DCM. The combined organic layer was washed with water, dried over anhyd. Na2SO4. The reaction

mixture was concentrated and purified by column chromatography to obtain a pale yellow liquid (yield

80-85%).

Compound 14:1H NMR (400 MHz, Methanol-d4) δ 4.33 (m, 2H, CHCCH2O-), 4.28-4.23 (m, 4H, CH

acetonide), 4.08-4.03 (m, 4H, CH2 acetonide), 3.85-3.49 (m, 27H, dendron), 2.86 (m, 1H, CHCCH2-),

1.39 (m, 12H, -CH3), 1.33 (m, 12H, -CH3). 13

C NMR (101 MHz, Methanol-d4) δ 110.45, 81.29, 79.90,

79.86, 79.83, 78.47, 78.17, 77.87, 76.22, 76.10, 75.84, 75.78, 75.73, 73.40, 72.52, 72.45, 72.41, 72.38,

72.36, 71.15, 67.76, 67.74, 67.59, 67.56, 58.32, 49.64, 49.49, 49.43, 49.27, 49.21, 49.06, 49.00, 48.82,

48.79, 48.62, 48.57, 48.36, 27.18, 27.13, 27.12, 27.05, 26.13, 25.72, 25.71. MS (ESI) m/z = 757.3997

[M+Na]+ (calcd. for C36H62NaO15: 757.3986).

Compound 15: 1H NMR (500 MHz, Acetone-d6) δ 4.35 (m, 2H, CHCCH2O-), 4.24-4.17 (m, 8H, CH

acetonide), 4.05-4.01 (m, 8H, CH acetonide), 3.75-3.45 (m, 59H, dendron), 2.86 (m, 1H, CHCCH2-),

1.35 (m, 24H, -CH3), 1.29 (m, 24H, -CH3). 13

C NMR (126 MHz, Acetone-d6) δ 109.49, 109.42, 79.56,

79.31, 75.59, 75.55, 75.46, 73.07, 73.05, 72.05, 70.74, 67.51, 67.35, 67.33, 67.31, 67.30, 57.90, 27.20,

27.18, 27.15, 27.13, 27.11, 27.10, 25.76, 25.74, 25.73. MS (ESI) m/z = 1509.8199 [M+Na]+ (calcd. for

C72H126NaO31: 1509.8181).

General protocol for click reaction: To a mixture of the alkyne (1 equiv.) and azide (1.5 equiv.) in THF,

diisopropylethylamine, copper sulphate solution (15% mol, aq. 0.1M) and aq. sodium ascorbate (50%

mol, 0.2M) were added. The reaction mixture was left stirring at 45 °C. After complete consumption of

starting material on TLC, stirring was stopped and both phases were separated from reaction mixture and

organic compound were extracted from aqueous phase using DCM. The combined organic phase was

washed with satd. EDTA solution, water and dried over anhyd. Na2SO4. The reaction mixture was

concentrated and purified by column chromatography to obtain pure product as colourless, viscous liquid.

Compound 16: 2.4 g of compound 16 was obtained starting from 1.9 g of Compound 14 (yield 75%).

Page 7: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

7

1H NMR (500 MHz, Acetone-d6): 8.06 (m, 1H, Triazole CH), 5.2 (m, 1H, Triazole-CH(CH2O-)2), 4.79-

4.77 (m, 2H, -OCH2-Triazole-), 4.60-4.57 (m, 4H, -CH2OOC-), 4.23-4.18 (m, 4H, CH acetonide), 4.04 -

4.00 (m, 4H, CH2 acetonide), 3.75-3.46 (m, 27H, dendron), 2.31-2.29 (m, 4H, -CH2COO-), 1.56-1.53 (m,

4H, -CH2CH2COO-), 1.34-1.28 (m, 56H, Alkyl chain and acetonide-CH3), 0.88 (m, 6H, -CH3). 13

C NMR

(126 MHz, Acetone-d6) δ 206.12, 173.22, 123.59, 109.58, 79.40, 75.71, 75.57, 73.16, 72.15, 67.59, 67.41,

64.32, 63.21, 59.41, 34.30, 32.65, 30.38, 30.32, 30.30, 30.23, 30.19, 30.15, 30.10, 30.05, 30.04, 30.01,

29.99, 29.88, 29.86, 29.84, 29.73, 29.71, 29.69, 29.57, 29.53, 29.41, 29.38, 27.19, 25.78, 25.51, 23.34,

14.42, 14.39. MS (ESI) m/z = 1238.7930 [M+Na]+ (calcd. for C63H113N3NaO19: 1238.7866). IR: 2984,

2923, 2855, 1744, 1456, 1370, 1253, 1213.

Compound 17: 2.9 g of compound 17 was obtained from 1.8 g of compound 14 (yield 90%)

1H NMR (500 MHz, Acetone-d6) 7.96 (m, 1H, CH(Triazole)), 5.48 (m, 1H, -CHOOC-), 4.77-4.68 (m,

4H, -CH2-Triazole-CH2-), 4.40 (dd, J=12, 4 Hz, 1H,-CH2OOC-), 4.24-4.18 (m, 4H, CH acetonide), 4.15-

4.11(m, 1H, -CH2OOC-), 4.04-4.01 (m, 4H, CH2 acetonide), 3.75-3.46 (m, 27H, dendron), 2.34 (t, J=7.5

Hz, 2H, -OOCCH2-), 2.29 (t, J=7.5 Hz, 2H, -OOCCH2-), 1.63-1.58 (m, 2H, -OOCCH2CH2-), 1.57-1.53

(m, 2H, -OOCCH2CH2-), 1.41-1.23(m, 68H, Alkyl chain and acetonide-CH3), 0.90-0.86 (m, 6H, -CH3).

13C NMR (126 MHz, Acetone-d6) δ 173.33, 172.84, 124.88, 109.58, 79.40, 79.35, 75.58, 75.57, 73.16,

72.08, 70.44, 67.59, 67.43, 67.41, 64.24, 63.10, 50.55, 34.51, 34.40, 32.68, 32.64, 30.42, 30.39, 30.37,

30.32, 30.30, 30.28, 30.17, 30.15, 30.09, 30.01, 29.99, 29.86, 29.84, 29.81, 29.74, 29.71, 29.69, 29.55,

29.53, 29.39, 29.38, 27.23, 27.18, 25.78, 25.60, 25.53, 23.36, 23.33, 14.40, 14.37. MS (ESI) m/z =

1322.8842 [M+Na]+ (calcd. for C69H125N3NaO19: 1322.8805). IR: 2972, 2853, 1743, 1457.

