51
Entanglement and interference resources in quantum computation and communication Dan Stahlke July 11, 2014

Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Entanglement and interference resources inquantum computation and communication

Dan Stahlke

July 11, 2014

Page 2: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

“(Entanglement + interference) resources inquantum (computation + communication)”

Entanglement InterferenceComputation Chapter 2 Chapter 3

Communication Chapter 2,4,5 Chapter 3

Page 3: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Chapter 2

Entanglement requirements for implementingbipartite unitary operations

Dan Stahlke and Robert B. Griffiths,Phys. Rev. A 84, 032316 (2011).

Page 4: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Bipartite unitaries

U

Alice

Bob

↑EQUAL↓

Page 5: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Bipartite unitaries

U

Alice

Bob

↑EQUAL↓

Ea

F(a)b

E(ab)c

. . .

. . .

E(abc...x)y

F(abc...xy)z

a b c x y

Page 6: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Bipartite unitaries

U

Alice

Bob

↑EQUAL↓

Ea

F(a)b

E(ab)c

. . .

. . .

E(abc...x)y

F(abc...xy)z

a b c x y|ψ〉

Page 7: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

LOCC and SEP

Ea

F(a)b

E(ab)c

. . .

. . .

E(abc...x)y

F(abc...xy)z

a b c x y

∣Φ⟩→ (E(bc...x)y . . .E(ab)

c Ea ⊗ F (abc...xy)z . . .F (a)b ) ∣Φ⟩

Ek

Fk

k

Page 8: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

LOCC and SEP

Ea

F(a)b

E(ab)c

. . .

. . .

E(abc...x)y

F(abc...xy)z

a b c x y

∣Φ⟩→ (E(bc...x)y . . .E(ab)

c Ea´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ek

⊗F (abc...xy)z . . .F (a)b

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶Fk

) ∣Φ⟩

Ek

Fk

k

Page 9: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

SEP implementing unitary

U

↑EQUAL↓

Ek

Fk

k|ψ〉

Page 10: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Results

U

↑EQUAL↓

Ek

Fk

k|ψ〉

• If Schmidt ranks of ∣ψ⟩ andU are equal then ∣ψ⟩ must bemaximally entangled.

• Otherwise, ∣ψ⟩ cansometimes have lessentanglement (explicitnumerical example of anLOCC protocol).

Page 11: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Chapter 3

Quantum interference as a resource for quantum speedup

Dan Stahlke, arXiv:1305.2186

Page 12: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Resource theory for quantum speedup

1) If a quantum circuit can be efficiently simulated (on a classicalcomputer), then it doesn’t exhibit quantum speedup.

2) If any quantum circuit that doesn’t use resource X can beefficiently simulated, then resource X is necessary in order tohave quantum speedup.

Examples:• X = high Schmidt rank [Vid03, JL03]• X = non-Clifford operations [Got98]• X = negative values in Wigner representation [VFGE12, ME12]• X = large tree width [MS08, Joz06]• X = high interference producing capacity

Page 13: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Resource theory for quantum speedup

1) If a quantum circuit can be efficiently simulated (on a classicalcomputer), then it doesn’t exhibit quantum speedup.

2) If any quantum circuit that doesn’t use resource X can beefficiently simulated, then resource X is necessary in order tohave quantum speedup.

Examples:• X = high Schmidt rank [Vid03, JL03]• X = non-Clifford operations [Got98]• X = negative values in Wigner representation [VFGE12, ME12]• X = large tree width [MS08, Joz06]• X = high interference producing capacity

Page 14: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Quantum circuits

|0〉

|0〉

|0〉

U1U2

U3

M

Each Ui is unitary. Measurement M is a projector.Expectation value of measurement:

⟨ψ∣U †1 U †

2 U †3 MU3U2U1∣ψ⟩

Shorthand: U2 is U2 ⊗ I for example.

Page 15: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Simulation

How to compute ⟨ψ∣U †1 U †

2 U †3 MU3U2U1∣ψ⟩?

• Even writing down ∣ψ⟩ takes Ω(2n) memory.• We could compute a sum over paths

∑i,j,...,z

ψ∗i (U†1 )ij(U †

2 )jk⋯(U1)yzψz .

This takes Ω(2n) time since each index runs over 2n values.

Page 16: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Classical stochastic process

|0〉

|0〉

|0〉

U1U2

U3

M

Each Ui is a stochastic matrix. Measurement M is an indicatorfunction.

For example, ∣0⟩ is heads, ∣1⟩ is tails. U1 = (0.5 00.5 1

) means “if coinis heads, flip it again.” U2 could be “if first coin is heads, invertsecond coin.”

Expectation value of measurement is M T U3U2U1ψ.

