48
ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM BY ALLOYING, FLUORIDE TREATMENT AND NANO-HYDROXYAPATITE COATING FOR BIOMEDICAL APPLICATIONS HAMID REZA BAKHSHESHI RAD A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering) Faculty of Mechanical Engineering, Universiti Teknologi Malaysia JUNE 2013

ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM BY

ALLOYING, FLUORIDE TREATMENT AND NANO-HYDROXY APATITE

COATING FOR BIOMEDICAL APPLICATIONS

HAMID REZA BAKHSHESHI RAD

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Mechanical Engineering)

Faculty of Mechanical Engineering,

Universiti Teknologi Malaysia

JUNE 2013

Page 2: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

ABSTRACT

Compared to the traditional metallic implant materials such as stainless steels, titanium alloys and cobalt chromium alloys, magnesium (Mg) has received great attention as biodegradable medical implants as it does not require second surgical procedure for removal. Mg and its alloys also possess suitable mechanical properties for orthopaedic and cardiovascular applications. However, clinical applications of Mg have been limited due to its relatively poor corrosion resistance, rapid degradation rate and hydrogen gas evolution in human body fluid. This research is aimed at decreasing the Mg degradation and corrosion rate by alloying with calcium (Ca) and zinc (Zn), surface treatment by hydrofluoric acid and coating with nano­sized hydroxyapatite (HA) and brushite (DCPD) using electrodeposition method. The first stage of the research is to enhance the corrosion resistance of pure Mg by the addition of Ca (0.5 to 10 wt.%). In the second stage, Zn at different percentages (0.5 to 9 wt.%) was added to the binary Mg-Ca alloy to further enhance the corrosion properties. Both strategies were found to enhance the corrosion resistance of the alloy, however, the effect was not significant. To further enhance the corrosion resistance fluoride treatment by using different concentrations of hydrofluoric acid (35 and 40%) for the duration of 6 to 24 hrs were employed on binary Mg-Ca and ternary Mg-Ca-Zn alloys. Finally, nano-HA and Brushite were coated on the fluoride-treated specimens via electrochemical deposition (ED) method at different voltages (0.15 to 0.8 mA/cm2) and deposition times (10 to 60 min). Microstructural evolutions were characterized by XRD, AFM, FTIR, SEM, and TEM. Corrosion resistance was examined by potentiodynamic polarization and immersion test in Kokubo solution at room temperature. The results revealed that the grain size and dendrite cell size decreased with the addition of Ca and Zn contents into the binary and ternary alloys respectively. The addition of 0.5 wt.% Ca content was found to produce the lowest dissolution rate and the highest corrosion resistance. However, further addition of Ca led to an increased dissolution rate and pH value. The corrosion resistance of Mg-0.5Ca alloy was enhanced with the addition of up to1 wt.% Zn, but further addition produced the reverse effect. Mg-0.5Ca-lZn alloy, which has a-Mg+Ca2Mg6Zn3+Mg2Ca phases showed lower corrosion rate than those alloys with Zn/Ca atomic ratio higher than 1.23. After fluoride treatment the degradation rates of the alloys were significantly reduced compared to the untreated alloys. Electrochemical tests showed a significant decline in corrosion current density from 365.2 to 5.23 |xA/cm2 on Mg-0.5Ca-lZn alloys coated with composite nano-HA/MgF2. The application of composite coating of nano-HA/MgF2 on Mg-Ca- Zn alloys could be used to reduce the corrosion rates of Mg alloys for biodegradable medical applications.

Page 3: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

ABSTRAK

Berbanding dengan implan tradisional yang dibuat dari bahan logam seperti keluli tahan karat, aloi titanium dan aloi kromium kobalt, magnesium (Mg) telah mendapat perhatian besar sebagai bahan biodegradasi implan perubatan kerana tidak memerlukan prosedur pembedahan kedua untuk penyingkiran implan. Mg dan aloinya memiliki sifat mekanikal yang juga sesuai untuk aplikasi ortopedik dan kardiovaskular. Walau bagaimanapun, aplikasi klinikal Mg adalah terhad disebabkan oleh mutu rintangan kakisan yang rendah, kadar degradasi yang tinggi dan evolusi gas hidrogen yang pantas dalam cecair badan manusia. Kajian ini bertujuan untuk mengurangkan kadar degradasi dan kakisan Mg secara pengaloian menggunakan unsur kalsium (Ca) dan zink (Zn), rawatan permukaan oleh asid hidrofluorik, dan salutan hydroxyapatite (HA) bersaiz nano dan brushite (DCPD) dengan kaedah elektroenapan. Peringkat pertama kajian adalah untuk meningkatkan rintangan kakisan Mg tulen dengan penambahan unsur Ca (0.5-10 wt.%). Pada peringkat kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah kepada aloi binari Mg-Ca untuk menambah baik sifat kakisan. Kedua-dua strategi ini didapati beijaya menambah baik rintangan kakisan aloi, tetapi kesannya tidak ketara. Untuk mempertingkatkan lagi sifat rintangan kakisan, rawatan fluorida menggunakan kepekatan asid hidrofluorik yang berbeza (35 dan 40%) untuk tempoh 6 hingga 24 jam telah digunakan ke atas aloi binari Mg-Ca dan aloi pertigaan Mg-Ca-Zn. Akhimya, HA dan Brushite telah disalut pada spesimen yang telah menjalani rawatan fluorida dengan kaedah pemendapan elektrokimia (ED) pada voltan (0.15- 0.8 mA/cm2) dan masa pemendapan (10-60 min) yang berbeza. Evolusi mikrostruktur telah dilakukan menggunakan XRD, AFM, FTIR, SEM, dan TEM. Kerintangan kakisan telah diteliti menggunakan polarisasi potentiodynamic dan ujian rendaman dalam larutan Kokubo pada suhu bilik. Keputusan menunjukkan bahawa saiz bijian dan saiz sel dendrit menurun dengan penambahan kandungan Ca dan Zn ke atas aloi binari dan aloi pertigaan masing-masing. Penambahan 0.5 wt.% Ca dikenalpasti menghasilkan kadar keterlarutan terendah dan rintangan kakisan tertinggi. Walau bagaimanapun, penambahan Ca yang seterusnya membawa kepada peningkatan kadar keterlarutan dan nilai pH. Rintangan kakisan aloi Mg-0.5Ca telah dipertingkatkan dengan penambahan sehingga 1 wt.% Zn, tetapi penambahan seterusnya menghasilkan kesan yang sebaliknya. Aloi Mg-0.5Ca-lZn yang mempunyai fasa a-Mg+Ca2Mg6Zn3+Mg2Ca menunjukkan kadar kakisan lebih rendah berbanding dengan aloi lain yang mempunyai nisbah atom Zn/Ca lebih daripada 1.23. Selepas rawatan fluorida kadar degradasi aloi dikurangkan dengan ketara berbanding dengan aloi yang tidak dirawat. Ujian elektrokimia menunjukkan penurunan yang ketara dalam ketumpatan arus kakisan; 365.2-5.23 (iA/cm2 bagi aloi Mg-0.5Ca-lZn yang disalut dengan komposit nano-HA/MgF2. Salutan komposit nano-HA/MgF2 aloi pada Mg-Ca-Zn boleh digunakan untuk mengurangkan kadar kakisan aloi Mg untuk aplikasi perubatan biodegradasi.

Page 4: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xii

LIST OF FIGURES xiv

LIST OF ABBREVIATIONS xxiv

LIST OF SYMBOLS xxvi

LIST OF APPENDICES xxviii

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 4

1.3 Purpose of the Study 4

1.4 Objectives of the Research 5

1.5 Significance of the Research 5

1.6 Scope of the Research 6

2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Biodegradable Materials 7

2.2.1 New Biodegradable Materials 8

2.3 Biodegradable Magnesium 10

Page 5: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

2.3.1 History of Biodegradable Magnesium 10

2.3.2 Magnesium Properties 11

2.3.3 Magnesium and its Alloys for Biomedical

Applications 14

2.4 Magnesium and Its Alloys 15

2.4.1 Mg-Ca Binary Alloys 18

2.4.2 Mg-Zn Binary Alloys 21

2.4.3 Mg-Ca-Zn Ternary Alloys 24

2.5. Solidification of Magnesium Alloys 26

2.5.1 Thermal Analysis Method 27

2.6. Corrosion Characteristics of Mg and Its Alloys 28

2.6.1 Degradation Rate of Magnesium 31

2.6.2 Corrosion Types 33

2.6.3 Corrosion Products 37

2.7. Current Modification Methods 40

2.7.1 Conversion Coatings by Hydrofluoric Acid

(HF) 42

2.8 Calcium Phosphates 43

2.8.1 Dicalcium Phosphate Dihydrate - brushite 45

2.8.2 Hydroxyapatite 46

2.9 Coating for Magnesium Alloys 47

2.9.1 Biomimetic 59

2.9.2 Sol-gel Coating 50

2.9.3 Plasma Spraying 50

2.9.4 Dip Coating 51

2.9.5 Electrodeposition 52

3 RESEARCH METHODOLOGY 55

3.1 Introduction 55

3.2 Alloy Fabrication 59

3.3 Samples Preparation 61

3.4 Microstructural Characterization 63

3.4.1 SEM and TEM Studies 63

Page 6: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

3.4.2 XRD Analysis 64

3.4.3 FTIR Analysis 64

3.4.4 AFM Analysis 65

3.5 Hardness Analysis 66

3.6 Thermal Analysis 66

3.7 Electrochemical Measurements 67

3.8 Immersion Test 68

3.8.1 Hydrogen Evolution 70

3.9 Fluoride Treatment 71

3.10 Electrodeposition of Calcium Phosphate Coatings 72

4 RESULTS AND DISCUSSION 74

4.1 Introduction 74

4.2 Evolution of the Microstructural Characteristics and

Corrosion Behaviour of Mg-xCa Alloys 74

4.2.1 Microstructure Characteristics 75

4.2.1.1 XRD Analysis 79

4.2.2 Hardness Analysis 80

4.2.3 Thermal Analysis 81

4.2.4 Electrochemical Measurements 89

4.2.5 Immersion Test 93

4.2.5.1 XRD Analysis of Corrosion Products 97

4.2.5.2 FTIR Analysis of Corrosion Products 98

4.2.5.3 pH Evaluation 101

4.3 Evolution of the Microstructural Characteristics and

Corrosion Behaviour of Mg-0.5Ca-xZn Alloy 102

4.3.1 Microstructure Analysis 102

4.3.1.1 XRD Analysis 108

4.3.2 Hardness Analysis 109

4.3.3 Thermal Analysis 111

4.3.4 Electrochemical Measurements 120

4.3.5 Immersion Test 126

4.3.5.1 XRD Analysis of Corrosion Products 131

Page 7: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

4.3.5.2 FTIR Analysis of Corrosion Products 132

4.3.5.3 pH Evaluation 135

4.3.5.4 Hydrogen Evolution 136

4.3.6 In Vitro Degradation Behavior 137

4.4 Surface Modification of Mg-Ca and Mg-Ca-Zn

Alloys via Fluoride Treatment 140

4.4.1 Microstructure and Coating Characterization 143

4.4.1.1 XRD Analysis 148

4.4.1.2 AFM Analysis 150

4.4.2 Electrochemical Measurements 152

4.4.3 Immersion Test 156

4.4.3.1 XRD Analysis of Corrosion Products 162

4.4.3.2 FTER Analysis of Corrosion Products 165

4.4.3.3 pH Evaluation 167

4.4.4 In Vitro Degradation Mechanism 169

4.5 Hydroxyapatite and Brushite Coatings on Fluoride

Treated Mg-Ca-Zn Alloy 175

4.5.1 Electrodeposition of the Brushite Coatings 175

4.5.1.1 XRD Analysis of the Brushite 178

4.5.1.2 AFM Analysis of the Brushite 180

4.5.1.3 Surface Morphology Evaluation 181

4.5.2 Microstructure and Coating Characterization

of Composite Coated Alloys 185

4.5.2.1 XRD Analysis 190

4.5.2.2 FTIR Analysis 192

4.5.2.3 AFM Analysis 194

4.5.3 Electrochemical Measurements 196

4.5.4 Immersion Test 200

4.5.4.1 XRD Analysis of Corrosion Products 202

4.5.4.2 FTIR Analysis of Corrosion Products 203

4.5.4.3 pH Evaluation 205

4.5.4.4 Hydrogen Evolution 206

Page 8: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

5 CONCLUSIONS AND RECOMMENDATIONS 209

5.1 Introduction 209

5.2 Conclusions 209

5.3 Recommendations for Future Work 212

REFERENCES

Appendices A-D

213

230-233

Page 9: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Mechanical properties and degradation rate of biodegradablepolymers as a comparison with bone, ceramics and metals