Compound 18: 3.6 g of compound 18 was obtained from 2.1 g of compound 14 (yield 91%)

1H NMR (500 MHz, Acetone-d6) 8.06 (m, 1H, CH(Triazole)), 5.21 (m, 1H, Triazole-CH(CH2O-)2), 4.78

(t, J= 2.5 Hz, 2H, -OCH2-Triazole-), 4.59 (d, J= 10Hz, 4H, -CH2OOC-), 4.23-4.18 (m, 4H, CH

acetonide), 4.03-4.00 (m, 4H, CH2 acetonide), 3.9-3.46 (m, 27H, dendron), 2.30 (t, J=7.5 Hz, 4H, -

OOCCH2-), 1.55 (m, 4H, -OOCCH2CH2-), 1.34-1.25 (m, 80H, Alkyl chain and acetonide-CH3), 0.88 (t,

J=7.5 Hz, 6H, -CH3). 13

C NMR (126 MHz, Acetone-d6) δ 173.20, 123.57, 109.57, 109.51, 79.41, 75.57,

75.56, 73.16, 72.14, 67.60, 67.43, 67.41, 63.19, 34.30, 30.43, 30.42, 30.38, 30.30, 30.24, 30.15, 30.08,

30.05, 29.99, 29.84, 29.73, 29.69, 29.53, 29.38, 27.22, 27.19, 27.17, 25.79, 25.77, 25.76, 25.74, 23.33.

MS (ESI) m/z = 1406.9755 [M+Na]+ (calcd. for C75H137N3NaO19: 1406.9744). IR: 2984, 2922, 2853,

1744, 1456, 1370, 1253, 1213.

Compound 19: 1.7 g of compound 19 was obtained starting from 1.5 g of compound 15 (yield 86%)

Page 8: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

8

1H NMR (500 MHz, Acetone-d6): δ 8.06 (m, 1H, CH(Triazole)), 5.20 (m, 1H, Triazole-CH(CH2O-)2),

4.81 (m, 2H, -OCH2-Triazole-), 4.60-4.58 (m, 4H, -CH2OOC-), 4.25-4.17 (m, 8H, CH acetonide), 4.05-

4.01 (m, 8H, CH2 acetonide), 3.91-3.87 (m, 1H), 3.74-3.35 (m, 59H, dendron), 2.31 (t, J= 7.5 Hz, 4H, -

OOCCH2-), 1.56 (m, 4H, -OOCCH2CH2-), 1.35-1.28 (m, 80H, Alkyl chain and acetonide-CH3), 0.86 (t,

J= 6 Hz, 6H, -CH3). 13

C NMR (126 MHz, Acetone-d6) δ 173.25, 123.58, 109.59, 79.67, 79.36, 75.72,

75.68, 75.59, 75.57, 73.20, 73.19, 72.22, 72.20, 72.12, 72.11, 70.92, 67.64, 67.49, 67.46, 67.45, 67.45,

67.43, 63.70, 63.25, 59.36, 34.32, 32.65, 30.38, 30.30, 30.25, 30.15, 30.10, 30.06, 29.99, 29.84, 29.76,

29.69, 29.54, 29.53, 29.38, 27.29, 27.27, 27.23, 27.21, 25.84, 25.83, 25.83, 25.81, 25.75, 25.53, 23.34,

14.39. MS (ESI) m/z = 1991.2026 [M+Na]+ (calcd. for C99H177N3NaO35: 1991.2060). IR: 2985, 2923,

2854, 1745, 1457, 1370, 1253, 1213.

Compound 20: 1.8 g of compound 20 was obtained from 1.7 g of compound 15 (yield 76%)

1H NMR (500 MHz, Acetone–d6): δ 7.98 (m, 1H, CH(Triazole)),5.49 (m, 1H, -CHOOC-), 4.79 (m, 2H,

-OCH2-Triazole-), 4.75 (dd, J= 14.5, 4.5, 1H, Triazole-CH2CH-), 4.70 (dd, J= 14.5, 7 Hz, 1H, Triazole-

CH2CH-), 4.41 (dd, J= 12, 4 Hz, 1H, -CH2OOC-), 4.24-4.18 (m, 8H, CH acetonide), 4.13 (dd, J=12, 6

Hz, 1H, -CH2OOC-), 4.05-4.01 (m, 8H, CH2 acetonide), 3.77- 3.46(m, 59H, dendron), 2.35 (t, J= 7.5 Hz,

2H, -OOCCH2-), 2.30 (t, J=7.5 Hz, 2H, -OOCCH2-), 1.63-1.54 (m, 4H, -OOCCH2CH2-), 1.35-1.25 (m,

92H, Alkyl chain and acetonide-CH3), 0.90-0.86 (m, 6H, -CH3). 13

C NMR (101 MHz, Acetone –d6) δ

173.32, 172.85, 146.53, 124.89, 109.58, 109.50, 79.91, 79.65, 79.44, 79.36, 78.76, 75.70, 75.67, 75.56,

73.17, 72.78, 72.39, 72.18, 72.10, 71.18, 70.86, 70.46, 67.62, 67.44, 64.33, 63.13, 50.53, 34.52, 34.41,

32.66, 32.63, 31.33, 30.42, 30.41, 30.28, 30.23, 30.10, 30.04, 29.84, 29.65, 29.46, 29.26, 27.63, 27.27,

27.22, 26.80, 26.22, 25.82, 25.59, 25.54, 25.41, 23.33, 14.39. MS (ESI) m/z = 2075.3006 [M+Na]+ (calcd.

for C105H189N3NaO35: 2075.2999). IR: 2985, 2923, 2855, 1744, 1457, 1370, 1254, 1213.