Page 17: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Simulation

How to compute M T U3U2U1ψ?• Again, writing down ψ takes Ω(2n) memory.• Again, a sum over paths takes Ω(2n) time.

Page 18: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Simulation

|0〉

|0〉

|0〉

U1U2

U3

M

But there is a simple and fast way to compute M T U3U2U1ψ. Justflip the coins! After a few runs, the expectation value for themeasurement can be estimated quite well.

Essentially, we are estimating ∑ijkl Mi(U3)ij(U2)jk(U1)klψl byrandomly sampling paths.

Page 19: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

So why can’t the expectation value for the quantum circuit

⟨ψ∣U †1 U †

2 U †3 MU3U2U1∣ψ⟩

be estimated by sampling paths?

Because of interference! The interference

I = ∑i,j,...,z

∣ψ∗i (U†1 )ij(U †

2 )jk⋯(U1)yzψz ∣

may be very large.

Page 20: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

So why can’t the expectation value for the quantum circuit

⟨ψ∣U †1 U †

2 U †3 MU3U2U1∣ψ⟩

be estimated by sampling paths?

Because of interference! The interference

I = ∑i,j,...,z

∣ψ∗i (U†1 )ij(U †

2 )jk⋯(U1)yzψz ∣

may be very large.

Page 21: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

If interference

I = ∑i,j,...,z

∣ψ∗i (U†1 )ij(U †

2 )jk⋯(U1)yzψz ∣

is small, then the expectation value can be efficiently computed aslong as you know how to find the paths with the greatest weight.

But I don’t know how to find such paths (this is an open question).On the other hand, I can simulate the circuit if each operator is notcapable of producing much interference.

Interference producing capacity:

Imax(U1) = ∥abs(U1)∥2.

Page 22: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

If interference

I = ∑i,j,...,z

∣ψ∗i (U†1 )ij(U †

2 )jk⋯(U1)yzψz ∣

is small, then the expectation value can be efficiently computed aslong as you know how to find the paths with the greatest weight.

But I don’t know how to find such paths (this is an open question).On the other hand, I can simulate the circuit if each operator is notcapable of producing much interference.

Interference producing capacity:

Imax(U1) = ∥abs(U1)∥2.

Page 23: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

If interference

I = ∑i,j,...,z

∣ψ∗i (U†1 )ij(U †

2 )jk⋯(U1)yzψz ∣

is small, then the expectation value can be efficiently computed aslong as you know how to find the paths with the greatest weight.

But I don’t know how to find such paths (this is an open question).On the other hand, I can simulate the circuit if each operator is notcapable of producing much interference.

Interference producing capacity:

Imax(U1) = ∥abs(U1)∥2.

Page 24: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Main result

I can estimate⟨ψ∣U †

1 U †2 U †

3 MU3U2U1∣ψ⟩

to accuracy ε in time

O (ε−2Imax(M)2∏iImax(Ui)4) .

Operator ImaxFourier or Hadamard transform 2n/2

Haar wavelet transform√

1 + nGrover reflection Imax → 3 as n →∞Permutation 1Pauli matrices 1

Page 25: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Other results

• Generalizes to other `p norms. Taking p = 1 generalizes recentwork regarding “mana” [VMGE14].

• No quantum advantage for communication problems if ∏Imaxis low, unless the number of rounds is bounded.

• Imax is the first continuous-valued quantity linked to quantumspeedup.

Page 26: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Chapter 4

Bounds on Entanglement Assisted Source-channel Coding via theLovasz ϑ Number and its Variants

Toby Cubitt, Laura Mancinska, David Roberson, Simone Severini,Dan Stahlke, and Andreas Winter,arXiv:1310.7120

Page 27: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

• Alice wants to send message x to Bob, using a noisy channel.• Bob already has some side information u regarding Alice’s

message x.• They both know which (x,u) pairs are possible, and know the

details of the channel noise.• Protocol must succeed with 100% certainty!

Alice’s lab

Bob’s labP (x, u)

Encode:s = f(x)

N (v|s)

Decode x

x

u

s

v

Page 28: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

From [NTR06]:

• Graph G has edges between x and x ′ if side informationdoesn’t distinguish between these.

• Graph H has edges between s and s′ if the channel never mapsthese inputs to the same output.

• G represents info that needs to be sent, H represents info thatmakes it through the channel.

Alice’s lab

Bob’s labP (x, u)

Encode:s = f(x)

N (v|s)

Decode x

x

u

s

v

G H

Page 29: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

From [NTR06]:

• Encoding must map info that needs to be sent into codewordsthat make it through the channel.

• x ∼G y Ô⇒ f (x) ∼H f (y).• This is a homomorphism G → H .