2.2 Mechanical properties of different type of magnesium alloys compared with tissue and traditional biomaterials

2.3 Influence of alloying elements on properties of Mg alloys at ambient temperatures

2.4 Corrosion types of various magnesium alloys in MEM solution

2.5 Example of calcium phosphate phases and their major properties

13

16

34

44

2.6 Different techniques to deposit HA coatings 48

3.1 Overall experimental details procedure of the research 58

3.2 Nominal and actual chemical compositions of Mg-xCa alloys 60

3.3 Actual chemical compositions of the Mg-0.5Ca and Mg-0.5Ca-xZn alloys 61

3.4 Etchants used for characterisation of Mg alloys 62

3.5 Chemical composition of the Kokubo simulated body fluid (SBF) compared to the human blood plasma 69

3.6 Amounts and formula weights of reagents for preparing 1000ml of SBF 69

4.1 Cooling curve parameters for the pure Mg and Mg-xCa alloys 85

4.2 Electrochemical parameters of specimens in Kokubo solution attained from the polarization test 90

4.3 The characteristic parameters identified for Mg-0.5Ca and

Page 10: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

Mg-0.5Ca-xZn alloys during solidification by thermal analysis

4.4 Electrochemical parameters of Mg-0.5Ca and Mg-0.5Ca- xZn specimens in Kokubo solution attained from the polarization test

4.5 Electrochemical parameters of untreated and fluoride coated specimens in Kokubo solution attained from the polarization test

4.6 Hydrogen and corrosion observation of untreated and fluoride treated after immersed in Kokubo solution for 10 days

4.7 Effect of current density and deposition time on deposit weight of brushite

4.8 Electrochemical parameters of untreated, fluoride treated and composite coated specimens in Kokubo solution attained from the polarization test

4.9 pH value, Hydrogen and degradation observation of untreated, fluoride treated and composite coated specimens after immersed in Kokubo solution for 10 days

123

156

173

176

199

Page 11: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

LIST OF FIGURES

FIGURE NO. TITLE

2.1 Potential applications of magnesium-based materials to:(a) osteosynthesis, (b) cardiovascular stents, and (c) wound-closing devices for stomach trauma

2.2 Mechanical properties of as-cast pure Mg and M g-lX alloy ( X= Al, Ag, In, Mn, Si, Sn, Y, Zn and Zr) specimens s at room temperature. Extracted from reference [49]

2.3 Mechanical properties of as-cast, as-rolled and as-extruded Mg-ICa alloy as well as as-cast Mg-2Ca alloy and as- cast Mg-3Ca alloy at room temperature

2.4 Mg-Ca binary phase diagram

2.5 Potentodynamic polarization curves of pure Mg and Mg- Zn alloys

2.6 Mg-Zn binary phase diagram

2.7 Typical stress -strain curve of as cast Mg-xZn-ICa alloys

2.8 The ternary phase diagram of as-cast Mg-Ca-Zn alloy

2.9 Free corrosion potentials of some construction metals in neutral sodium chloride solution

2.10 Pourbaix diagram of magnesium in water at 25C

2.11 The hydrogen evolution volumes of as-cast pure Mg and M g-lX alloys ( X = Al, Ag, In, Mn, Si, Sn, Y, Zn and Zr) specimens immersed in SBF and Hank’s solution for 500 h

2.12 Localized corrosion morphology of AM50 magnesium alloy

PAGE

14

18

20

21

22

23

25

26

30

31

32

34

2.13 SEM micrographs of AZ80 magnesium alloy after immersion in 0.5 wt.% NaCl solution: (a) 4 h immersion

Page 12: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

shows large pits and (b) 24 h immersion shows coalescence of pits forming trenches 36

2.14 Effects of impurities concentrations on the corrosion rateof AZ91 magnesium alloy 3 6

2.15 Mechanism of micro-galvanic corrosion proposed for the WEXX alloys: (a) formation of magnesium hydroxide layer on the surface of the a-Mg matrix and (b) localised micro-galvanic corrosion at preferential areas 37

2.16 Build-up of very voluminous Ca-rich oxide product that forms as a result of corrosion in SBF at 37 °C. The productis insoluble 38

2.17 Corroded surface after immersion in Hank’s solution for(a) HP Mg, (b) Mg2Zn0.2Mn, (c) ZE41 and (d) AZ91 39

2.18 SEM images of (a) phosphate coating, (b) cerium coatingand (c) stannate coating 41

2.19 SEM images of the fluoride-coated Mg-Zn (a, b) the embedded image in Figure, lb is the magnified morphology of the pore within the white rectangle 43

2.20 Crystal structure of brushite DCPD with orientation of monoclinic crystal in b-plane 45

2.21 The super cell of hydroxyapatite in PI space group after removing excess OH groups 47

2.22 Schematic of biomimetic coating: (a) simple biomimeticcoating of an amorphous calcium deficient carbonated apatite from SBF (usually the SBF ion concentration for biomimetic coating is 5 to 10 times higher than the normal SBF ion concentration); (b) biomimetic co-precipitation ofdrug/growth factor 49

2.23 Schematic set up of arc plasma spray 51

2.24 Schematic of dip coating technique 52

2.25 Electrophoretic deposition cell showing positively charged particles in suspension migrating towards the negative electrode 54

3.1 Overall experimental activities flowchart of the research 57

3.2 The process of preparing Mg-xCa alloy specimens 59

3.3 The process of preparing Mg-0.5Ca-xZn alloy specimens 59

Page 13: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

4.1

4.2

4.3

Casting produced from two different moulds for preparation of specimen. Specimen produced from casting a) plate and b) cylindrical rod 60

Schematic drawing of specimens cut from Mg alloys the castings: a, b) cylindrical rod and c) rectangular plate 62

Equipment used for analysing the specimens microstructure a) Field emission scanning electron microscope and b) Transmission electron microscope 63

Fourier transform infrared spectroscopy used to determine the surface functional groups of the specimens 64

Atomic-force microscopy spectroscopy used to evaluate the surface topography of the composite coated, fluoride coated and untreated specimens 65

Schematic illustration of thermal analysis set up with stainless steel mould and thermocouples 67

a) The electrochemical experiment set up, b) Schematic of three-electrode electrochemical testing cell and c) Prepared specimen for corrosion test 68

Exterior views of the specimens immersed in Kokubo solution a) Mg-Ca alloy and b) Mg-Ca-Zn alloy 69

Schematic illustration of the experimental setup for hydrogen gas evolution measurement 71

Schematic arrangement of the electrodeposition cell for the deposition of nano-HA on Mg-Ca-Zn alloy 73

Optical micrographs of specimens (a) Mg pure, (b) with different calcium content: 0.5, (c) 1.25, (d) 2.5, (e) 5, (f)10 wt.%, (g) high magnification of Mg-5Ca alloy and(h) high magnification of Mg-1 OCa alloy 76

SEM micrographs of (a) Mg-0.5Ca, (b) Mg-1.25Ca, (c)EDS analyses of area 1, (d) EDS analyses of area 2, (e) Mg-2.5Ca, (f) Mg-5Ca, (g) EDS analyses of area 3, (f)EDS analyses of area 4 (i) Mg-1 OCa, (j) high magnification of framed region indicated in Figure 4.2i 78

X-ray diffraction patterns of (a) pure Mg, (b) various Mg-Ca alloys with different calcium content: 0.5, (c)1.25, (d) 2.5, (e) 5, (f) 10 wt.% 80

4.4 Effect of calcium content on the hardness value of M g- Ca alloys 81

Page 14: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

Cooling curves for the Mg-xCa alloys (x = 0, 1.25, 2.5 and 5) with two phase reactions 82

Thermal analysis results of (a) pure Mg and Mg-Ca alloys with different calcium content; (b) 0.5, (c) 1.25,(d) 2.5, (e) 5 and (f) 10 wt.% 84

Cooling curves of the center and wall of the specimen with its corresponding equivalent temperature difference (AT=TW-TC) for Mg-Ca alloys with different calcium content (a) 1.25, (b) 2.5, (c) 5 and (d) 10 wt.% 86

The effect of Ca content on solid fraction at dendrite coherency point and T n -T Dcp 88

Potentiodynamic polarization curves of Mg and Mg-Ca alloy in Kokubo solution 90

SEM micrographs after polarization test in Kokubo solution (a) pure Mg, and b) Mg-xCa alloys with various Ca content; 0.5 (c) 1.25, (d) 2.5, (e) 5 and (f) 10 wt.% 92

SEM micrographs showing the occurrence of pitting and peeling in pure Mg and Mg-xCa after being immersed in Kokubo solution for 84 h. Mg-1 OCa was immersed in Kokubo solution for 6 h. (a) pure Mg, (b) Mg-0.5Ca, (c) Mg-1.25Ca, (d) Mg-2.5Ca, (e) EDS analyses of area 1,(f) EDS analyses of area 2, (g) Mg-5Ca, (h) Mg-lOCa,(i) EDS analyses of area 3 and (j) EDS analyses of area 4. 96

X-ray diffraction patterns of (a) pure Mg, and Mg-xCa alloys with various Ca additions (b) 0.5, (c) 1.25, (d)2.5, (e) 5 and (f) 10 wt.% immersed in Kokubo solution for 144 h 98

FTER absorption spectra of (a) pure Mg and Mg-xCa alloys with various Ca content: (b) 0.5, (c) 1.25, (d) 2.5,(e) 5 and (f) 10 wt.% with immersion duration of 144 h 100

The variation of the pH value in a Kokubo solution as a function of immersion time for pure Mg and Mg-xCa alloys with different calcium content 101

