English CL 2

Embed Size (px)

Citation preview

  • 8/12/2019 English CL 2

    1/21

    2. State equations

    State equations

    Solution of the state equations

    Assumption: We assume that all the Laplace transforms involved in the

    following reasonings exist.

    x(t) = A x(t) + Bu(t)

    y(t) = C x(t) + Du(t)

    L

    x(s) = (sIn A)

    1x(0) + (sIn A)1Bu(s)

    y(s) = C(sIn A)1x(0) + [C(sIn A)1B + D]u(s)

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

    http://goback/
  • 8/12/2019 English CL 2

    2/21

    2. State equations

    Back to the time domain

    x(s) = (sIn A)1x(0) + (sIn A)1Bu(s)

    y(s) = C(sIn A)1x(0) + [C(sIn A)1B + D]u(s)

    L1

    x(t) = L1{(sIn A)1} x(0) + L1{(sIn A)1}B u(t)

    y(t) = CL1{(sIn A)1} x(0 ) + [CL1{(sIn A)1}B + D] u(t)

    L1{(sIn A)1} = ?

    (sInA)1 is a rational matrix function that is (strictly) proper. Its

    Laplace transform can be computed componentwise.

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

  • 8/12/2019 English CL 2

    3/21

    2. State equations

    Example:

    ComputeL1{(sIn A)1} for A=

    1 2

    2 1

    .

    (sIA)1 = s1(s1)2+4 2(s1)2+4

    2(s1)2+4

    s1(s1)2+4

    L1{(sIA)1}= et

    cos 2t sin 2t

    sin 2t cos 2t

    (check this!)

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

    http://goback/
  • 8/12/2019 English CL 2

    4/21

    2. State equations

    General expression for L1{(sIn A)1}

    (sIA)1 = s1I+k=1

    Aksk1

    L1{(sIn A)1} = L1{s1}I+

    k=1

    AkL1{sk1}

    = I+k=1

    AkL1{dk1s

    dsk(1)k

    k!}

    =k=0

    Aktk

    k!=: eAt

    this notation is chosen by analogy with the scalar case

    L1{ 1sa

    }= eat =

    k=0aktk

    k!

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

  • 8/12/2019 English CL 2

    5/21

    2. State equations

    General form of x(t) and y(t)

    x(t) = L1{(sIn A)1} x(0) + L1{(sIn A)1}B u(t)

    y(t) = CL1{(sIn A)1} x(0 ) + [CL1{(sIn A)1}B + D] u(t)

    x(t) = e

    At

    x(0) + eAt

    B u(t)y(t) = CeAt x(0 ) + [CeAtB + D] u(t)

    x(t) = eAtx(0) +

    t

    0 eA(t)B u()d

    y(t) = CeAtx(0) +t0

    CeA(t)B u()d+Du(t)

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

  • 8/12/2019 English CL 2

    6/21

    2. State equations

    x(t) = eAtx0 +t0

    eA(t)B u()d is a solution ofx= Ax + Bu.

    It is the only solution ofx= Ax+ Bu such that x(0) = x0, for a fixed

    given u. [Prove this fact using the following theorem.]

    Theorem - existence and uniqueness of solution

    Consider a first order differential equation x= F(x) with initial condition x(t0) = x0 (IVP

    - initial value problem). IfF is a lipschitzian, then the (IVP) has a unique solution. This

    solution is of class C1, i.e. is continuously differentiable.

    x(t) is defined for all inputs u(t) that guarantee the existence of theintegral

    t0

    eA(t)B u()d. Here we take as admissible the inputs u(t)

    which are piecewise continuous.

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

  • 8/12/2019 English CL 2

    7/21

    2. State equations

    The solutions of the state eqautions can also be written as follows (if

    the initial conditions are given at time t0):

    x(t) = eA(tt0)x(t0) +tt0

    eA(t)B u()d

    y(t) = CeA(tt0)x(t0) +tt0

    CeA(t)B u()d +Du(t)

    Check this!

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

  • 8/12/2019 English CL 2

    8/21

    2. State equations

    Zero-input evolution/response- state and output evolution for zero input

    Zero-state evolution/response- state and output evolution for zero initial

    state

    x(t) = eAtx(0) xl(t)

    + t

    0eA(t)B u()d

    xf(t)

    y(t) = CeAtx(0) yl(t)

    + t

    0

    CeA(t)B u()d+Du(t)

    yf(t)

    zero-input evolution zero-state evolution

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

  • 8/12/2019 English CL 2

    9/21

    2. State equations

    Impulse response and transfer function

    yf(t) =t0

    CeA(t)B u()d+Du(t)

    Impulse response

    yf(t) = [CeAtB + D] u(t)L1 L

    yf(s) = [C(sInA)1B+D] u(s)

    Transfer function

    Impulse = Dirac -function; ui = yf = CeAtB + Di.

    ui - i-th component of u Di - i-th colunm of D

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

  • 8/12/2019 English CL 2

    10/21

    2. State equations

    Discretization

    Discretization starting at time t0, with discretization interval .

    xd(k) := x(t0+k); analogous definitions for ud e yd.

    Process 1

    Approximate x(t) x(t+)x(t)

    .

    This leads to:

    xd(k+ 1) =(I+A)xd(k) +Bud(k)yd(k) = Cxd(k) +Dud(k) Check!