Alice’s lab

Bob’s labP (x, u)

Encode:s = f(x)

N (v|s)

Decode x

x

u

s

v

G H

Page 30: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Entanglement assistance

Alice’s lab

Bob’s labP (x, u)

POVM:Mx

s s∈S

N (v|s)

Decode x

x

u

|ψ〉

s

v

• Without entanglement assistance, source-channel coding ispossible when G → H .

• With entanglement assistance, write G ∗→ H when a protocol ispossible [BBL+13].

• A closely related concept, G q→ H was studied in [RM12].

Page 31: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Our contribution

• G ∗→ H and G q→ H are very difficult to compute.

• We study three related semidefinite relaxations, which we callG B→ H , G +→ H , and G V→ H .

• We found these to be closely related to the Lovasz ϑ function.

(it seems all paths lead to ϑ!) - Goemans [Goe97]

Page 32: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Results

G→ H

Gq→ H ϑ+(G) ≤ ϑ′(H)

G∗→ H G

V→ H

G+→ H

ϑ(G) ≤ ϑ(H), ϑ′(G) ≤ ϑ′(H), ϑ+(G) ≤ ϑ+(H)

GB→ Hϑ(G) ≤ ϑ(H)

Page 33: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Results

Open questions answered:• A parameter defined by Beigi [Bei10] is exactly equal to ⌊ϑ⌋.• There is a gap between quantum chromatic number and its

semidefinite relaxation given in [PT13].New bounds:

• Cost rate is at least log ϑ(G)/ log ϑ(H ).• One-shot entanglement assisted capacity is at most ϑ′(H ).

Reproduced/generalized previously known results:• Entanglement assisted chromatic number is at leastϑ+(G) [BBL+13].

• Generalized theorem 2.7 of [GL08] regarding ϑ, ϑ′, ϑ+.

Page 34: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Chapter 5

Quantum source-channel coding and non-commutative graph theory

Dan Stahlke, arXiv:1405.5254

Page 35: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Classical source-channel coding

Alice’s lab

Bob’s labP (x, u)

Encode:s = f(x)

N (v|s)

Decode x

x

u

s

v

(Discrete) quantum source-channel coding

Alice’s lab

Bob’s labi ρi

E

N

Measure i

A

B

A′

B′

Page 36: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Example: Dense coding

Alice’s lab

Bob’s lab

i ∈ 1, 2, 3, 4

|ψ〉

|i〉 E

Measure i

Page 37: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Coherent quantum source-channel coding

Alice’s lab

Bob’s lab|ψ〉 J

E

N

D |ψ〉

R

A

B

A′

B′C

Page 38: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Example: Teleportation

Alice’s lab

Bob’s lab|φ〉

|ψ〉 E

Measure i

Page 39: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Idea

Alice’s lab

Bob’s labP (x, u)

Encode:s = f(x)

N (v|s)

Decode x

x

u

s

v

G H

Alice’s lab

Bob’s labi ρi

E

N

Measure i

A

B

A′

B′

S T

Page 40: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Non-commutative graphs

For a (classical) graph G, one can consider the operator subspace

S = span∣i⟩ ⟨j ∣ ∶ i ∼ j.

For example:

1

2

34

5S = span

⎛⎜⎜⎜⎜⎜⎜⎝

0 ∗ 0 0 ∗∗ 0 ∗ 0 00 ∗ 0 ∗ 00 0 ∗ 0 ∗∗ 0 0 ∗ 0

⎞⎟⎟⎟⎟⎟⎟⎠

Page 41: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Non-commutative graphs

In general, one can consider operator subspaces that are not of theform span∣i⟩ ⟨j ∣ ∶ i ∼ j (but still demanding M † ∈ S when M ∈ S).These are called non-commutative graphs.

The Lovasz ϑ number has been defined for these, and it upperbounds the entanglement assisted zero-error capacity of a quantumchannel [DSW13].

Page 42: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Alice’s lab

Bob’s labi |ψi〉

E

N

Measure i

A

B

A′

B′

S T

S = spanTrB(∣ψi⟩ ⟨ψj ∣) ∶ i ≠ j

T = spanN †i Nj⊥ [DSW13]

I extend the notion of graph homomorphism to non-commutativegraphs. A source-channel coding protocol is possible if and only if

S → T .

Page 43: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Results

• I define a homomorphism for non-commutative graphs. Fromthis follows, for instance, defining a chromatic number for suchgraphs.

• I generalize the Schrijver ϑ′ and Szegedy ϑ+ numbers fornon-commutative graphs.

• These, and the Lovasz ϑ, are homomorphism monotones. E.g.S → T Ô⇒ ϑ(S) ≤ ϑ(T).

• These quantities provide new bounds on one-shot zero-errorchannel capacity and on measurement of bipartite states usingone-way communication.