Optical micrographs of specimens (a) Mg-0.5Ca and Mg-0.5Ca-xZn alloys with various Zn content: (b) 0.5,(c) 1, (d) 3, (e) 6, (f) 9 wt.% 104

Page 15: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

SEM micrographs of a) Mg-0.5Ca, (b) Mg-0.5Ca- 0.5Zn, (c) Mg-0.5Ca-lZn, (d) Mg-0.5Ca-3Zn, (e) EDS analysis of point 1, (f) EDS analysis of point 2, (g) M g- 0.5Ca-4.5Zn, (h) Mg-0.5Ca-6Zn, (i) EDS analysis of point 3 and (j,k) Mg-0.5Ca-9Zn alloys 107

X-ray diffraction patterns of (a) Mg-0.5Ca and M g- 0.5Ca-xZn alloys with various Zn content: (b) 0.5, (c) 1,(d) 3, (e) 4.5, (f) 6 and (g) 9 wt.% 109

Effect of Zn amount on the hardness value of Mg- 0.5Ca-xZn alloys 110

Cooling curves of the Mg-0.5Ca-xZn alloys (x = 0.5, 1,6 and 9 wt.%) with four solidification reactions 111

Cooling curve from the thermal analysis (a) Mg-0.5Ca,(b) Mg-0.5Ca-0.5Zn, (c) Mg-0.5Ca-lZn, (d) M g- 0.5Ca-6Zn and (e) Mg-0.5Ca-9Zn alloys 113

Schematic plots of solidification stage of Mg-0.5Ca- xZn alloy with Zn solute distribution 114

The changes of (AT/At) versus time for (a) Mg-0.5Ca and Mg-0.5Ca-xZn alloys with various Zn content: (b)0.5, (c) 1, (d) 3, (e) 4.5, (f) 6 and (g) 9 wt.% 117

Cooling curves at the center and wall of the specimen and the equivalent temperature difference of Mg-0.5Ca- xZn for (a) 3, (b) 4.5, (c) 6 and (d) 9 wt.% Zn 118

The effect of Zn contents on solid fraction at dendrite coherency point 119

Potentiodynamic polarization curves of Mg-0.5Ca-xZn alloys specimens immersed in Kokubo solution 122

SEM micrographs showing surface morphology characteristics of Mg-0.5Ca-xZn alloys with various Zn content (a) 0.5, (b) 1, (c) 3, (d) 4.5, (e) 6 and (f) 9 wt.% after polarization in Kokubo solution 125

SEM micrographs of (a) Mg-0.5Ca (b) Mg-0.5Ca- 0.5Zn, (c) Mg-0.5Ca-lZn, (d) EDS analysis of point 1,(e) Mg-0.5Ca-3Zn, (f) Mg-0.5Ca-4.5Zn, (g) M g- 0.5Ca-6Zn, (h,i) Mg-0.5Ca-9Zn alloys, (j) EDS analysis of point 2, and (k) EDS analysis of point 3 after samples immersed for duration of 144 h in Kokubo solution 129

Page 16: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

Schematic illustration of corrosion mechanism for M g- Ca-Zn alloys (a) the galvanic corrosion between Mg and secondary phases, (b) formation of the thin protective film of Mg(OH)2, (c) formation of hydroxyapatite layer and (d) formation of needle shape hydroxyapatite layer on M g-0.5Ca-l Zn alloys 131

X-ray diffraction patterns of Mg-0.5Ca-xZn alloys with various Zn content: a) 0.5 (b) 1, (c) 3, (d) 4.5, (e) 6, (f) 9 wt.% immersed in Kokubo solution for 144 h 132

FTIR absorption spectra of (a) Mg-0.5Ca and M g- 0.5Ca-xZn alloys with various Zn content: (b) 0.5, (c) 1,(d) 3, (e) 4.5, (f) 6 and (g) 9 wt.% with immersion duration of 144 h in Kokubo solution 134

The variation of the pH value in Kokubo solution as a function of immersion time for Mg-0.5Ca-xZn alloys with different Zn content 136

Hydrogen evolutions of the Mg-0.5Ca-xZn alloys immersed in Kokubo solution for duration of 240 h 137

Corrosion rate obtained by weight loss of Mg-0.5Ca- xZn alloys as a function of Zn content in Kokubo solution for duration of 3, 7 and 14 days 139

The variation of mass gain of Mg-0.5Ca and Mg-0.5Ca- lZn treated specimens in HF solution as a function of soaking time 142

Image of (a) 35% HF and (b) 40% HF specimens after fluoride treatment 142

SEM micrographs of (a) untreated Mg-0.5Ca alloy, (b)35% HF, (c) 40% HF and (d) EDS spectrum of point 1 144

SEM micrographs of (a) untreated Mg-0.5Ca-lZn alloy,(b) 35% HF, (c) 40% HF and (d) EDS spectrum of point 2 145

Element mapping of Mg, Ca, O, C and F on Mg-0.5Ca specimens after fluoride treatment (a) 35% HF, (b) 40%HF, (c) EDS of point 1, (d) EDS of point 2 (red—>Mg;Ca—>blue; O—>-green; C—>violent; F—>yellow) 146

Element mapping of Mg, Ca, O, C and F on Mg-0.5Ca- lZn specimens after fluoride treatment (a) 40% HF, (b)35% HF, and (c) EDS of point 1 147

Page 17: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

4.40

4.41

4.42

4.43

4.44

4.45

4.46

4.47

4.48

4.49

4.50

X-ray diffraction patterns of Mg-0.5Ca fluoride treated(a) 40% HF, (b) 35% HF and (c) untreated specimen 149

X-ray diffraction patterns of Mg-0.5Ca-lZn fluoride treated (a) 40% HF, (b) 35% HF and (c) untreated specimen 149

AFM images of (a) untreated Mg-0.5Ca, (b) untreated Mg-0.5Ca-lZn, (c) treated Mg-0.5Ca with 35% HF, (d) treated Mg-0.5Ca-lZn with 35% HF and e) treated Mg- 0.5Ca with 40% HF and (f) treated Mg-0.5Ca-lZn with 40% HF 151

Potentiodynamic polarization curves of untreated, 35%HF and 40% HF treated Mg-0.5Ca alloy in Kokubo solution 154

Potentiodynamic polarization curves of untreated, 35%HF and 40% HF treated Mg-0.5Ca-lZn alloy in Kokubo solution 154

SEM micrographs of the Mg-0.5Ca and Mg-0.5Ca-lZn alloys after the potentiodynamic polarization tests: (a,b)35% HF, (c,d) 40% HF and (e,f) EDS spectrum of point l an d 2 155

SEM micrograph indicates surface morphology of Mg- 0.5Ca alloy after being immersed in Kokubo solution for 168h; (a,b) untreated Mg-0.5Ca, (c,d) treated with 35% HF, (e,f) EDS analysis of point 1 and 2, (g,h) treated with 40% HF and (j,k) EDS analysis of point 3 and 4 159

SEM micrograph indicates surface morphology of Mg-0.5Ca-lZn alloy after being immersed in Kokubo solution for 168h; (a,b) untreated Mg-0.5Ca-lZn, (c,d) treated with 35% HF, (e,f) EDS analysis of point 5 and6, (g,h) treated with 40% HF and (j,k) EDS analysis of point 7 and 8 162

X-ray diffraction patterns of (a) untreated Mg-0.5Ca specimen (b) fluoride treated alloy with 35% HF and (c)40% HF after immersion in Kokubo solution for 196 h 164

X-ray diffraction patterns of (a) untreated Mg-0.5Ca- lZn specimen (b) fluoride treated alloy with 35% HF and (c) 40% HF after immersion in Kokubo solution for 196 h 164

FTIR absorption spectra of (a) untreated Mg-0.5Ca

Page 18: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

4.51

4.52

4.53

4.54

4.55

4.56

4.57

4.58

4.59

4.60

4.61

4.62

4.63

specimen (b) fluoride treated alloy with 35% HF and (c)40% HF after immersion in Kokubo solution for 196 h 166

FTIR absorption spectra of (a) untreated Mg-0.5Ca-lZn specimen (b) fluoride treated alloy with 35% HF and (c)40% HF after immersion in Kokubo solution for 196 h 166

The variation of the pH value in Kokubo solution as a function of immersion time for untreated Mg-0.5Ca and treated specimen 168

The variation of the pH value in Kokubo solution as a function of immersion time for untreated Mg-0.5Ca-lZn and treated specimen 168

The mass loss of untreated Mg-0.5Ca alloy and treated specimens versus immersion time in Kokubo solution 171

The mass loss of untreated Mg-0.5Ca-lZn alloy and treated specimens versus immersion time in Kokubo solution 171

Images of untreated and fluoride treated Mg-0.5Ca alloys (Dark color: HF treated; Light color: untreated alloy) after immersed in Kokubo solution at 37°C for (a)3 days, (b) 7 days and (c) 10 days 174

Images of untreated and fluoride treated Mg-0.5Ca-lZn alloys (Dark color: HF treated; Light color: untreated alloy) after immersed in Kokubo solution at 37°C for (a)3 days, (b) 7 days and (c) 10 days 174

Effect of current density on deposit weight of brushite at constant deposition time of 60 min 177

Effect of electrodeposition time on deposit weight of brushite at constant current density of 0.4 mA/cm2 177

XRD pattern of brushite coating on Mg alloy at different current density (a) 0.15 mA/cm2, (b) 0.25 mA/cm2, (c) 0.4 mA/cm2 and (d) 0.8 mA/cm2 179

XRD pattern of brushite coating on Mg alloy at different electrodeposition time (a) 10 min, (b) 20 min,(c) 40 min and (d) 60 min 179

AFM image of brushite coating on Mg alloy at different current density (a) 0.15 mA/cm2, (b) 0.25 mA/cm2, (c)0.4 mA/cm2 and (d) 0.8 mA/cm2 181

SEM image of DCPD coating on Mg alloy at different

Page 19: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

4.64

4.65

4.66

4.67

4.68

4.69

4.70

4.71

4.72

4.73

4.74

current density and corresponding EDS (a,b) 0.15 mA/cm2, (c,d) 0.25 mA/cm2, (e,f) EDS analysis of point A and B (g,h) 0.4 mA/cm2 and (j,k) 0.8 mA/cm2 and (m,n) EDS analysis of point C and D

TEM micrographs of the powder scraped from the brushite coating on Mg alloy at different current density (a) 0.15 mA/cm2 and (b) 0.8 mA/cm2

SEM images of the surface of (a) untreated Mg-0.5Ca- 6Zn alloy, (b) fluoride coating, (c) EDS analysis of point 1, (d) DCPD/MgF2 composite coating,(e) nano-HA/MgF2 composite coating specimen, (g) EDS analysis of point 2 and (h) EDS analysis of point 3

The cross-sectional SEM image of (a) DCPD/MgF2 composite coating, (b) HA/MgF2 composite coating and(c) fluoride coated specimen

The cross-sectional SEM images of the top layer of (a) HA coating and (b) DCPD coating

TEM micrographs of the powder scraped from the (a) DCPD coating, and (b) HA coating on Mg-Ca-Zn alloy

X-ray diffraction patterns of (a) untreated alloy, (b) fluoride coating, (c) DCPD/MgF2 composite coating and(d) nano-HA/MgF2 composite coating specimen