Compound 21: 1.9 g of compound 21was obtained from 1.85 g of compound 15 (yield 71%)

1H NMR (500 MHz, Acetone–d6): 8.06 (s, 1H, CH(Triazole)), 5.22-5.19 (m, 1H, Triazole-CH(CH2O-)2),

4.81 (t, J=2Hz, 2H, -OCH2-Triazole-), 4.60-4.58 (m, 4H, -CH2OOC-), 4.23-4.18 (m, 8H, CH acetonide),

4.08-3.98 (m, 8H, CH2 acetonide), 3.73-3.46 (m, 59H, dendron), 2.32 (t, J= 7.5 Hz, 4H, -OOCCH2-),

1.56 (m, 4H, -OOCCH2CH2-), 1.35-1.25 (m, 104H, Alkyl chain and acetonide-CH3), 0.88 (t, J= 7 Hz, 6H,

-CH3). 13

C NMR (126 MHz, ACETONE-D6) δ 173.25, 109.60, 75.73, 75.68, 75.59, 75.58, 73.21, 72.19,

72.11, 67.65, 67.49, 67.47, 63.25, 59.34, 34.33, 32.65, 30.44, 30.44, 30.40, 30.38, 30.30, 30.27, 30.15,

30.09, 30.08, 29.99, 29.84, 29.77, 29.69, 29.67, 29.53, 29.51, 29.38, 27.29, 27.27, 27.24, 27.22, 25.84,

25.83, 25.81, 25.54, 23.34, 14.38. MS (ESI) m/z = 2159.3911 [M+Na]+ (calcd. for C111H201N3NaO35:

2159.3938). IR: 2985, 2923, 2854, 1745, 1456, 1370, 1253, 1213.

Page 9: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

9

Deprotection of the dendrons: The protected amphiphiles (16-21) were dissolved in MeOH and added

Dowex-H (2 equiv. by weight ) and left stirring at room temperature (the reaction was done in EtOH and

heated to 45 °C in the case of compound 3). Deprotection reaction was monitored using NMR. After

complete deprotection of the amphiphiles, the reaction mixture was filtered using filter paper and Dowex

was washed with excess methanol. The filtrate was concentrated and crude mixture was purified by

reverse phase HPLC using methanol/water (90-95%), yield (70-80%).

Compound 1:

1H NMR (500 MHz, Methanol-d4) δ 8.16 (m, 1H, CH(Triazole)), 5.23-5.18 (m, 1H, Triazole-CH(CH2O-

)2), 4.83-4.79 (2H, m, -OCH2-Triazole-), 4.62-4.55 (m, 4H, -CH2OOC-), 3.80-3.46 (m, 35H, dendron),

2.30 (t, J= 7.5Hz, 4H, -OOCCH2-), 1.55 (m, 4H, -OOCCH2CH2-), 1.34-1.25 (m, 32H, alkylchains), 0.90

(t, J= 7 Hz, 6H, -CH3). 13

C NMR (126 MHz, Methanol-d4) δ 174.52, 124.90, 79.81, 73.95, 72.93, 72.42,

72.28, 72.18, 64.43, 63.44, 34.67, 33.07, 30.75, 30.59, 30.48, 30.40, 30.11, 25.87, 23.74, 14.49. MS (ESI)

m/z = 1078.6623 [M+Na]+ (calcd. for C51H97N3NaO19: 1078.6614). IR: 3396, 2922, 2854, 1743, 1464.

Compound 2:

1H NMR (500 MHz, Methanol-d4) : δ 8.07-8.06 (m, 1H, CH(Triazole)), 5.48 (m, 1H, -CHOOC-), 4.79-

4.66 (m, 4H, -CH2-Triazole-CH2-), 4.44 (dd, J=12, 3.5 Hz, 1H, -CH2OOC-), 4.13-4.09 (m, 1H, -

CH2OOC-), 3.79-3.48 (m, 35 H, dendron), 2.35 (t, J= 7 Hz, 2H, -OOCCH2-), 2.28 (t, J=7.5 Hz, 2H, -

OOCCH2-), 1.62 (m, 2H, -OOCCH2CH2-), 1.54 (m, 2H, -OOCCH2CH2-), 1.36-1.24 (m, 44H), 0.91 (t, J=

6.5 Hz, 3H), 0.90 (t, J= 6.5 Hz, 3H). 13

C NMR (126 MHz, Methanol-d4) δ 174.70, 174.03, 146.70,

126.16, 79.91, 79.87, 79.19, 73.98, 73.95, 72.95, 72.44, 72.29, 72.21, 71.23, 70.99, 64.48, 64.46, 64.43,

64.14, 63.61, 51.22, 49.51, 49.46, 49.34, 49.29, 49.17, 49.12, 49.00, 48.83, 48.66, 48.49, 34.89, 34.82,

33.11, 33.08, 30.83, 30.80, 30.77, 30.68, 30.66, 30.53, 30.48, 30.47, 30.22, 30.14, 25.99, 25.90, 23.77,

23.74, 14.51, 14.47. MS (ESI) m/z = 1162.7564 [M+Na]+ (calcd. for C57H109N3NaO19: 1162.7553). IR:

3390, 2922, 2853, 1742, 1464.

Compound 3:

1H NMR (500 MHz, Methanol-d4) δ 8.16-8.15 (m, 1H, CH(Triazole)), 5.24-5.18 (m, 1H, Triazole-

CH(CH2O-)2), 4.81-4.79 (m, 2H, -OCH2-Triazole-), 4.59-4.56 (m, 4H, -CH2OOC-), 3.80-3.48 (m, 35 H,

dendron), 2.31 (t, J= 7.5 Hz, 4H, -OOCCH2-), 1.58-1.53 (m, 4H, -OOCCH2CH2-), 1.34-1.25 (m, 56H,

alkyl chains), 0.90 (t, J=7.5 Hz, 6H, -CH3). 13

C NMR (126 MHz, Methanol-d4) δ 174.49, 146.63, 124.89,

Page 10: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

10

79.94, 79.90, 79.83, 79.30, 74.01, 73.97, 72.98, 72.48, 72.46, 72.32, 72.23, 72.22, 72.20, 71.25, 64.49,

64.45, 64.25, 63.44, 60.32, 60.30, 49.85, 49.63, 49.51, 49.47, 49.42, 49.34, 49.30, 49.29, 49.25, 49.17,

49.13, 49.08, 49.00, 48.89, 48.83, 48.66, 48.50, 48.49, 34.69, 33.09, 30.82, 30.78, 30.77, 30.62, 30.49,

30.42, 30.14, 25.89, 23.75, 14.47. MS (ESI) m/z = 1246.8552 [M+Na]+ (calcd. for C63H121N3NaO19:

1246.8492). IR: 3397, 2916, 2850, 1743, 1467.