Page 44: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Results

• With entanglement assistance, the condition is S ⊗Λ→ T .• The Lovasz number is monotone also with entanglement

assistance, but the Schrijver and Szegedy generalizations arenot (contrary to the classical case).

• Curiously, one of my Schrijver variants counts maximallyentangled states as being less valuable than non-maximallyentangled states.

• I use this to construct a channel which can transmit quantuminformation when assisted by a non-maximally entangled state,but cannot transmit any error-free information at all whenassisted by a maximally entangled state.

Page 45: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Open question

Graph theory has been a deep and lucrative topic.

Are there gems to be found in the theory of non-commutativegraphs?

Page 46: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

Thanks for listening.

Questions?

Page 47: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

References I

J. Briet, H. Buhrman, M. Laurent, T. Piovesan, and G. Scarpa,“Zero-error source-channel coding with entanglement,” 2013.[Online]. Available: http://www.arxiv.org/abs/1308.4283

S. Beigi, “Entanglement-assisted zero-error capacity isupper-bounded by the Lovasz ϑ function,” Phys. Rev. A,vol. 82, p. 010303, Jul 2010. [Online]. Available:http://link.aps.org/doi/10.1103/PhysRevA.82.010303

R. Duan, S. Severini, and A. Winter, “Zero-errorcommunication via quantum channels, noncommutative graphs,and a quantum Lovasz number,” IEEE Transactions onInformation Theory, vol. 59, no. 2, pp. 1164–1174, 2013.

Page 48: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

References II

N. Gvozdenovic and M. Laurent, “The operator Ψ for thechromatic number of a graph,” SIAM Journal on Optimization,vol. 19, no. 2, pp. 572–591, 2008. [Online]. Available:http://dx.doi.org/10.1137/050648237

M. Goemans, “Semidefinite programming in combinatorialoptimization,” Mathematical Programming, vol. 79, no. 1-3, pp.143–161, 1997. [Online]. Available:http://dx.doi.org/10.1007/BF02614315

D. Gottesman, “The Heisenberg representation of quantumcomputers,” 1998. [Online]. Available:http://www.arxiv.org/abs/quant-ph/9807006

Page 49: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

References III

R. Jozsa and N. Linden, “On the role of entanglement inquantum-computational speed-up,” Proceedings of the RoyalSociety of London. Series A: Mathematical, Physical andEngineering Sciences, vol. 459, no. 2036, pp. 2011–2032, 2003.[Online]. Available: http://rspa.royalsocietypublishing.org/content/459/2036/2011.abstract

R. Jozsa, “On the simulation of quantum circuits,” 2006.[Online]. Available:http://www.arxiv.org/abs/quant-ph/0603163

A. Mari and J. Eisert, “Positive wigner functions render classicalsimulation of quantum computation efficient,” Phys. Rev. Lett.,vol. 109, p. 230503, Dec 2012. [Online]. Available:http://link.aps.org/doi/10.1103/PhysRevLett.109.230503

Page 50: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

References IV

I. L. Markov and Y. Shi, “Simulating quantum computation bycontracting tensor networks,” SIAM J. Comput., vol. 38, no. 3,pp. 963–981, Jun. 2008. [Online]. Available:http://dx.doi.org/10.1137/050644756

J. Nayak, E. Tuncel, and K. Rose, “Zero-error source-channelcoding with side information,” Information Theory, IEEETransactions on, vol. 52, no. 10, pp. 4626–4629, 2006.V. I. Paulsen and I. G. Todorov, “Quantum chromatic numbersvia operator systems,” 2013. [Online]. Available:http://www.arxiv.org/abs/1311.6850

D. E. Roberson and L. Mancinska, “Graph homomorphisms forquantum players,” 2012. [Online]. Available:http://www.arxiv.org/abs/1212.1724

Page 51: Entanglement and interference resources in quantum ...stahlke.org/dan/publications/phd-thesis-slides.pdf · Entanglement Interference Computation Chapter 2 Chapter 3 Communication

References V

V. Veitch, C. Ferrie, D. Gross, and J. Emerson, “Negativequasi-probability as a resource for quantum computation,” NewJournal of Physics, vol. 14, no. 11, p. 113011, 2012. [Online].Available: http://stacks.iop.org/1367-2630/14/i=11/a=113011

G. Vidal, “Efficient classical simulation of slightly entangledquantum computations,” Phys. Rev. Lett., vol. 91, p. 147902,Oct 2003. [Online]. Available:http://link.aps.org/doi/10.1103/PhysRevLett.91.147902

V. Veitch, S. A. H. Mousavian, D. Gottesman, and J. Emerson,“The resource theory of stabilizer quantum computation,” NewJournal of Physics, vol. 16, no. 1, p. 013009, 2014. [Online].Available: http://stacks.iop.org/1367-2630/16/i=1/a=013009