The FTIR characteristic bands of (a) DCPD/MgF2 composite coating and (b) nano-HA/MgF2 composite coating specimen

AFM topography of (a) untreated alloy, (b) fluoride coating, (c) DCPD/MgF2 composite coating, (d) nano- HA/MgF2 composite coating specimen

Potentiodynamic polarization curves of untreated alloys and three coated specimens in Kokubo solution

SEM images of specimens immersed in Kokubo for 192 h (a) untreated, (b) fluoride coating, (c) EDS analysis of point 1, (d) DCPD/MgF2 composite coating, (e) nano- HA/MgF2 composite coating, (f) EDS analysis of point2, (g) EDS analysis of point 3

X-ray diffraction patterns attained from the corrosion products of (a) untreated alloy, (b) fluoride coating, (c) DCPD/MgF2 composite coating and (d) nano-HA/MgF2 composite coating specimen after full immersion

183

185

187

189

190

190

191

194

195

197

Page 20: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

4.75

4.76

4.77

exposure to Kokubo solution for 192 h duration 203

FTIR absorption spectra attained from the corrosion products of (a) untreated alloy, (b) fluoride coating, (c) DCPD/MgF2 composite coating, and (d) nano-HA/MgF2 composite coating specimen after full immersion exposure to Kokubo solution for 192 h duration 204

Change in pH of the Kokubo solution during immersion of untreated, fluoride coated, DCPD/MgF2 and nano- HA/MgF2 composite coated specimens for duration of 192 h 206

Hydrogen evolution of the untreated, fluoride coated, DCPD/MgF2 and nano-HA/MgF2 composite coated specimens immersed in Kokubo solution for duration of 240 h 208

Page 21: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

LIST OF ABBREVIATIONS

CA-CCTA Computer Aided Cooling Curve Thermal Analysis

CCA Cooling Curve Analysis

DCP Dendrite Coherency Point

EDX Energy Dispersive X-ray

FESEM Field Emission Scanning Electron Microscopy

OM Optical Microscopy

FTIR Fourier-Transformed Infrared Spectroscopy

SEM Scanning Electron Microscopy

TA Thermal Analysis

TEM Transmission Electron Microscopy

AFM Atomic-Force Microscopy

UTS Ultimate Tensile Strength

UCS Ultimate Compressive Stress

XRD X-ray Diffraction

SBF Simulated body fluid

HA Hydroxyapatite

DCPD Dicalcium Phosphate Dihydrate (Brushite)

ED Electrodeposition

SiC Silicon Carbide

VHN Vickers Microhardness

SCE Saturated Calomel Electrode

HF Hydrofluoric Acid

PBR Pilling-Bedworth Ratio

Ca-P Calcium Phosphates

MgF2 Magnesium Fluoride

Mg(OH)2 Magnesium Hydroxide (Brucite)

Page 22: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

DMEM Dulbecco’s Modified Eagle Medium

MEM Minimum Essential Medium

PBS phosphate buffered saline

ACP Amorphous Calcium Phosphate

OCP Octacalcium Phosphate

TCP Tricalcium phosphate

CDHA Calcium-Deficient Hydroxyapatite

PLLA Poly L-Lactic Acid

PGA Polyglycolic Acid

PEO Polyethylene Oxide

mpy Mils Per Year

P 0 43 Phosphate

OH" Hydroxide

C032- Carbonate

Page 23: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

LIST OF SYMBOLS

Zre - Impedance

Cp - Specific heat

foe? - Solid fraction at dendrite coherency point

/s - Solid fraction

/ l - Liquid fraction

T - Temperature

Ts - Start of solidification temperature

Te - End of solidification temperature

Teu - Eutectic temperature

ts - Start of solidification time

te - End of solidification time

AT - Solidification range

At - Total solidification time

Tn - Nucleation temperature

tx - Nucleation time

T dcp - Coherency temperatures

a-Mg - Primary magnesium dendrite

p - Density

°C - Centigrade degree

/? - Diffraction peak width at mid-height,

t - Average crystallite size (mn)

6 - Bragg diffraction angle

A - X-ray wave length

Ra - Average roughness

R ms - Mean spacing roughness

icorr - Corrosion current density

Ecorr - Corrosion potential

Page 24: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

fie - Cathodic Tafel slops

Pa - Anodic Tafel slopes

RP - Polarization resistance

Pi - Corrosion rate

Epit - Pitting potential

Q - Growth restricted factor

m - Gradient of the liquidus line of a binary alloy

Co - Bulk concentration of the solute

k - Equilibrium partition coefficient of the solute

Qs - Rate of heat released

Tf - Final temperature

Cp - Specific heat of the alloy

Tw - Temperature at wall thermocouple

Tc - Temperature at centeral thermocouple

Page 25: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

LIST OF APPENDICES

APPENDIX TITLE

A Screen view of DEWESoft 7.5 Data acquisitionsoftware during recording

B Screen view of Autolab software for fitting andextracting results from the Tafel slopes

C SEM micrographs of porous Mg(OH)2 on thespecimen surface immersion in SBF

D List of publications

PAGE

230

231

232

233

Page 26: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

INTRODUCTION

1.1 Background

Metallic materials have fundamental roles for repair or replacement of bone

tissue particularly for load-bearing applications due to their good fracture toughness

and high mechanical strength [1]. However, the release of toxic metallic ions during

corrosion has limited their applications as implant materials [2]. This released ion

can result in inflammatory, which in turn decrease biocompatibility [3]. Compared to

the traditional metallic implant materials such as titanium alloys, stainless steel and

cobalt-chromium alloys, biodegradable implant materials do not require second

surgical procedure to remove them once the bone healed and they are replaced by

natural tissue. In addition, second surgical procedures always have risk and cost

involved [4]. Furthermore, the presence of permanent implants in the human body

may cause allergy and sensitization.

Recently, polymeric-based biodegradable materials, mostly polylactic have

shown a feasible approach to the development of completely degradable devices for

biomedical applications. However, polymers can create significant adverse reactions

and have inadequate mechanical strength, thus their applications are limited to low

load-bearing applications [5]. In addition, polymeric implants are more expensive

compared to the typical metallic implants [4,5], As an alternative to biodegradable

polymer implants is the biodegradable metallic implants which received great

attention owing to the high load-bearing capacity [4], Magnesium and its alloys have

shown great potential in cardiovascular applications where temporary stents are

Page 27: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

required. They have also been used as bone substitute materials owing to their

biocompatibility and biodegradability and have similar mechanical properties with

natural bone. Mg is one of the fundamental elements in the human body and the

fourth most dominant component in the human serum [6], According to Song [5] a2+

normal adult consumes about 300-400 mg of Mg every day and an excess of Mg is

not harmful since it excretes through urine. Mg as biodegradable material is

lightweight (1.74 g/cm3), which is 1.6 and 4.5 times lighter than that of aluminum

and steel respectively.

Magnesium fracture toughness is higher compared to bio-ceramics such as

hydroxyapatite, and has close elastic modulus and compressive yield strength to

natural bone [3, 5], However, applications of Mg alloys are limited due to the

relatively poor corrosion resistance, the release of hydrogen gas and a relatively high

degradation rate when exposed to human body fluid [7, 8]. These characteristics lead

to a decline in the mechanical properties of pure Mg before new tissues are properly

and adequately healed. Mg alloy as implant can maintain the mechanical stability for

around 6 to 8 weeks, while implant need to maintain its mechanical integrity in the

body for about 12 weeks [9]. Thus, various approaches have been employed to

enhance corrosion resistance of pure Mg such as alloying, surface treatment and

coating.

Most of the research reported on biodegradable magnesium alloys for

biomedical application contains aluminium (Al) and/or rare earth (RE) elements.

However, Al could cause nerve toxicity and RE could lead to hepatotoxicity [10, 11].

Other alloying elements such as zirconium (Zr) may lead to lung, liver,

nasopharyngeal and breast cancers [5]. The addition of neodymium (Nd) and yttria

(Y) into Mg alloys resulted in a disturbance at the implantation site [10, 11]. Clearly,

to guarantee the biosafety of biodegradable materials, the constitutional elements of

magnesium-based alloys should be toxic free [7,10]. To address this point, Ca and Zn

were found to be toxic free.

Page 28: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

Calcium is one of the main elements in the human bone and release of Mg

and Ca ions may improve the bone healing process [12]. Calcium, with a density of

1.55g/cm3, is also lightweight material similar to magnesium (1.74 g/cm3) and will

maintain its specific properties. The relatively reasonable cost of Ca should also

attract its use as alloying element in medical applications [13]. Previous research also

has shown that the corrosion resistance of Mg-Ca alloys increased significantly with

the addition of 1 wt.% Ca [14]. Besides, the addition of Zn into magnesium alloys is

very effective in increasing their mechanical strength [15, 16]. Zinc is also generally

known to increase age hardening response, produce intermetallic compounds, refine

grain size and improve castability and mechanical properties such as tensile and

hardness of Mg-Ca [17-19], The effect of Zn on corrosion resistance of Mg-Ca was

not known for biomedical applications. Thus, there is a need to investigate the effect

of Zn addition on Mg-Ca corrosion rate.

Since ensuring the implant remains its function until after the bone heals,

corrosion resistance of Mg-Ca and Mg-Ca-Zn alloys should be enhanced further by

double protective film composed of inner-layer. Several reports have shown that

decreasing the corrosion rate of Mg in simulated body fluids is possible by surface

treatment methods [20-23]. Surface treatment by hydrofluoric acid (HF) was found

to be effective in increasing corrosion resistance at 48% concentration [4]. However,

protection provided by the MgF2 layer at that concentration was high at the initial

phase, but stabilized with time and became less effective. Other HF concentrations

and immersion time was not known to affect corrosion rate of Mg-Ca and Mg-Ca-Zn

alloys. Micro sized hydroxyapatite (HA) as the top layer coat by electrodeposition

was used without inter-layer on Mg-Ca substrates with the intention to prolong

protection. It was found effective in increasing the corrosion resistance, however the

hydrogen gas evolution was beyond the tolerance limit of human body [24, 25].

Therefore, this research is aimed at addressing a comprehensive use of

alloying, fluoride treatment and nano-calcium phosphate coating in the form of nano-

HA/MgF2 and DCPD/MgF2 composite coating to increase the corrosion resistance

and minimize hydrogen production of Mg alloys for use in biomedical implant.

Page 29: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

1.2 Problem Statement

Magnesium alloys as biodegradable materials possess several advantages

compared to the current metallic materials and biodegradable plastics and ceramics.

Magnesium benefits include higher fracture toughness over ceramic biomaterials,

higher strength them biodegradable plastics, and higher elastic modulus compared to

other biomedical metals. However, the use of pure magnesium is hindered by its

relatively poor corrosion resistance which causes the mechanical properties of the

implant to significantly decrease resulting in the tissues being unable to heal.

Furthermore, Mg corrosion process involves evolution of hydrogen gas which

accumulates in vivo adjacent to the implant. The H2 gas and subsequent formation of

hydrogen bubbles can noticeably impair other clinical applications of Mg.