Compound 4:

1H NMR (500 MHz, Methanol-d4): 8.16-8.15 (m, 1H, CH(Triazole)), 5.22-5.19 (m, 1H, Triazole-

CH(CH2O-)2), 4.82 (s, 2H, -OCH2-Triazole-), 4.6-4.56 (m, 4H, -CH2OOC-), 3.79-3.46 (m, 75H,

dendron), 2.32 (t, J= 7.5 Hz, 4H, -OOCCH2-), 1.56 (m, 4H, -OOCCH2CH2-), 1.33-1.26 (m, 32H,

alkylchains), 0.90 (t, J= 6.5 Hz, 6H, -CH3). 13

C NMR (126 MHz, Methanol-d4) δ 174.53, 124.83, 80.03,

79.82, 79.77, 79.43, 73.99, 73.95, 72.95, 72.40, 72.29, 72.18, 72.16, 71.35, 71.02, 64.49, 64.48, 64.43,

63.46, 60.22, 49.51, 49.34, 49.17, 49.00, 48.83, 48.66, 48.49, 34.68, 33.06, 30.74, 30.59, 30.46, 30.40,

30.12, 25.87, 23.73, 14.49. MS (ESI) m/z = 1670.9556 [M+Na]+ (calcd. for C75H145N3NaO35: 1670.9556).

IR: 3380, 2922, 2855, 1743, 1463.

Compound 5:

1H NMR (500 MHz, Methanol-d4): δ 8.06 (m, 1H, CH(Triazole)),5.48 (m, 1H, -CHOOC-), 4.80 (m, 2H,

-OCH2-Triazole-), 4.74 (dd, J= 14.5, 4.5 Hz, 1H, Triazole-CH2CH-), 4.68 (dd, J= 14.5, 7.5 Hz, 1H,

Triazole-CH2CH-), 4.44 (dd, J= 12, 3.5 Hz, 1H, -CH2OOC-), 4.10 (dd, J= 12, 6Hz, 1H, -CH2OOC-),

3.79-3.45 (m, 75H, dendron), 2.34 (t, J= 7.5 Hz, 2H, -OOCCH2-), 2.28 (t, J= 7.5 Hz, 2H, -OOCCH2-),

1.61 (m, 2H, -OOCCH2CH2-), 1.54 (m, 2H, -OOCCH2CH2-), 1.34-1.26 (m, 44H,alkylchains), 0.90 (t,

J=7 Hz, 3H, -CH3), 0.89 (t, J= 7 Hz, 3H, -CH3). 13

C NMR (126 MHz, Methanol-d4) δ 174.72, 174.06,

146.79, 126.10, 101.28, 79.83, 73.98, 73.95, 72.95, 72.43, 72.41, 72.29, 72.19, 72.17, 71.02, 64.49, 64.48,

64.44, 63.65, 51.21, 49.51, 49.34, 49.30, 49.17, 49.13, 49.00, 48.96, 48.83, 48.66, 48.49, 34.90, 34.83,

33.10, 33.06, 30.82, 30.79, 30.75, 30.68, 30.66, 30.52, 30.47, 30.22, 30.14, 25.99, 25.91, 23.76, 23.73,

14.52, 14.48.

MS (ESI) m/z = 1755.0493 [M+Na]+ (calcd. for C81H157N3NaO35: 1755.0495). IR: 3389, 2921, 2853,

1742, 1464.

Compound 6:

1H NMR (500 MHz, Methanol-d4): 8.16 (m, 1H, CH(Triazole)), 5.21 (m, 1H, Triazole-CH(CH2O-)2),

4.83 (m, 2H, -OCH2-Triazole-), 4.61-4.57 (m, 4H, -CH2OOC-), 3.80-3.46 (m, 75H, dendron), 2.32 (t,

J=7.5 Hz, 4H, -OOCCH2-), 1.57 (m, 4H, -OOCCH2CH2-), 1.36-1.25 (m, 56H, alkyl chains), 0.90 (t, J= 7

Page 11: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

11

Hz, 6H, -CH3).13

C NMR (126 MHz, Methanol-d4) δ 174.51, 124.82, 124.81, 80.01, 79.81, 79.76, 73.98,

73.94, 72.94, 72.42, 72.39, 72.28, 72.17, 72.15, 71.01, 64.48, 64.47, 64.43, 64.41, 63.43, 60.14, 49.51,

49.34, 49.30, 49.17, 49.14, 49.13, 49.00, 48.98, 48.96, 48.96, 48.83, 48.78, 48.66, 48.65, 48.49, 34.70,

33.07, 30.81, 30.77, 30.63, 30.44, 30.14, 25.89, 23.74, 14.50. MS (ESI) m/z = 1839.1412 [M+Na]+ (calcd.

for C87H169N3NaO35: 1839.1434). IR: 3376, 2920, 2852, 1743, 1464.

3) Critical aggregation concentration (CAC) measurements

a) Surface tension method: The critical aggregation concentrations of the amphiphiles were determined

by measuring their surface tension in Milli-Q water at different concentrations. The surface tension

measurements were performed on a commercially available contact angle tensiometer OCA 20

(DataPhysics Instruments GmbH, Filderstadt, Germany) using pendant drop method. The samples

were prepared in Milli-Q water 24 h before measurement. All the measurements were done at 25 ±

0.5 °C. Calculation of surface tension was done by using the Young-Laplace equation. The surface

tension was measured trice per minute and the measurement was stopped when the value did not

change by over more than 0.1 mN m-1

over 5 minutes. Equilibration time was generally between 60-

90 min below the CAC and around 30 min above the CAC.

b) Fluorescence method: We have reinvestigated the aggregation behavior of amphiphile 6,

which did not show a clear levelling off in the surface tension on increasing concentration,

using the so-called pyrene fluorescence method. It is known that the CAC of an amphiphile

depends to a certain extent on the method. We tried to confirm at first our CAC value of

amphiphile 5 by the pyrene fluorescence method. Amphiphile 5 showed a well-defined break

point in the surface tension measurements. The breakpoint in the semilogarithimic plot is

Figure S1. Surface tension measurements

Page 12: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

12

conventionally interpreted as the CMC.2 The pyrene intensity ratio (I1/I3) shows a similar

declining behavior when plotted against the concentration. The breaking points in the surface

tension vs. concentration plot coincides with the inflection point of the I1/I3 curve. This

allows us to interpret the points of inflection as the apparent cmc. This empirical procedure

gives a value of 2-4 M for amphiphile 6.

Preparation of samples for fluorescence experiments:

A stock solution of pyrene (1mM) was prepared in methanol. 50 L of the methanolic solution of

pyrene was taken in a 250 mL conical flask and the solvent was evaporated under high vacuum.

