3
 14,000 kW absorption heat pump Absorption heat pump From Wikipedia, the free encyclopedia Absorptio n heat pump is essentially an air-source heat pump driven not by electricity, but by a heat source such as solar-heated water, or geothermal-heated water. There are also absorption coolers available that work on the same principle, but are not reversible and cannot serve as a heat source. Contents 1 Solar thermal 2 Other 3 See also 4 References 5 External links Solar thermal Single, double or triple iterative absorption cooling cycles are used in diff erent solar-thermal-c ooling system designs. The more cycles, the more efficient t hey are. In the late 19th century, the most common phase change refr igerant material for absorption cooling was a solution of ammonia and water. Today, the combination of lithium bromide and water is also in common use. One end of the system of expansion/condensation pipes is heated, and the other end gets cold enough to make ice. Originally, natural gas was used as a heat source in the late 19th century. Today, propane is used in recreational vehicle absorption chiller refrigerators. Innovative hot water solar thermal energy collectors can also be used as the modern "free energy" heat source. Efficient absorption chillers require water of at least 190 °F (88 °C). Common, inexpensive flat-plate solar thermal collectors only produce about 160 °F (70 °C) water, but several successful commercial projects in the US, Asia and Europe have shown that flat plate solar collectors specially developed for temperatures over 200 °F (featuring double glazing, increased backside insulation, etc.) can be effective and cost efficient. [1] Evacuate d-tube solar panels can be used as well. C oncentrating solar collectors required for absorption chillers are less effective in hot humid, cloudy environments, especially where the overnight low temperature and relative humidity are uncomfortably high. Where water can be heated well above 190 °F (88+ °C), it can  be stored and u sed when the sun is n ot shining. For 150 years, absorption chillers have been used to make ice (before the electric light bulb was invented). [2] This ice can be stored and used as an "ice battery" for cooling when t he sun is not shining, as it was in t he 1995 Hotel New Otani Tokyo in Japan. [3]  Mathematical models are available in the public domain for ice-  based thermal energy storage pe rformance ca lculations. [4] Other By using a fuel cell as opposed to a burner to create heat, it would be theoretically possible to create an air- conditioner which converted approximate ly 55% of t he fuel (assuming a methane fuel cell) to electricity and the rest to driving an air-conditioner. Page 1 of 2 Absorption heat pump - Wikipedia, the free encyclopedia 12/12/2014 http://en.wikipedia.org/wiki/Absorption_heat_pump

En.wikipedia.org Wiki Absorption Heat Pump

Embed Size (px)

DESCRIPTION

a

Citation preview

  • 14,000 kW absorption heat pump

    Absorption heat pumpFrom Wikipedia, the free encyclopedia

    Absorption heat pump is essentially an air-source heat pump driven not by electricity, but by a heat source such as solar-heated water, or geothermal-heated water. There are also absorption coolers available that work on the same principle, but are not reversible and cannot serve as a heat source.

    Contents

    1 Solar thermal

    2 Other

    3 See also

    4 References

    5 External links

    Solar thermal

    Single, double or triple iterative absorption cooling cycles are used in different solar-thermal-cooling system designs. The more cycles, the more efficient they are.

    In the late 19th century, the most common phase change refrigerant material for absorption cooling was a solution of ammonia and water. Today, the combination of lithium bromide and water is also in common use. One end of the system of expansion/condensation pipes is heated, and the other end gets cold enough to make ice. Originally, natural gas was used as a heat source in the late 19th century. Today, propane is used in recreational vehicle absorption chiller refrigerators. Innovative hot water solar thermal energy collectors can also be used as the modern "free energy" heat source.

    Efficient absorption chillers require water of at least 190 F (88 C). Common, inexpensive flat-plate solar thermal collectors only produce about 160 F (70 C) water, but several successful commercial projects in the US, Asia and Europe have shown that flat plate solar collectors specially developed for temperatures over 200 F (featuring double glazing, increased backside insulation, etc.) can be effective and cost efficient.[1]Evacuated-tube solar panels can be used as well. Concentrating solar collectors required for absorption chillers are less effective in hot humid, cloudy environments, especially where the overnight low temperature and relative humidity are uncomfortably high. Where water can be heated well above 190 F (88+ C), it can be stored and used when the sun is not shining.

    For 150 years, absorption chillers have been used to make ice (before the electric light bulb was invented).[2]

    This ice can be stored and used as an "ice battery" for cooling when the sun is not shining, as it was in the 1995 Hotel New Otani Tokyo in Japan.[3] Mathematical models are available in the public domain for ice-based thermal energy storage performance calculations.[4]

    Other

    By using a fuel cell as opposed to a burner to create heat, it would be theoretically possible to create an air-conditioner which converted approximately 55% of the fuel (assuming a methane fuel cell) to electricity and the rest to driving an air-conditioner.

    Page 1 of 2Absorption heat pump - Wikipedia, the free encyclopedia

    12/12/2014http://en.wikipedia.org/wiki/Absorption_heat_pump

  • See also

    Absorption refrigerator

    Geosolar

    Geothermal heat pump

    Solar air conditioning

    Solar thermal cooling

    References

    1. ^ "Solar Cooling." (http://www.solid.at/index.php?option=com_content&task=view&id=53&Itemid=73) www.solid.at. Accessed on 1 July 2008

    2. ^ Gearoid Foley, Robert DeVault, Richard Sweetser. "The Future of Absorption Technology in America" (http://www.eere.energy.gov/de/pdfs/absorption_future.pdf). U.S. DOE Energy Efficiency and Renewable Energy (EERE). Archived (http://web.archive.org/web/20071128051310/http://www.eere.energy.gov/de/pdfs/absorption_future.pdf) from the original on 28 November 2007. Retrieved 2007-11-08.

    3. ^ "Ice-cooling System Reduces Environmental Burden" (http://www.newotani.co.jp/en/group/noc/news/05.html#eco-commitment). The New Otani News. New Otani Club International members. 2000-06-28. Archived (http://web.archive.org/web/20071007123108/http://www.newotani.co.jp/en/group/noc/news/05.htm) from the original on 7 October 2007. Retrieved 2012-05-03.

    4. ^ "Development of a thermal energy storage model for EnergyPlus" (http://gundog.lbl.gov/dirpubs/04_moncef.pdf). 2004. Retrieved 2008-04-06.

    External links

    Absorption Heat Pumps (http://apps1.eere.energy.gov/consumer/your_home/space_heating_cooling/index.cfm/mytopic=12680) (EERE)

    Retrieved from "http://en.wikipedia.org/w/index.php?title=Absorption_heat_pump&oldid=636463754"

    Categories: Geothermal energy Solar power Solar thermal energy

    This page was last modified on 3 December 2014 at 14:42. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may

    apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

    Page 2 of 2Absorption heat pump - Wikipedia, the free encyclopedia

    12/12/2014http://en.wikipedia.org/wiki/Absorption_heat_pump