Alkalization of the surroundings by the H2 gas evolution during the corrosion process

of Mg is another drawback. Thus, it is essential to increase the corrosion resistance

of Mg and its alloys to meet the requirements of the synchronization between implant

biodegradation and the new bone formation.

1.3 Purpose of the Study

The purpose of this study addresses the problem described above, namely to

develop a new biodegradable magnesium alloy with adequate degradation rate for

use as an implant material. To investigate the potential of fluoride treatment for the

corrosion protection of magnesium alloys. The influence of parameters such as HF

concentration, duration and coating performance will be investigated. To determine

the developed process for synthesis a novel bi-layered coating composed of nano-HA

and brushite as top layer and MgF2 as interlayer that will demonstrate enhancement

of corrosion resistance of magnesium alloy. The optimal coating conditions for

deposition of nano-hydroxyapatite and brushite on fluoride treated magnesium alloy

will be determined.

Page 30: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

1.4 Objectives of the Research

The principal objective of the research is increasing corrosion resistance of

magnesium alloys by alloying accompanied with surface treatment and nano-

hydroxyaptite coating by electrodeposition (ED) method on Mg-Ca and Mg-Ca-Zn

alloys. The specific objectives include:

1. To investigate the effects of calcium and zinc additions on the microstructure,

degradation rate and corrosion properties as well as solidification behavior

using thermal analysis of magnesium alloys.

2. To determine the effect of surface modification by hydrofluoric acid (HF) on

microstructure, in-vitro degradation behavior and corrosion properties of Mg-

Ca and Mg-Ca-Zn alloys.

3. To determine the effect of nano-HA/MgF2 and DCPD/MgF2 composite coating

on microstructure and corrosion behavior of Mg-Ca-Zn alloys.

1.5 Significance of the Research

In recent years, the study of magnesium alloys as degradable biomaterials has

become one of the most revolutionary research topics at the forefront of biomaterials

research. However, its application has been limited due to the relatively poor

corrosion resistance. Hence, it is expected that the outcome of the research will

eliminate the need of secondary surgery for current implant materials eliminated.

Using magnesium alloys as biodegradable implants resulted in reducing time, cost,

risk and morbidity of the patients.

Page 31: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

1.6 Scope of the Research

The research was conducted in the following limits:

1- Calcium and zinc additions to Mg were limited to between (0.5 and 10 wt.%)

and (0.5 and 9 wt%) respectively.

2- The responses on the effect of calcium and zinc additions were limited to the

microstructure, degradation rate, corrosion properties and solidification

behavior of Mg-xCa and Mg-Ca-xZn alloys.

3- Hydrofluoric acid with concentrations between 35 and 40% as well as

immersion duration of 6 to 24 hours was used for surface treatment of Mg-Ca

and Mg-Ca-Zn alloys.

4- The current density used in electrodeposition of nano-HA and brushite

coatings on magnesium alloys was regulated between 0.15 to 0.8 mA/cm2 for

durations of 10 to 60 min.

5- The specimens were subjected to microstructural characterization using

optical microscopy, X-ray diffraction, atomic-force microscopy, Fourier-

transformed infrared spectroscopy, scanning electron microscopy and energy

dispersive X-ray spectroscopy and transmission electron microscopy.

6- The corrosion resistance was examined in vitro by potentiodynamic

polarization test, immersion test and hydrogen evolution test in Kokubo

solution at room temperature.

7- Solidification behavior of Mg-Ca and Mg-Ca-Zn alloys were examined via

two thermocouple thermal analysis method.

Page 32: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

REFERENCES

1. Niinomi M., Recent Metallic Materials for Biomedical Applications.

Metallurgical and Materials Transaction A, 2002. 33: 477.

2. Jacobs J.J., Hallab N.J., and Skipor A.K., Metal degradation products: a cause

for concern in metal-metal bearings? Clin Orthop Relat Res, 2003. 417: 139­

47.

3. Staigera P.M., Pietaka M.A., and Huadmai J., Magnesium and its alloys as

orthopedic biomaterials: A review. Biomaterials, 2006. 27: 1728-1734.

4. Chiu K.Y., Wong M.H., Cheng F.T., and Man H.C., Characterization and

corrosion studies of fluoride conversion coating on degradable Mg implants.

Surface & Coatings Technology , 2007. 202: 590-598.

5. Song G., Control of biodegradation of biocompatable magnesium alloys.

Corrosion Science, 2007. 49: 1696-1701.

6. Song G.L. and Song S.Z., A possible biodegradable magnesium implant

material. Advanced Engineering Materials, 2007. 94: 298-302.

7. Witte F., Feyerabend F., and Maier P., Biodegradable magnesium-

hydroxyapatite metal matrix composites. Biomaterials, 2007. 28: 2163-2174.

8. Xu L., Pan F., and Yu G., In vitro and in vivo evaluation of the surface

bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials,

2009. 30:1512-1523.

9. Witte F., Fischer J., and Nellesen J., In vivo corrosion and corrosion

protection of magnesium alloy LAE442. Acta Biomaterialia, 2010. 6: 1792­

1799.

10. Li N., Zheng Y., Novel Magnesium Alloys Developed for Biomedical

Application: A Review., J. Mater. Sci. Technol., 2013, 1-14.

11. Zhanga E. and Yang L., Microstructure, mechanical properties and bio­

corrosion properties of M g-Zn-M n-Ca alloy for biomedical application.

Materials Science and Engineering A, 2008. 497: 111-118.

Page 33: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

12. Li Z., Gu X., Lou S., and Zheng Y., The development of binary Mg-Ca alloys

for use as biodegradable materials within bone. Biomaterials, 2008. 29: 1329­

1344.

13. Oh-ishi K, Watanabeb R., Mendisa C.L, Hono K, Age-hardening response of

Mg-0.3 at.%Ca alloys with different Zn contents. Materials Science and

Engineering A, 2009. 526: 177-184.

14. Tong L. B., Zheng M.Y., Cheng L. R., Kamado S., Zhang H. J. Effect of

extrusion ratio on microstructure, texture and mechanical properties of

indirectly extruded M g-Zn-Ca alloy. Materials Science and Engineering: A,

569, 2013:48-53.

15. Zhang E., Yang L., Xu J., and Chen H., Microstructure, mechanical

properties and biocorrosion properties of M g-Si(-Ca, Zn) alloy for

biomedical application. J Acta Biomater, 2010. 6: 1756-1762.

16. Levi G., Avraham S., Zilberov A., and Bamberger M., Solidification, solution

treatment and age hardening of a M g-1.6 wt.% Ca-3.2 wt.% Zn alloy. Acta

Materialia, 2006. 54: 523-530.

17. Du H., Wei Z., Liu X., and Zhang E., Effects of Zn on the microstructure,

mechanical property and bio-corrosion property of Mg-3Ca alloys for

biomedical application. Materials Chemistry and Physics, 2011 125: 568­

575.

18. Zhou T., Chen D., and Chen Z. h., Microstructures and properties of rapidly

solidified Mg-Zn-Ca alloys. Transactions o f Nonferrous Metals Society o f

China, 2008. 18: 101-106.

19. Du H., Wei Z., Liu X., and Zhang E., Effects of Zn on the microstructure,

mechanical property and bio-corrosion property of Mg-3Ca alloys for

biomedical application. Materials Chemistry and Physics, 2011 125: p. 568­

575.

20. Conceicao T.F.D., Scharnagl N., Blawert C., Dietzel W., and Kainer K.U.,

Surface modification of magnesium alloy AZ31 by hydrofluoric acid

treatment and its effect on the corrosion behaviour. Thin Solid Films, 2010.

518: 5209-5218.

21. Gu X.N., Zheng W., Cheng Y., and Zheng Y.F., A study on alkaline heat

treated M g-Ca alloy for the control of the biocorrosion rate. Acta

Biomaterialia, 2009. 5: 2790-2799.

Page 34: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

22. Li W., Li.Y., Zhua L., and Zhao B., Growth characterization of anodic film

on AZ91D magnesium alloy in an electrolyte of Na2SiO3 and KF. Journal o f

University o f Science and Technology Beijing, 2006. 13: 450-455.

23. Zhou W., Shan D., Han E.H., and Ke W., Structure and formation mechanism

of phosphate conversion coating on die-cast AZ91D magnesium alloy.

Corrosion Science, 2008. 50: 329-337.

24. Chun-Yan Z., Rong-Chang Z., Cheng-Long L., and Jia-Cheng Gao.,

Comparison o f calcium phosphate coatings on M g-Al and M g-Ca alloys and

their corrosion behavior in Hank's solution. Surface & Coatings Technology,

2010 204: p. 3636-3640.

25. Wan Y., Xiong G., and Luo H., Preparation and characterization of a new

biomedical magnesium-calcium alloy. Materials & Design, 2008. 29: 2034­

2037.

26. Lorenz C., Brunner G.J, and Kollmannsberger P., Effect of surface pre­

treatments on biocompatibility of magnesium. Acta Biomaterialia, 2009. 5:

2783-2789.

27. Kim W.C., Kim J.G., and Lee J.Y., Influence of Ca on the corrosion

properties of magnesium for biomaterials. Materials Letters, 2008. 62: 4146­

4148.

28. Hermawan H., Dube D, Mantovani D., Developments in metallic

biodegradable stents. Acta Biomaterialia, 2010. 6: 1693-1697.

29. Zheng Y.F., Gu X.N., Xi Y.L., and Chai D.L., In vitro degradation and

cytotoxicity of Mg/Ca composites produced by powder metallurgy. Acta

Biomaterialia, 2010. 6: 1783-1791.

30. Harandi S.E., Idris M.H., and Jafari H., Effect of forging process on

microstructure, mechanical and corrosion properties of biodegradable Mg-

1Ca alloy. Materials & Design, 2011. 32: 2596-2603.

31. Peter B. and Maurus M.D., Bioabsorbable Implant Material Review.

Operative Techniques in Sports Medicine, 2004. 12(3): 158-160.

32. Gu X.N. and Zheng Y.F., A review on magnesium alloys as biodegradable

materials. Front. Mater. Sci. China, 2010. 4(2): 111-115.

33. Guo K.W., A Review of Magnesium/Magnesium Alloys Corrosion and its

Protection. Recent Patents on Corrosion Science, 2010. 2: 13-21.

Page 35: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

34. Manivasagam G., Dhinasekaran D., and Rajamanickam A., Biomedical

Implants: Corrosion and its Prevention - A Review. Recent Patents on

Corrosion Science, 2010. 2: 40-54.

35. Witte F. and Hort N., Degradable Biomaterials Based on Magnesium

Corrosion. Current Opinion in Solid State and Materials Science, 2008. 12:

63-72.

36. Eglin D. and Alini M., Degradable polymeric materials for osteosynthesis:

tutorial. European Cells and Materials, 2008. 16: 80-91.

37. Kammer C., Magnesium Taschenbuch. Dusseldorf: Aluminium-Verlag, 2000.

38. Witte F., The history of biodegradable magnesium implants: A review. Acta

Biomaterialia, 2010. 6: 1680-1692.

39. Edgar R.L., Global overview on demand and applications for magnesium

alloys. Proceedings of the international congress on “Magnesium alloys and

their applications” . Munchen, Weinheim: WILEY-VCH-Verlag GmbH 2000:

3-8.