100 mL of milliQ water was added to this conical and the aqueous solution was sonicated for 1h.

The aqueous pyrene solution (0.5 mM) was filtered through a membrane filter (RC, 0.45 ) and

the filtrate was used for the fluorescence studies. A stock solution of the amphiphile was

prepared by dissolving required amount of the amphiphile in aqueous pyrene solution. The stock

solution was further diluted to required concentrations of the amphiphile using the same aqueous

Figure S2. CAC measurement of amphiphiles (5&6) a) by pyrene fluorescence and b) by surface

tension. Comparision of CAC from fluorescence and surface tension methods c) amphiphile 5 and d)

amphiphile 6.

Page 13: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

13

pyrene solution. All the samples were stabilized overnight and recorded their fluorescence

spectra (ex= 335 nm and em = 350-550 nm). The ratio of first and third vibronic bands were

calculated and plotted against the concentration of amphiphile as shown in the figure S2(a).

4) Dye encapsulation experiments and calculation of transport capacity

In order to test the transport capacity of the synthesized amphiphiles, two hydrophobic dyes (Nile Red

and Nimodipine) were investigated as water insoluble models. A thin film of the dye (0.5 mg) was

prepared in each vial by evaporating a stock solution of the dye in THF at room temperature, and then the

vials were dried under high vacuum for 10-12 h. To these vials, a solution of the amphiphilic molecule

(0.5% wt., 2.5 mL) was added and left stirring at 500 rpm at room temperature. All the samples were

filtered through 0.45 m RC membranes to remove the insoluble dye particles. A known volume of the

filtrate (0.5 mL) was lyophilised from each sample. The lyophilised samples were dissolved in 4 mL of

organic solvent (Methanol for Nile Red and Ethanol for Nimodipine) and recorded their UV-Vis spectra.

The concentration of the dye molecules in the filtrate was calculated using the molar extinction

coefficients of the dye molecules in corresponding solvents (45,000 M-1

cm-1

for Nile Red at 552 nm in

MeOH and 7,200 M-1

cm-1

for Nimodipine at 356 nm in EtOH) and corresponding dilution factor.

5) Dynamic light scattering measurements

Dynamic light scattering studies were conducted using a Zetasizer Nano (Malvern Instruments Ltd.). All

the samples were prepared by dissolving the compound in Milli-Q water by sonication (for 1min, get a

homogeneous dispersion) and vortexing (30 min), and further tempered at 50 °C for 30 min. DLS

measurements were performed before and after tempering the sample. No considerable influence of

tempering was observed. All the samples were filtered through 0.45 m RC membrane prior to

measurement.

6) Cryogenic transmission electron microscopy (cryo-TEM)

The samples for cryogenic transmission electron microscopy (cryo-TEM) were prepared at room

temperature by placing a droplet (6 μL) of the solution on a hydrophilized perforated carbon filmed

Quantifoil grid (60 s Plasma treatment at 8 W using a BALTEC MED 020 device). The excess fluid was

blotted off to create an ultra-thin layer (typical thickness of 100 nm) of the solution spanning the holes of

the carbon film. The grids were immediately vitrified in liquid ethane at its freezing point (-184°C) using

a standard plunging device. Ultra-fast cooling is necessary for an artifact-free thermal fixation

(vitrification) of the aqueous solution avoiding crystallization of the solvent or rearrangement of the

assemblies. The vitrified samples were transferred under liquid nitrogen into a Philips CM12 transmission

Page 14: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

14

electron microscope using the Gatan cryoholder and -stage (Model 626). Microscopy was carried out at

-175°C sample temperature using the microscopes low dose mode at a primary magnification of 58300×.

Accelerating voltage was 100 kV and the defocus was chosen to be 1.2 μm.

7) Packing parameter approach

For common single-tail surfactants, the ratio of the volume of the surfactant tail, v0, and its length, l0, is a

constant independent of tail length, equal to 21 Å2.3 [C. Tanford, The hydrophobic Effect: Wiley-

Interscience: New York, 1973]. For double tail surfactants it is twice that value: 2v0/l0 = 42 Å2. Therefore,

the chain length should not affect the molecular packing parameter, (2v0/al0), where a is the area per

molecule, and consequently also not the shape of aggregate. However, if one alkyl chain contains only

2/3 of the carbon atoms of the second chain, as it is valid for the (G2-C12/18) compound 2, the volume-

to-length ratio reduces to 5/6˖(2v0/l0) = 35 Å2. Hence, as compared to a symmetric double tail compounds,

the volume-to-length ratio is reduced to 35 Å2, i.e. the packing parameter is smaller, which favours an

aggregate morphology with larger curvature.

References:

1. M. Wyszogrodzka and R. Haag, Chemistry, 2008, 14, 9202–14.

2. . guiar, . arpena, . . olina- ol var, and . arnero ui , J. Colloid Interface Sci., 2003,

258, 116–122.

3. The Hydrophobic Effect: Formation of Micelles and Biological Membranes, Charles Tanford,

Wiley-Interscience, New York, 1980, 233pp.

Page 15: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

15

8) Additional cryo-TEM images

9) Representation NMR spectra for final compounds

Figure S4. Cryo-TEM images of a sample of amphiphile 2 prior (a) and after (b) encapsulation of

Nimodipine. The coexistence of spherical and worm-like micelles persists even after encapsulation of the

guest molecule. (Scale bars 100 nm)

Figure S3. (a) Additional cryo-TEM image of a sample of amphiphile 3 showing large vesicles and (b) Cryo-TEM

image of the amphiphile 2 after tempering at 60 °C for 3 h. It shows mainly worm-like micelles. (Scale bar 30 nm)

a b

Page 16: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0f1 (ppm)

Compound 16: Protected G2C12/12

5.89

56.5

5

3.90

3.81

26.8

7

3.80

3.79

3.76

1.78

0.75

0.67

0.86

0.87

0.87

0.88

0.89

0.89

0.89

1.28

1.29

1.33

1.33

1.34

1.55

2.05

2.05

2.05

2.29

2.29

2.30

2.31

3.52

3.53

3.54

3.55

3.56

3.57

3.58

3.71

3.71

3.72

4.01

4.02

4.02

4.20

4.57

4.58

4.60

4.78

4.78

5.20

5.21

8.06

8.06

8.07

8.08

Page 17: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0102030405060708090100110120130140150160170180190200210220f1 (ppm)

Compound 16: Protected G2C12/12

14.3

914

.42

25.5

129

.53

ACET

ON

E-D

629

.69

ACET

ON

E-D

629

.71

ACET

ON

E-D

629

.73

ACET

ON

E-D

629

.84

ACET

ON

E-D

629

.86

ACET

ON

E-D

629

.88

ACET

ON

E-D

629

.99

ACET

ON

E-D

630

.01

ACET

ON

E-D

630

.04

ACET

ON

E-D

630

.15

ACET

ON

E-D

630

.38

ACET

ON

E-D

632

.65

34.3

0

59.4

163

.21

64.3

267

.41

67.5

972

.15

73.1

675

.57

75.7

179

.40

109.