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

  • 8/12/2019 English CL 2

    11/21

    2. State equations

    Process 2

    Suppose u(t) constant in each interval [t0+k t0+ (k+ 1))

    Compute the state trajectories of the continuous system at the

    discretization instants:

    x(t0+ (k+ 1)) =

    eA((t0+(

    k+1)

    (t0+

    k))x(t0 + k) +

    t0+(k+1)t0+k e

    A(t0+(

    k+1)

    )Bu()d

    This leads to:

    xd(k+ 1) = eAxd(k) +

    0 eABd

    ud(k)

    yd(k) = Cxd(k) +Dud(k) Check this!

    Exercise: Compare the discrete systems obtained by the two different

    processes.

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

  • 8/12/2019 English CL 2

    12/21

    2. State equations

    DiscretizaoExacta

    EXEMPLO:

    Considere-se o sistema compartimental contnuo,

    1 0 1 0

    0 0 0 1

    0 1 1 0

    x x u

    = +

    & (1)

    ( ) ( ) ( )

    0.05 0.05 0.05 0.05

    0.05 0.05 0.05

    1 1.05 0.05 1.95 2.05

    1 0 1 0 0.05

    0 1 0.95

    e e e e

    x k x k u k

    e e e

    +

    + = + +

    E o sistema compartimental discretizadocorrespondente, para h=0.05seg:

    (2)

    Assim

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

  • 8/12/2019 English CL 2

    13/21

    2. State equations

    0 50

    2

    4

    6

    Tempo (seg)

    Amplitude

    0 50

    2

    4

    6

    Tempo (seg)

    Amplitude

    0 50

    2

    4

    6RESPOSTA AO DEGRAU UNITRIO

    Tempo (seg)

    Amplitude

    DiscretizaoExacta

    Respostas ao degrau do sistema contnuo e da sua discretizaoexacta

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

  • 8/12/2019 English CL 2

    14/21

    2. State equations

    DiscretizaoExacta

    Respostas foradas do sistema contnuo e da sua discretizao exacta

    nos intervalos de discretizao

    0 50

    5

    10

    15

    Tempo (seg)

    Amplitude

    0 50

    2

    4

    6

    Tempo (seg)

    Amplitude

    0 50

    5

    10RESPOSTA FORADA

    Tempo (seg)

    Amplitude

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

    S

  • 8/12/2019 English CL 2

    15/21

    2. State equations

    DiscretizaoAproximada

    EXEMPLO:

    Considere-se novamente o sistema compartimental contnuo (1):

    ( ) ( ) ( )

    0.95 0 0.05 0

    1 0 1 0 0.05

    0 0.05 0.95 0

    x k x k u k

    + = +

    E o sistema compartimental discretizado aproximadamente correspondente, para

    h=0.05seg:

    Assim

    (3)

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

    2 St t ti

  • 8/12/2019 English CL 2

    16/21

    2. State equations

    DiscretizaoAproximada

    Respostas ao degrau do sistema contnuo e da sua discretizaoaproximada

    0 50

    2

    4

    6

    Tempo (seg)

    Am

    plitude

    0 50

    2

    4

    6

    Tempo (seg)

    Am

    plitude

    0 50

    2

    4

    6RESPOSTA AO DEGRAU UNITRIO

    Tempo (seg)

    Am

    plitude

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

    2 St t ti

  • 8/12/2019 English CL 2

    17/21

    2. State equations

    General solution for discrete state equations

    x(k+ 1) = Ax(k) +Bu(k)

    y(k) = Cx(k) +Du(k)

    x(k) = Akx(0) +k1

    l=0 Ak1lBu(l)

    y(k) = CAkx(0) +l=0CAk1Ak1lBu(l) + Du(k)

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

    2 State equations

  • 8/12/2019 English CL 2

    18/21

    2. State equations

    Invertible transformations (isomorphisms) in the state space

    State transformation: x x= Sx

    S invertible(i.e., x x= Sx is an isomorphism)

    Question: What are the evolution equations for x(t)?

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

    2 State equations

  • 8/12/2019 English CL 2

    19/21

    2. State equations

    x = Ax + Buy = Cx + Du

    Sx = SAS1Sx + SBuy = CS1Sx + Du

    Replacing Sx by x, yields:

    x =

    A SAS1 x +

    BSB u

    y = CS1 Cx + Du

    x = Ax + Bu

    y = Cx + Du

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

    2 State equations

  • 8/12/2019 English CL 2

    20/21

    2. State equations

    Thus:

    x = Ax + Bu

    y = Cx + Du

    x = Ax + Bu

    y = Cx + DuTransformation S

    (A , B , C , D) (A, B, C, D) =

    = (SAS1

    , SB, CS

    1

    , D)

    (A , B , C , D) Algebraically equivalent

    e systems

    (A, B, C, D) invertible matrix Ssuch that

    A= SAS1, B = SB

    C= CS1, D = D

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

    2. State equations

  • 8/12/2019 English CL 2

    21/21

    2. State equations

    Prove That:

    Proposition: If two systems are algebraically equivalent then they have the

    same transfer function.

    Remark: Two systems with the same transfer function are called

    zero-state equivalent.

    So, the previous proposition states thatwhenever two systems are

    algebraically equivalent systems, they are also zero-state equivalent.

    However: there are systems that are zero-state equivalent, but not

    algebraically equivalent.

    Give an example!

    1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1