40. Witte F., Eliezer A., and Cohen S., The history, challenges and the future of

biodegradable metal implants. Advanced Materials Research, 2010. 95: 3-7.

41. Mueller W.D. and Lucia Nascimento M., Critical discussion of the results

from different corrosion studies of Mg and Mg alloys for biomaterial

applications. Acta Biomaterialia, 2010. 6: 1749-1755.

42. Jayaraj J., Mendis C. L., and Ohkubo T., Enhanced precipitation hardening of

M g-Ca alloy by Al addition. Scripta Materialia, 2010. 63: 831-834.

43. Cai S., Lei T., and Li N., Effects of Zn on microstructure, mechanical

properties and corrosion behavior of M g-Zn alloys. Materials Science and

Engineering C, 2012. 32: 2570-2577.

44. Witte F., Kaese V., and Haferkamp H., In vivo corrosion of four magnesium

alloys and the associated bone response. Biomaterials, 2005. 26: 3557-3563.

45. Xu L.P., Yu G.N., Zhang E.L., Pan F., and Yang K., In vivo corrosion

behavior of Mg-Mn-Zn alloy for bone implant application. J Biomed Mater

Res, 2007. 83A(3): 703-11.

46. Li Q.F., Weng H. R., and Suo Z.Y., Microstructure and mechanical properties

of bulk Mg-Zn-Ca amorphous alloys and amorphous matrix composites.

Materials Science and Engineering A , 2008. 487: 301-308.

Page 36: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

47. Wu G., Ibrahim J.M., and Chu P.K., Surface design of biodegradable

magnesium alloys - A review. Surface & Coatings Technology, 2012.

doi.org/10.1016/j.surfcoat.2012.10.009.

48. Xin Y., Hub T., and Chu P. K., In vitro studies of biomedical magnesium

alloys in a simulated physiological environment: A review. Acta

Biomaterialia, 2011 7: 1452-1459.

49. Gu X., Zheng Y., and Cheng Y., In vitro corrosion and biocompatibility of

binary magnesium alloys. Biomaterials, 2009. 30: 484-498.

50. Kutz M., Standard Handbook of Biomedical Engineering and Design.

McGraw-Hill Professional Publishing, 2002.

51. Aghion E. and Levyb G., The effect of Ca on the in vitro corrosion

performance of biodegradable Mg-Nd-Y-Zr alloy. J Mater Sci: Mater Med,

2010. 45: 3096-3101.

52. Zhang E., Yang L., Xu J., and Chen H., Microstructure, mechanical

properties and bio-corrosion properties of M g-Si(-Ca, Zn) alloy for

biomedical application. Acta Biomaterialia, 2010. 6: 1756-1762.

53. Sudholz A.D., Gusieva K., Chen X.B., Electrochemical behaviour and

corrosion of Mg-Y alloys. Corrosion Science, 2011. 53: 2277-2282.

54. Wasiur-Rahman S and Medraj M., Critical assessment and thermodynamic

modeling of the binary Mg-Zn, Ca-Zn and ternary M g-Ca-Zn systems.

Intermetallics, 2009. 17: 847-864.

55. Nayeb-Hashemi A.A. and Clark J.B., Phase diagrams of binary magnesium

alloy. ASM International, 1988.

56. Aljarrah M. and Medraj M, Thermodynamic modelling of the Mg-Ca, M g-

Sr, Ca-Sr and M g-Ca-Sr systems using the modified quasichemical model.

Computer Coupling o f Phase Diagrams and Thermochemistry, 2008. 32:

240-251.

57. Zhang S., Zhang X., and Zhao C., Research on an M g-Zn alloy as a

degradable biomaterial. Acta Biomaterialia, 2010. 6: 626-640.

58. Song Y., Hana E.H., Shan D., Yimb C. D., and Youb B. S., The effect of Zn

concentration on the corrosion behavior of Mg-xZn alloys. Corrosion

Science, 2012. 65: 322-330.

Page 37: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

59. Xu Z., Smith C., and Chen S., Development and microstructural

characterizations of Mg-Zn-Ca alloys for biomedical applications. Materials

Science and Engineering B, 2011 176(20): 1660-1665.

60. Nayeb-Hashemi A.A. and Clark J.B., Phase diagram of binary magnesium

alloys, ASM International. Materials Park, OH, 1988: 293-304.

61. Grube G., Alloys of magnesium with cadmium, zinc, bismuth and antimony.

Zeitschrift fu r Anorganische Chemie, 1906. 49: 72-92.

62. Takei T., The equilibrium diagram of the system magnesium-zinc. Kinzoku-

no Kenkyu, Japan Institute o f Metals, 1929. 6: 177-183.

63. Clark J.B., The solid constitution in the Mg-rich region of the Mg-Ca-Zn

phase diagram. Transactions o f the Metallurgical Society o f AIME, 1961.

221: 644-645.

64. Rosalbino F., De Negri S., and Saccone A., Bio-corrosion characterization of

Mg-Zn-X (X 5 Ca, Mn, Si) alloys for biomedical applications. J Mater Sci:

Mater Med, 2010 21: 1091-1098.

65. Dong-song Y., Er-lin Z., and Song-yan Z., Effect of Zn on mechanical

property and corrosion property of extruded Mg-Zn-Mn alloy. Trans.

Nonferrous Met. Soc. China 2008. 18. 763-768

66. Zhang B., Hou Y., and Wang X., Mechanical properties, degradation

performance and cytotoxicity of M g-Zn-Ca biomedical alloys with different

compositions. Materials Science and Engineering C, 2011. 31: 1667-1673.

67. Geng L, Zhang B.P, Li A.B, Dong C.C, Microstructure and mechanical

properties of M g-4.0Zn-0.5Ca alloy. Materials Letters, 2009. 63: 557-559.

68. Oh-ishia K., Watanabeb R., and Mendisa C.L., Age-hardening response of

Mg-0.3 at.%Ca alloys with different Zn contents. Materials Science and

Engineering A, 2009. 526: 177-184.

69. Paris R., Publications Scientifiques et Techniques du minist’ere de L ’Air.

Ministe re de L ’Air, 1934. 45: 1-86.

70. Levi G, Zilberov A.S, and Bamberger A.M, Solidification, solution treatment

and age hardening of a M g-1.6 wt.% Ca-3.2 wt.% Zn alloy. Acta Materialia,

2006. 54: 523-530.

71. Malekan M,. and Shabestari S.G, Effect of grain refinement on the dendrite

coherency point during solidification of the A319 aluminium alloy.

Metallurgical and Materials Transactions, 2009. 40A: 3196-3203.

Page 38: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

72. Zhou T., Chen D., Chen Z.H., and Chen J.H., Investigation on

microstructures and properties of rapidly solidified Mg-6wt.% Zn-5 wt.%

Ca-3 wt.% Ce alloy. Journal o f Alloys and Compounds, 2009. 475: L1-L4.

73. Dobrzanski L.A., Krol M, Tanski T., Maniara R., Thermal analysis of the

MCMgAl9Zn1 magnesium alloy. Archives o f Materials Science and

Engineering, 2008. 34: 113-116.

74. Emadi D, Whiting L.V, Nafisi S, and Ghomashchi R, Application of thermal

analysis in quality control of solidification process. Journal o f Thermal

Analysis and Calorimetry, 2005. 81: 235-242.

75. Liang S. M, Chen R.S, Blandin J.J, Suery M, and Han E.H, Thermal analysis

and solidification pathways of Mg-Al-Ca system alloys. Materials Science

and Engineering A, 2008. 480: 365-372.

76. Riddle Y.W. and Makhlouf M.M, Characterizing solidification by non­

equilibrium thermal analysis. Magnesium Technology, The Minerals, Metals

& Materials Society, San Diego, 2003: 101-106.

77. Apelian D, Sigworth G.K, and Whaler K.R, Assessment of grain refinement

and modification of Al-Si foundry alloys by thermal analysis. AFS

Transactions, 1984. 92: 297-307.

78. Mahfoud M, Emadi D, and Prasada Rao A. K, The role of thermal analysis in

detecting impurity levels during aluminum recycling. Journal o f Thermal

Analysis and Calorimetry, 2010. 100: 847-851.

79. Lu L., and Dahle A. K, Effects of combined additions of Sr and AlTiB grain

refiners in hypoeutectic Al-Si foundry alloys. Materials Science and

Engineering A, 2006. 435-436: 288-296.

80. Huang Z.H, Liang S.M, Chen R.S, and Han E.H, Solidification pathways and

constituent phase of Mg-Zn-Y-Zr alloys. Journal o f Alloys and Compounds,

2009. 468: 170-178.

81. Kainer K.U., Srinivasan P.B., Blawert C., and Dietzel W., Corrosion of

Magnesium and its alloys. Shreir’s Corrosion, 2010: 2011-2041.

82. Shi Z. and Atrens A., An innovative specimen configuration for the study of

Mg corrosion. Corrosion Science, 2011. 53: 226-246.

83. Zhang S., Li J., and Song Y., In vitro degradation, hemolysis and MC3T3-E1

cell adhesion of biodegradable M g-Zn alloy. Materials Science and

Engineering C, 2009. 29: 1907-1912.

Page 39: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

84. Wang Y., Wei M., and Gao J., Corrosion process of pure magnesium in

simulated body fluid. Materials Letters, 2008. 62: 2181-2184.

85. Atrens A., Liu M., and Zainal A.N., Corrosion mechanism applicable to

biodegradable magnesium implants. Materials Science and Engineering B ,

2011. 176: 1609-1636.

86. Virtanen S, Biodegradable Mg and Mg alloys: Corrosion and

biocompatibility. Materials Science and Engineering B, 2011 176: 1600-1608

87. Kirkland N.T., Birbilis N., and Staiger M.P., Assessing the corrosion of

biodegradable magnesium implants: A critical review of current

methodologies and their limitations. Acta Biomaterialia, 2012. 8: 925-936.

88. Neil W.C, Forsyth M, and Howlett P.C, Corrosion of heat treated magnesium

alloy ZE41. Corrosion Science, 2011. 53: 3299-3308.

89. Hanzi A.C., Gerber I., and Schinhammer M., On the in vitro and in vivo

degradation performance and biological response of new biodegradable M g-

Y-Zn alloys. Acta Biomaterialia, 2010. 6: 1824-1833.

90. Erdmann N, Angrisani N, and Reifenrath J, Biomechanical testing and

degradation analysis of MgCa0.8 alloy screws: A comparative in vivo study

in rabbits. Acta Biomaterialia, 2011. 7: 1421-1428.

91. Matsubara H., Ichige Y., Fujita K., Nishiyama H., Hodouchi K., Effect of

impurity Fe on corrosion behavior of AM50 and AM60 magnesium alloys

Corrosion Science, 2013. 66: 203-210.

92. Kannan M.B. and Dietzel W., Pitting-induced hydrogen embrittlement of

magnesium-aluminium alloy. Materials and Design 2012. 42: 321-326.

93. Mudali U. K, Sridhar T. M, and Baldev. RAJ., Corrosion of bio implants,

Sadhana, 2003. 28: 601-637.