58

123.

59

173.

22

206.

12

Page 18: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0f1 (ppm)

Compound 17: Protected G2C12/18

6.04

78.4

1

4.00

0.27

27.8

9

8.84

0.70

3.73

0.74

0.57

0.86

50.

870

0.87

90.

884

0.88

90.

893

0.89

81.

091

1.10

31.

281

1.28

91.

296

1.31

71.

336

1.60

72.

041

2.04

62.

050

2.05

42.

058

2.28

92.

328

2.34

33.

472

3.48

23.

492

3.50

43.

522

3.53

13.

541

3.55

13.

562

3.57

43.

585

3.59

73.

607

3.64

63.

658

3.66

83.

693

3.70

73.

710

3.72

33.

737

4.00

84.

022

4.03

84.

189

4.20

04.

212

4.22

44.

758

4.76

34.

768

5.62

47.

965

Page 19: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0102030405060708090100110120130140150160170180190200210f1 (ppm)

Compound 17: Protected G2C12/18

14.3

714

.40

29.5

3 AC

ETO

NE-

D6

29.5

5 AC

ETO

NE-

D6

29.6

9 AC

ETO

NE-

D6

29.7

1 AC

ETO

NE-

D6

29.8

4 AC

ETO

NE-

D6

29.8

6 AC

ETO

NE-

D6

29.9

9 AC

ETO

NE-

D6

30.0

1 AC

ETO

NE-

D6

30.0

930

.15

ACET

ON

E-D

630

.17

ACET

ON

E-D

630

.42

ACET

ON

E-D

6

50.5

5

63.1

064

.24

67.4

167

.43

67.5

970

.44

72.0

873

.16

75.5

775

.58

79.3

579

.40

109.

58

124.

88

172.

8417

3.33

Page 20: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5f1 (ppm)

Compound 18: Protected G2C18/18

6.29

86.3

6

4.00

2.54

4.06

28.5

2

4.07

4.02

4.05

1.93

0.86

0.92

0.86

70.

881

0.89

00.

894

1.09

21.

105

1.24

81.

252

1.25

51.

262

1.27

81.

282

1.29

31.

312

1.32

41.

334

1.33

71.

535

1.54

91.

563

2.04

12.

045

2.05

02.

054

2.05

82.

286

2.30

12.

316

2.82

33.

463

3.47

43.

483

3.49

13.

494

3.50

53.

518

3.52

53.

530

3.53

33.

537

3.54

43.

554

3.55

73.

564

3.56

83.

574

3.57

83.

581

3.58

93.

596

3.59

93.

601

3.60

83.

611

3.65

13.

654

3.66

33.

673

3.68

43.

696

3.70

83.

712

3.71

83.

725

3.73

03.

734

3.73

83.

746

4.00

44.

009

4.01

74.

021

4.02

54.

034

4.03

84.

191

4.20

24.

213

4.22

24.

225

4.58

34.

595

4.77

84.

783

4.78

88.

064

8.06

9

Page 21: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0102030405060708090100110120130140150160170180190200210220f1 (ppm)

Compound 18: Protected G2C18/18

23.3

3125

.742

25.7

6325

.771

25.7

8827

.171

27.1

8727

.221

29.3

78 A

CETO

NE-

D6

29.5

33 A

CETO

NE-

D6

29.6

87 A

CETO

NE-

D6

29.7

3029

.840

ACE

TON

E-D

629

.994

ACE

TON

E-D

630

.048

30.0

84 A

CETO

NE-

D6

30.1

49 A

CETO

NE-

D6

30.2

40 A

CETO

NE-

D6

30.3

02 A

CETO

NE-

D6

30.3

78 A

CETO

NE-

D6

30.4

2330

.433

34.3

01

63.1

9167

.410

67.4

3267

.596

72.1

4573

.162

75.5

5875

.572

79.4

06

109.

508

109.

575

123.

568

173.

200

Page 22: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0f1 (ppm)

Compound 19: Protected G3C12/12

6.14

5.61

81.4

1

4.07

3.62

4.00

60.1

3

1.09

8.03

8.05

3.96

1.96

0.96

0.31

0.92

0.87

10.

885

0.89

71.

093

1.10

51.

288

1.29

51.

345

1.54

71.

561

1.57

6

2.29

92.

314

2.32

9

2.77

62.

810

3.53

43.

539

3.54

43.

549

3.55

43.

564

3.57

33.

580

3.58

33.

703

3.71

63.

720

4.02

9

4.58

64.

599

4.81

35.

178

5.19

15.

203

5.21

55.

228

5.62

0

8.06

3

Page 23: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0102030405060708090100110120130140150160170180190200210220f1 (ppm)

Compound 19: Protected G3C12/12

14.3

9525

.805

25.8

2625

.828

25.8

3627

.230

29.3

79 A

CETO

NE-

D6

29.5

32 A

CETO

NE-

D6

29.5

43 A

CETO

NE-

D6

29.6

86 A

CETO

NE-

D6

29.8

41 A

CETO

NE-

D6

29.9

94 A

CETO

NE-

D6

30.1

47 A

CETO

NE-

D6

59.3

5763

.249

63.7

0067

.432

67.4

4567

.454

67.4

6467

.486

67.6

3970

.923

72.1

0872

.125

72.1

9672

.220

73.1

9073

.201

75.5

7475

.589

75.6

8575

.719

79.3

6579

.671

109.

594

123.

582

173.

251

Page 24: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0f1 (ppm)

Compound 20: Protected G3C12/18

7.09

109.

47

3.97

4.00

68.8

3

19.6

7

1.15

4.26

0.92

0.89

0.87

30.

880

0.88

71.

288

1.30

11.

319

1.32

41.

344

2.04

12.

045

2.05

02.

054

2.05

82.

349

3.48

63.

496

3.49

83.

506

3.52

93.

532

3.53

53.

540

3.54

23.

546

3.55

13.

554

3.56

03.

563

3.57

13.

577

3.58

13.

590

3.59

73.

601

3.61

03.

669

3.67

93.

687

3.69

03.

698

3.70

23.

715

3.71

93.

731

3.73

74.

017

4.02

04.

030

4.03

34.

036

4.04

64.

048

4.20

64.

218

4.79

47.

978

Page 25: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0102030405060708090100110120130140150160170180190200210220f1 (ppm)

Compound 20: Protected G3C12/18

14.3

925

.82

27.2

227

.27

29.2

6 AC

ETO

NE-

D6

29.4

6 AC

ETO

NE-

D6

29.6

5 AC

ETO

NE-

D6

29.8

4 AC

ETO

NE-

D6

30.0

4 AC

ETO

NE-

D6

30.1

0 AC

ETO

NE-

D6

30.2

3 AC

ETO

NE-

D6

30.2

8 AC

ETO

NE-

D6

30.4

1 AC

ETO

NE-

D6

30.4

2 AC

ETO

NE-

D6

50.5

363

.13

64.3

367

.44

67.6

270

.46

70.8

671

.18

72.1

072

.18

72.3

972

.78

73.1

773

.54

75.5

675

.67

75.7

078

.76

79.3

679

.44

79.6

579

.91

109.

5010

9.58

124.

89

146.

53

172.

8517

3.32

Page 26: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0f1 (ppm)

Compound 21: Protected G3C18/18

6.23

114.

07

3.95

4.04

0.56

63.8

0

8.53

8.50

4.09

1.95

0.86

0.91

0.86

80.

882

0.89

10.

896

1.28

91.

298

1.31

31.

327

1.34

61.

563

1.56

42.

041

2.04

52.

050

2.05

42.

058

2.30

12.

316

2.33

02.

811

3.47

73.

480

3.48

83.

494

3.49

83.

508

3.53

23.

535

3.53

83.

543

3.54

53.

549

3.55

43.

557

3.56

53.

571

3.57

43.

580

3.58

43.

593

3.59

93.

602

3.61

33.

616

3.62

33.

646

3.65

13.

661

3.67

23.

682

3.68

53.

691

3.70

13.

704

3.71

33.

717

3.72

13.

730

3.73

33.

738

3.74

33.

747

3.75

03.

754

3.76

34.

014

4.01

74.

020

4.03

04.

033

4.03

64.

043

4.04

64.

049

4.19

54.

207

4.21

64.

220

4.22

84.

232

4.58

74.

599

4.81

14.

814

4.81

75.

620

8.06

3

Page 27: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0102030405060708090100110120130140150160170180190200210220f1 (ppm)

Compound 21: Protected G3C18/18

14.3

8023

.334

25.5

3625

.811

27.2

1427

.235

29.3

78 A

CETO

NE-

D6

29.5

33 A

CETO

NE-

D6

29.6

86 A

CETO

NE-

D6

29.8

40 A

CETO

NE-

D6

29.9

92 A

CETO

NE-

D6

30.0

7630

.148

ACE

TON

E-D

630

.265

ACE

TON

E-D

630

.301

ACE

TON

E-D

630

.381

30.4

0030

.434

ACE

TON

E-D

6

63.2

3867

.467

67.4

8872

.186

73.1

9875

.572

75.5

87

109.

593

173.

246

Page 28: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0f1 (ppm)

Compound 1: G2C12/12

6.00

0

33.1

50

4.00

0

3.93

8

35.5

57

4.15

8

1.78

8

1.16

8

0.79

2

0.88

80.

902

0.91

5

1.52

11.

534

1.54

81.

562

1.57

7

2.28

92.

304

2.31

9

4.55

54.

568

4.57

34.

579

4.58

64.

597

4.60

94.

620

4.79

34.

801

4.80

44.

812

5.18

55.

196

5.19

85.

209

5.22

05.

223

5.23

3

8.16

3

Page 29: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0102030405060708090100110120130140150160170180190200210f1 (ppm)

Compound 1: G2C12/12

14.4

8523

.738

25.8

6930

.110

30.3

9830

.478

30.5

9330

.749

33.0

7448

.488

MET

HAN

OL-

D3

48.6

58 M

ETH

ANO

L-D

348

.830

MET

HAN

OL-

D3

49.0

00 M

ETH

ANO

L-D

349

.170

MET

HAN

OL-

D3

49.3

40 M

ETH

ANO

L-D

3

63.4

4164

.425

72.1

8472

.278

72.4

2472

.935

73.9

4779

.808

124.

902

174.

521

Page 30: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0f1 (ppm)

-100000

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000Compound 2: G2C12/18

6.00

45.5

41.

871.

83

1.90

1.86

35.7

9

0.85

0.86

3.98

0.87

0.88

0.88

90.

891

0.90

30.

905

0.91

60.

919

1.25

51.

265

1.27

51.

291

1.29

61.

311

1.31

71.

321

1.32

71.

328

1.33

21.

343

2.26

62.

281

2.29

62.

336

2.35

12.

365

3.30

43.

307

3.31

03.

313

3.31

73.

460

3.46

23.

472

3.47

43.

480

3.48

23.

492

3.49

53.

500

3.51

23.

515

3.52

33.

526

3.53

53.

545

3.55

13.

555

3.56

13.

563

3.56

53.

571

3.57

33.

576

3.58

33.

585

3.59

33.

595

3.60

53.

608

3.61

53.

681

3.68

43.

692

3.69

63.

700

3.70

53.

742

3.74

83.

752

3.75

93.

764

3.76

83.

771

3.77

53.

780

4.68

94.

704

4.72

34.

787

4.79

64.

878

8.07

1

Page 31: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0102030405060708090100110120130140150160170180190200210220f1 (ppm)

-300000

-200000

-100000

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

1600000

1700000

1800000

1900000

2000000

2100000Compound 2: G2C12/18

14.4

714

.51

30.4

730

.48

30.6

830

.77

30.8

030

.83

33.0

833

.11

48.6

6 M

ETH

ANO

L-D

348

.83

MET

HAN

OL-

D3

49.0

0 M

ETH

ANO

L-D

349

.17

MET

HAN

OL-

D3

49.3

4 M

ETH

ANO

L-D

3

63.6

164

.46

64.4

8

70.9

971

.23

72.2

172

.29

72.4

472

.95

73.9

573

.98

79.1

979

.87

79.9

1

126.