94. Coy A. E., Viejo F., Skeldon P., and Thompson G.E., Susceptibility of rare-

earth-magnesium alloys to micro-galvanic corrosion. Corrosion Science,

2010. 52: 3896-3906.

95. Yang L. and Zhang E.L., Biocorrosion behavior of magnesium alloy in

different simulated fluids for biomedical application. Mater Sci Eng C, 2009.

29: 1691-1696.

96. Kirkland N.T., Lespagnol J., Birbilis N., and Staiger M. P., A survey of bio­

corrosion rates of magnesium alloys. Corrosion Science, 2010. 52: 287-291.

Page 40: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

97. Zainal-Abidin N.I., Atrens A.D., Martin D., Corrosion of high purity Mg,

Mg2Zn0.2Mn, ZE41 and AZ91 in Hank’s solution at 37°C. Corrosion

Science, 2011. 53: 3542-3556.

98. Zhang M., Huang X., and Jiang X., Phytic acid conversion coating on M g-Li

alloy Lili Gao, Chunhong Zhang. Journal o f Alloys and Compounds, 2009.

485:789-793.

99. Gray J.E., and Luan B., Protective coatings on magnesium and its alloys-a

critical review. Journal o f Alloys and Compounds, 2002. 336: 88-113.

100. Elsentriecy H.H., Azumi K., and Konno H., Effect of surface pretreatment by

acid pickling on the density of stannate conversion coatings formed on AZ91

D magnesium alloy. Surface & Coatings Technology, 2007. 202: 532-537.

101. Nwaogu U.C, Blawert C, and Scharnagl N, Effects of organic acid pickling

on the corrosion resistance of magnesium alloy AZ31 sheet. Corrosion

Science, 2010. 52: 2143-2154.

102. Gray J.E. and Luan B., Protective coatings on magnesium and its alloys — a

critical review. Journal o f Alloys and Compounds, 2002. 336: 88-113.

103. Hornberger H., Virtanen S., and Boccaccini A. R., Biomedical coatings on

magnesium alloys - A review. Acta Biomaterialia, 2012. 8: 2442-2455.

104. Brunelli K., Dabala M., and Calliari I., Effect of HCl pre-treatment on

corrosion resistance of cerium-based conversion coatings on magnesium and

magnesium alloys. Corrosion Science, 2005. 47: 989-1000.

105. Yang L., Zhang M., and Li J., Stannate conversion coatings on

Mg-8Li alloy. Journal o f Alloys and Compounds, 2009. 471: 197-200.

106. Chiu L.H., Chen C.C., and Yang C.F., Improvement of corrosion properties

in an aluminum-sprayed AZ31 magnesium alloy by a post-hot pressing and

anodizing treatment. Surface & Coatings Technology, 2005. 191: 181-187.

107. Thomann M., Krause C., Angrisani N., Bormann D., and Hassel T., Influence

of a magnesium-fluoride coating of magnesium-based implants (MgCa0.8) on

degradation in a rabbit model. Journal o f Biomedical Materials Research

Part A, 2010. 93: 1609-1619.

108. Drynda A., Hassel T., Hoehn R., Perz A., Bach F.W., and Peuster M.,

Development and biocompatibility of a novel corrodible fluoride-coated

magnesium-calcium alloy with improved degradation kinetics and adequate

Page 41: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

mechanical properties for ardiovascular applications. Journal o f Biomedical

Materials Research Part A, 2009: 763-775.

109. Chen Y., Song Y., and Zhang S., Effect of fluoride coating on in vitro

dynamic degradation of Mg-Zn alloy. Materials Letters, 2011. 65: 2568­

2571.

110. Yan T., Tan L., and Xiong D, Fluoride treatment and in vitro corrosion

behavior of an AZ31B magnesium alloy. Materials Science and Engineering

C, 2010. 30: 740-748.

111. Shadanbaz S. and Dias G. J., Calcium phosphate coatings on magnesium

alloys fo r biomedical applications: A review. Acta Biomaterialia 2012. 8: p.

20-30.

112. Bose S. and Tarafde S., Calcium phosphate ceramic systems in growth factor

and drug delivery for bone tissue engineering: A review Acta Biomaterialia,

2012. 8: 1401-1421.

113. Dorozhkin S.V, Calcium Orthophosphates in Nature, Biology and Medicine.

Materials and Design, 2009. 2: 399-498.

114. Dorozhkin S. V., Calcium Orthophosphates as Bioceramics: State o f the Art

J. Funct. Biomater, 2010. 1: 22-107.

115. Yanovska A., Kuznetsov V., and Stanislavov A., A study of brushite

crystallization from calcium-phosphate solution in the presence of

magnesium under the action of a low magnetic field. Materials Science and

Engineering C, 2012. 32: 1883-1887.

116. Shi Y., Qi M., Chen Y, and Shi P, MAO-DCPD composite coating on Mg

alloy for degradable implant applications. Materials Letters, 2011. 65: 2201­

2204.

117. Dorozhkin, S.V., Amorphous calcium (ortho) phosphates. Acta

Biomaterialia, 2010. 6: 4457-4475.

118. Jiao M. J. and Wang X.X., Electrolytic deposition of magnesium-substituted

hydroxyapatite crystals on titanium substrate. Materials Letters, 2009. 63:

2286-2289.

119. Javidi M., Javadpour S., and Bahrololoom M.E., Electrophoretic deposition

of natural hydroxyapatite on medical grade 316L stainless steel. Mater Sci

Eng C, 2008. 28: 1509-15.

Page 42: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

120. Abdel-Aal E.A, Dietrich D, Steinhaeuser S, and Wielage B,

Electrocrystallization of nanocrystallite calcium phosphate coatings on

titanium substrate at different current densities. Surface & Coatings

Technology, 2008. 202: 5895-5900.

121. Ergun C., Webster T., and Bizios R., Hydroxylapatite with substituted

magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure.

Journal o f Biomedical Materials Research, 2002. 59(2): 305-311.

122. Geng F., Tan L.L., and Jin X.X., The preparation, cytocompatibility, and in

vitro biodegradation study of pure b-TCP on magnesium. J Mater Sci: Mater

Med, 2009. 20: 1149-1157.

123. Jamesh M, Kumar S, and Sankara Narayanan T.S.N, Corrosion behavior of

commercially pure Mg and ZM21 Mg alloy in Ringer’s solution - Long term

evaluation by EIS. Corrosion Science, 2011. 53: 645-654.

124. Mostafa N.Y. and Brown P.W., Computer simulation of stoichiometric

hydroxyapatite: Structure and substitutions. Journal o f Physics and Chemistry

o f Solids, 2007. 68: 431-437.

125. Gu X.N., Zheng Y.F., and Lan Q.X., Surface modification of an Mg-1Ca

alloy to slow down its biocorrosion by chitosan. Biomed. Mater, 2009. 4: 1-4.

126. Gao J.H, Guan S.K, Chen J, Wang L. G, Zhu S.J, Hu J.H., and Ren Z.W,

Fabrication and characterization of rod-like nano-hydroxyapatite on MAO

coating supported on M g-Zn-Ca alloy. Applied Surface Science, 2011. 257:

2231-2237.

127. Zhang E.L., Zou C.M., and Zeng S.Y., Preparation and characterization of

siliconsubstituted hydroxyapatite coating by a biomimetic process on

titanium substrate. Surface & Coatings Technology, 2009. 203: 1075-80.

128. Boccaccini A.R., Keim S., Ma R., Li Y., and Zhitomirsky I., Electrophoretic

deposition of biomaterials. Journal o f The Royal Society Interface, 2010: 1­

33.

129. Conceicao T.F.D., Scharnagl N., Blawert C., Dietzel W., and Kainer K.U.,

Surface modification of magnesium alloy AZ31 by hydrofluoric acid

treatment and its effect on the corrosion behaviour. Thin Solid Films, 2010.

518: 5209-5218.

Page 43: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

130. Yang Y., Kim K. H., and Ong J. L., A review on calcium phosphate coatings

produced using a sputtering process an alternative to plasma spraying.

Biomaterials, 2005. 26: 327-337.

131. Cui F., Yang J., and Jiao Y., Calcium phosphate coating on magnesium alloy

for modification of degradation behavior. Front Mater Sci Chin, 2008. 2:

143-148.

132. Combes C. and Rey C, Amorphous calcium phosphates: Synthesis, properties

and uses in biomaterials. Acta Biomaterialia, 2010. 6: 3362-3378.

133. Fellah B.H. and Layrolle P., Sol-gel synthesis and characterization of

macroporous calcium phosphate bioceramics containing microporosity. Acta

Biomaterialia, 2009. 5: 735-742.

134. Yang Y.Z., Kim K.H., and Joo L.O., A review on calcium phosphate coatings

produced using a sputtering process - an alternative to plasma spraying.

Biomaterials, 2005. 26: 327-37.

135. Paital S.R. and Dahotre N.B., Calcium phosphate coatings for bio-implant

applications: Materials, performance factors, and methodologies. Materials

Science and Engineering R, 2009. 66: 1-70.

136. Song Y., Wang H.X., Guan S.K., and Wang X., In vitro degradation and

mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient

hydroxyapatite by the pulse electrodeposition process. Acta Biomaterialia,

2010. 6: 1743-1748.

137. Wei M., Ruys A.J., and Milthorpe B.K., Electrophoretic Deposition of

Hydroxyapatite Coatings on Metal Substrates: A Nanoparticulate Dual­

Coating Approach. Journal o f Sol-Gel Science and Technology, 2001 21: 39­

48.

138. Narayanan V. and Driessche I.V., Aqueous chemical solution deposition of

lanthanum zirconate and related lattice- matched single buffer layers suitable

for YBCO coated conductors: A review Progress in Solid State Chemistry,

2012. 40: 57-77.

139. Wen C, Guan S., Peng L., Ren C., Wang X., and Hu Z., Characterization and

degradation behavior of AZ31 alloy surface modified by bone-like

hydroxyapatite for implant applications. Applied Surface Science, 2009. 225:

6433-6438.

Page 44: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

140. Meng E.C., Guan S.K., Wang H.X., and Wang L.G., Effect of

electrodeposition modes on surface characteristics and corrosion properties of

fluorine-doped hydroxyapatite coatings on Mg-Zn-Ca alloy. Applied Surface

Science, 2011. 257: 4811-4816.

141. Song Y.W., Shan D.Y., and Han E.H., Electrodeposition of hydroxyapatite

coating on AZ91D magnesium alloy for biomaterial application. Materials

Letters, 2008 62: 3276-3279.

142. Wanga H., Guana S, and Wang Y, In vivo degradation behavior of Ca-

deficient hydroxyapatite coated M g-Zn-Ca alloy for bone implant

application. Colloids and Surfaces B: Biointerfaces, 2011. 88: 254-259.

143. ASTM G31-72., Standard practice for laboratory immersion corrosion testing

of 369 metals. 2004.

144. Kirkland N.T., Birbilis N., and Walker J., In-vitro dissolution of magnesium-

calcium binary alloys: Clarifying the unique role of calcium additions in

bioresorbable magnesium implant alloys. Journal o f Biomedical Materials

Research Part B: Applied Biomaterials, 2010. 95B: 91-100.

145. Alloy phase diagram. In: ASM handbook, V.A.I., The Materials Information

Company; 1992.

146. Arnberg L., Chai G. , and Backerud L., Determination of dendritic coherency

in solidifying melts by rheological measurements. Materials Science and

Engineering, 1993. 173 A: 101-103.

147. Liang S.M. , Chen R.S., Blandin J.J., Suery M. , and Han E.H. , Thermal

analysis and solidification pathways of M g-A l-C a system alloys. Materials

Science and Engineering, 2008. 480A: 365-372.

148. Chai G., Backerud L., Rolland T., and Arnberg L., Dendrite Coherency

during Equiaxed Solidification in Binary Aluminum Alloys. Metallurgical

and Materials Transactions A, 1995. 26A: 965-970.

149. ASM International, ASM handbook:Alloy Phase Diagrams, ed. B. Hugh. 3.

1992, Ohio: ASM International.

150. Kirkland N.T, Lespagnol J., Birbilis N., and Staiger M.P, A survey of bio­

corrosion rates of magnesium alloys. Corrosion Science, 2010. 52: 287-291.

151. Mao L, Yuan G, Niu J, Zong Y, and Ding W, In vitro degradation behavior

and biocompatibility of M g-N d-Zn-Zr alloy by hydrofluoric acid treatment.

Materials Science and Engineering: C, 2013. 33: 242-250.

Page 45: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

152. Xin F., Jian C., Jian-peng Z., Wan Q., Zhou Z.C., Ruan J.N., Bone-like

apatite formation on HA/316L stainless steel composite surface in simulated

body fluid. Trans Nonferrous M et Soc China, 2009. 19: 347-52.

153. Fahamin A, Tabrizi B, and Ebrahimi-Kahrizsangi R, Synthesis of

calciumphosphate-based composite nanopowders by mechanochemical

process and subsequent thermal treatment. Ceramics International, 2012. 38:

6729-6738.

154. Zhang E., Yin D., Xu L., Lei Y., and Yang K., Microstructure, mechanical

and corrosion properties and biocompatibility of M g-Zn-M n alloys for

biomedical application. Mater Sci Eng C, 2009. 29: 987-993.

155. Lu L., Dahle A.K., Taylor J.A., and Stjohn D.H., Theoretical and Practical

Considerations of Grain Refinement of Mg-Al Alloys. Materials Science

Forum , 2005. 488-489: 299-302.

156. Bamberger M., Levi G., and Sande J.B., Precipitation Hardening in Mg-Ca-

Zn Alloys. Metallurgical and Materials Transactions A, 2006. 37: 481-488.

157. Shao G., Varsani V., and Fan Z., Thermodynamic modelling of the Y-Zn and

Mg-Zn-Y systems. Computer Coupling o f Phase Diagrams and

Thermochemistry, 2006. 30: 286-295.

158. Kumar G., Hegde S., and Narayan Prabhu K., Heat transfer and solidification

behaviour of modified A357 alloy. Journal o f Materials Processing

Technology, 2007. 182: 152-156.

159. Malekan M. and Shabestari S. G., Effect of grain refinement on the dendrite

coherency point during solidification of the A319 aluminium alloy.

Metallurgical and Materials Transactions A, 2009. 40 A(13): 3196-3203.

160. Argade G.R, Kandasamy K.S, Panigrahi K, and Mishra R. S, Corrosion

behavior of a friction stir processed rare-earth added magnesium alloy.

Corrosion Science, 2012. 58: 321-326.

161. Shi Z., Liu M., and Atrens A., Measurement of the corrosion rate of

magnesium alloys using Tafel extrapolation. Corros. Sci., 2010. 52: 579-588.

162. Lei T., Tang W., and Cai S.H., On the corrosion behaviour of newly

developed biodegradable Mg-based metal matrix composites produced by in

situ reaction. Corrosion Science, 2012. 54: 270-277.

Page 46: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

163. Jamesh M, Kumar S, and Sankara Narayanan T.S.N, Corrosion behavior of

commercially pure Mg and ZM21 Mg alloy in Ringer’s solution - Long term

evaluation by EIS. Corrosion Science, 2011. 53: 645-654.

164. Vojte'ch D., Kubasek J., Serak J., and Novak P., Mechanical and corrosion

properties of newly developed biodegradable Zn-based alloys for bone

fixation. Acta Biomaterialia, 2011. 7: 3515-3522.

165. Wang H., Estrin Y., and Zuberovac. Z., Bio-corrosion of a magnesium alloy

with different processing histories. Mater Lett, 2008. 62: 2476-2479.

166. Verdierc S., Laaka N.V.D., and Delalandea S., The surface reactivity of a

magnesium-aluminium alloy in acidic fluoride solutions studied by

electrochemical techniques and XPS. Applied Surface Science, 2004. 253:

513-524.

167. Vasilescu C., Drob P, Vasilescu E, and Ionitab D., Prodanab M., Drob S.I,

Characterisation and corrosion resistance of the electrodeposited

hydroxyapatite and bovine serum albumin/hydroxyapatite films on T i-6A l-

4V-1Zr alloy surface. Corrosion Science, 2011. 53: 992-999.

168. Budke E., Krempel-Hesse J., Maidhof H., and Schu" ssler H., Decorative

hard coatings with improved corrosion resistance. Surf Coat Technol, 1999.

112:108-113.

169. Gu X.N., Li N., Zhou W. R., Zheng Y.F., and Zhao X., Corrosion resistance

and surface biocompatibility of a microarc oxidation coating on a M g-Ca

alloy. Acta Biomaterialia, 2011. 7: 1880-1889.

170. Pereda M.D., Alonso C, and Gamero M, Comparative study of fluoride

conversion coatings formed on biodegradable powder metallurgy Mg: The

effect of chlorides at physiological level. Materials Science and Engineering,

C 2011. 31: 858-865.

171. Wang Y., Zhang S., and Zeng X., Osteoblastic cell response on fluoridated

hydroxyapatite coatings. Acta Biomaterialia, 2007. 3: 191-197.

172. Koleini Sh., Idris M.H., and Jafari H., Influence of hot rolling parameters on

microstructure and biodegradability of M g-1Ca alloy in simulated body fluid.

Materials and Design, 2012. 33: 20-25.

173. Chen Y., Song Y, and Zhang S, Effect of fluoride coating on in vitro dynamic

degradation of Mg-Zn alloy. Materials Letters, 2011. 65: 2568-2571.

Page 47: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

174. Djosic M.S, Panic.V., Stojanovi J.C., Mitric M., and Mi'skovic-Stankovic

V.B, The effect of applied current density on the surface morphology of

deposited calcium phosphate coatings on titanium. Colloids and Surfaces A:

Physicochem. Eng. Aspects, 2012. 400: 36-43.

175. Wang S.H, Shihb W. J., Li W.L, Hon M.H, Wang M.C., Morphology of

calcium phosphate coatings deposited on a Ti-6Al-4V substrate by an

electrolytic method under 80 Torr. Journal o f the European Ceramic Society,

2005. 25: 3287-3292.

176. Wang M.C, Shihb W.J, Chang K.M, Wang S.H., Li W. L., Huang H.H.,

Effect of process parameters on the crystallization and morphology of

calcium phosphate at a constant pressure of 80 Torr. Journal o f Non­

Crystalline Solids, 2010. 356: 1546-1553.

177. Eliaz, N. and Sridhar T.M., Electrocrystallization of Hydroxyapatite and Its

Dependence on Solution Conditions. Crystal Growth & Design, 2008. 8:

3965-3977.

178. Zhitomirsky I., Electrophoretic hydroxyapatite coatings and fibers. Materials

Letters, 2000. 42: 262-271.

179. Bose S, Dasgupta S, Tarafder S, and Bandyopadhyay A, Microwave-

processed nanocrystalline hydroxyapatite: Simultaneous enhancement of

mechanical and biological properties. Acta Biomaterialia, 2010. 6: 3782­

3790.

180. Lu Y.P, Chen Y. M, Li S.T, and Wang J.H, Surface nanocrystallization of

hydroxyapatite coating. Acta Biomaterialia, 2008. 4: 1865-1872.

181. Wen C, Guan S, Peng L, Ren C, Wang X, and Hu Z, Characterization and

degradation behavior of AZ31 alloy surface modified by bone-like

hydroxyapatite for implant applications. Applied Surface Science, 2009. 255:

6433-6438.

182. Zhang J.M., Lin C.J., Feng Z.D., and Tian Z.W., Mechanistic studies of

electrodeposition for bioceramic coatings of calcium phosphates by an in situ

pH-microsensor technique. Journal o f Electroanalytical Chemistry, 1998.

452 235-240.

183. Dumelie N., Benhayoune H., Rousse-Bertrand C., Bouthors S., and Perchet

A., Characterization of electrodeposited calcium phosphate coatings by

complementary scanning electron microscopy and scanning-transmission

Page 48: ENHANCEMENT OF CORROSION RESISTANCE OF MAGNESIUM …eprints.utm.my/id/eprint/34608/1/HamidRezaBakhsheshiPFKM2013.pdf · kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah

electron microscopy associated to X-ray microanalysis. Thin Solid Films,

2005. 492: 13 -139.

184. Yen S.K. and Lin C.M., Cathodic reactions of electrolytic hydroxyapatite

coating on pure titanium. Materials Chemistry and Physics, 2002. 77: 70-76.

185. Rossler S., Sewing A., Stolzel M., Born R., Electrochemically assisted

deposition of thin calcium phosphate coatings at near-physiological pH and

temperature. JBiom ed Mater Res A, 2003. 64: 655-663.

186. Xu J., Butler I.S., and Gilson D.F.R., FT-Raman and high-pressure infrared

spectroscopic studies of dicalcium phosphate dihydrate (CaHPO4 2H2O) and

anhydrous dicalcium phosphate (CaHPO4). Spectrochimica Acta Part A,

1999. 55: 2801-2809.

187. Park J. H., Lee D. Y., Oh K. T., and Lee Y. K., Bioactivity of calcium

phosphate coatings prepared by electrodeposition in a modified simulated

body fluid. Materials Letters, 2006. 60: 2573-2577.

188. Fahami A., Ebrahimi-Kahrizsangi R., and Nasiri-Tabrizi B.,

Mechanochemical synthesis of hydroxyapatite/titanium nanocomposite. Solid

State Sciences, 2011. 13: 135-141.

189. Fathi M. H. and Zahrani E. M., Mechanical alloying synthesis and bioactivity

evaluation of nanocrystalline fluoridated hydroxyapatite. Journal o f Crystal

Growth, 2009. 311: 1392-1403.

190. Yang J. X., Cui F. Z., Lee I. S., Jiao Y. P., Yin Q. S., and Zhang Y., Ion-beam

assisted deposited C-N coating on magnesium alloys. Surface & Coatings

Technology, 2008. 202: 5737-5741.

191. Fathi M. H., Zahrani E. M., and Zomorodian A., Novel fluorapatite/niobium

composite coating for metallic human body implants. Materials Letters,

2009. 63: 1195-1198.

192. Yan T, Tan L., and Xiong D, Fluoride treatment and in vitro corrosion

behavior of an AZ31B magnesium alloy. Materials Science and Engineering

C, 2010. 30: 740-748.