16

146.

70

174.

0317

4.70

Page 32: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0f1 (ppm)

Compound 3: G2C18/18

6.05

59.7

5

4.00

4.00

2.39

36.7

9

4.02

1.93

0.98

0.92

0.89

0.90

0.90

0.92

1.26

1.27

1.28

1.29

1.31

1.31

1.32

1.33

2.29

2.31

2.32

3.31

3.31

3.31

3.35

3.54

3.54

3.56

3.56

3.56

3.57

3.57

3.57

3.58

3.59

4.57

4.58

4.58

4.80

4.80

4.81

4.86

5.19

5.20

5.22

8.15

8.16

Page 33: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

-30-20-100102030405060708090100110120130140150160170180190200210220230f1 (ppm)

Compound 3: G2C18/18

14.4

723

.75

25.8

930

.49

30.6

230

.77

30.7

830

.82

33.0

948

.83

MET

HAN

OL-

D3

49.0

0 M

ETH

ANO

L-D

349

.17

MET

HAN

OL-

D3

49.3

4 M

ETH

ANO

L-D

3

60.3

263

.44

64.4

564

.49

71.2

572

.20

72.2

272

.23

72.3

272

.46

72.4

872

.98

73.9

774

.01

79.3

079

.83

79.9

079

.94

124.

89

146.

63

174.

49

Page 34: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0f1 (ppm)

Compound 4: G3C12/12

6.41

35.7

2

3.99

4.00

82.9

8

5.22

3.34

1.53

0.87

0.89

00.

898

0.90

40.

917

1.26

71.

292

1.31

21.

314

1.31

71.

328

1.54

71.

561

1.57

52.

302

2.31

72.

331

3.53

03.

537

3.54

13.

545

3.54

83.

557

3.56

53.

570

3.57

83.

580

3.58

93.

592

3.59

73.

602

4.57

54.

587

4.82

04.

824

4.82

74.

831

4.86

6

5.19

75.

209

5.22

1

8.15

18.

155

8.15

98.

163

Page 35: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0102030405060708090100110120130140150160170180190200210f1 (ppm)

Compound 4: G3C12/12

14.4

85

23.7

2625

.871

30.1

2230

.403

30.4

6430

.592

30.7

4233

.060

34.6

8248

.659

MET

HAN

OL-

D3

48.8

29 M

ETH

ANO

L-D

349

.000

MET

HAN

OL-

D3

49.1

71 M

ETH

ANO

L-D

349

.340

MET

HAN

OL-

D3

60.2

2163

.461

64.4

3264

.481

64.4

9572

.182

72.2

8973

.988

79.4

2979

.770

79.8

2480

.026

124.

825

174.

534

Page 36: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0f1 (ppm)

Compound 5: G3C12/18

6.00

0

45.0

36

3.41

3

3.60

7

76.4

34

0.72

9

0.71

80.

584

1.74

81.

962

0.77

6

0.83

0

0.88

00.

884

0.89

40.

898

0.90

80.

912

1.26

51.

283

1.28

81.

306

1.31

31.

320

1.33

52.

279

2.33

12.

346

3.29

53.

299

3.30

23.

305

3.30

93.

454

3.45

83.

466

3.47

43.

478

3.48

63.

490

3.49

83.

510

3.52

13.

527

3.53

33.

538

3.54

83.

556

3.56

03.

562

3.56

93.

580

3.59

23.

603

3.61

23.

624

3.63

33.

661

3.66

63.

670

3.67

53.

679

3.68

23.

686

3.69

13.

696

3.70

53.

712

3.73

23.

737

3.74

23.

749

3.75

33.

758

3.76

03.

764

3.76

83.

774

4.80

04.

857

8.06

3

Page 37: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0102030405060708090100110120130140150160170180190200210220f1 (ppm)

Compound 5: G3C12/18

14.4

814

.52

30.4

730

.52

30.6

630

.68

30.7

530

.79

30.8

233

.06

33.1

0

48.6

6 M

ETH

ANO

L-D

348

.83

MET

HAN

OL-

D3

48.9

6 M

ETH

ANO

L-D

349

.00

MET

HAN

OL-

D3

49.1

7 M

ETH

ANO

L-D

349

.34

MET

HAN

OL-

D3

63.6

564

.44

64.4

864

.49

72.1

772

.19

72.2

972

.41

79.8

3

101.

28

126.

10

146.

79

174.

0617

4.72

Page 38: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0f1 (ppm)

Compound 6: G3C18/18

6.00

56.5

5

4.01

3.89

74.7

1

5.09

1.91

1.07

0.96

0.88

90.

903

0.91

71.

256

1.26

21.

275

1.29

41.

312

1.31

61.

326

1.34

11.

356

1.55

61.

570

1.58

31.

598

2.30

72.

322

2.33

73.

304

3.30

73.

310

3.31

33.

317

3.34

93.

464

3.46

83.

476

3.48

43.

496

3.50

03.

508

3.52

03.

530

3.53

63.

542

3.54

53.

549

3.55

73.

566

3.57

03.

579

3.58

93.

593

3.59

73.

602

3.61

13.

614

3.62

23.

625

3.63

53.

646

3.65

03.

656

3.66

33.

677

3.68

53.

688

3.69

73.

708

3.71

83.

727

3.74

03.

749

3.75

23.

760

3.76

33.

768

3.77

43.

786

3.79

74.

576

4.58

84.

598

4.61

04.

821

4.82

54.

828

4.84

74.

879

4.90

74.

911

5.18

75.

197

5.20

95.

221

8.15

8

Page 39: Engineering self-assembled nanostructures using non-ionic ... · 1 Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles Bala N. S. Thota,a Hans

0102030405060708090100110120130140150160170180190200210220f1 (ppm)

Compound 6: G3C18/18

14.5

00

23.7

3525

.892

30.1

4430

.440

30.6

2630

.771

30.8

1233

.070

34.6

9948

.660

MET

HAN

OL-

D3

48.8

30 M

ETH

ANO

L-D

349

.002

MET

HAN

OL-

D3

49.1

69 M

ETH

ANO

L-D

349

.341

MET

HAN

OL-

D3

63.4

3464

.410

64.4

2864

.470

64.4

8472

.155

72.1

7373

.979

79.7

6079

.813

80.0

15

124.

808

124.

821

174.

506