33
Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Embed Size (px)

Citation preview

Page 1: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Epidemiology of Chronic Myeloid Leukemia

Tom Radivoyevitch, PhDAssistant Professor

Epidemiology and BiostatisticsCase Western Reserve University

Page 2: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Two CML-ogens: Radiation and Age

𝑦=𝐴𝑒𝑘∗𝑎𝑔𝑒

Not exponential => use additive risk model

Sv = gamma ray dose (Gy) + 10 neutron dose (Gy)

0 20 40 60 80

Age

1

10

102

Ca

ses

pe

r 10

6 P

ers

on

-Ye

ars

U.S. CML Incidence 1973-2009

Males k = 0.047Females k = 0.046

11

1

10 20 30 40 50 60 70

Age

2

2

2 2

3

3

3

3

10

102

103

Ca

ses

pe

r 10

6 P

ers

on

-Ye

ars

Japanese A-Bomb Survivors

D < 0.02 Sv0.02 < D < 1 SvD > 1 Sv

Page 3: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Radiation-induced CML is Multi-scale

Figure by R.K. Sachs.

For a 500 keV incoming photon

J = 6.2e18eVGy = J/kg= 6.2e6eV/pL

Page 4: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Stochastic versus Deterministic

Figure by R.K. Sachs.

Page 5: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Why Study Radiation as the Input?

• Best carcinogen exposure assessment: A-bomb survivors remember exactly where they were, so doses can be reconstructed

• Compared to chemical carcinogen, cannot simply not use it: background, diagnostic, and therapeutic exposures are here to stay

• Physics is understood, so results across x- & γ-rays, neutrons & protons, and α- and β particles at different energies can be unified

Other CML-ogen, aging, also cannot be avoided+exposure is known

Page 6: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Why Study CML as the Output?

• CML is homogeneous: all have BCR-ABL• CML is prevalent: introns large => per-cell

target size for creating bcr-abl is large• leukemias have rapid onset kinetics: white

blood cells go in and out of tissues naturally so they don’t need to learn to metastasize

Chr9 = 136.3 Mb

~140 kb 139.6 Kb DNA Repair 10 (2011) 1131– 1137

~5 kb = introns between e12-e15

Chr 2249.2 Mb

From 1KG browser

Page 7: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

PML-RARA intron sizes

~20kbSeer APL/CML 1234/10103= 12%=1/8

40/700=1/18

40%,55% Mediterr J Hematol Infect Dis. 2011;3(1)

~2kb

Page 8: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Dose Response

itkc

iikac

i PetDem iti )( 21 2

)(222

21 ])([ niknikikitniDDD

itkc

iniiikac

i ePetDDDem

ittkcii ettwTbaPN 22)()|(

N is the number of CML target cells in an individual P(ba|T) is the probability of BCR-ABL given a translocation

w(t)=probability density that CML arrives at t given bcr-abl at t=0

2)(

23 tkt

tetktw

30

22

22

t

ctkc

k

edtetR t

Linear R = 0.0075/Gy. LQE posterior R = 0.0022/Gy

Page 9: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

CML Target Cell Numbers

• A comparison of age responses for CML and total translocations suggests a CML target cell number of 4x108

• 1012 nucleated marrow cells per adult and one LTC-IC per 105 marrow cells suggests 107 CML target cells

• P(ba|T) = 2TablTbcr/2 may not hold

Page 10: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Kozubek et al. (1999) Chromosoma 108: 426-435

BCR-to-ABL 2D distances

Page 11: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

23

Hi-C Data

http://hic.umassmed.edu/heatmap/heatmap.php

133

chr9

chr22

K562 = bcr-abl+ CML cells

Lieberman-Aiden, et al. Science 9 October 2009: 289-293.

23

133

GM06690 = EBV-transformed lymphoblasts

Off by 2 Mb?

Page 12: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Theory of Dual Radiation Action

P(ba|D) = probability of a BCR-ABL translocation per G0/G1 cell given a dose D

tD(r)dr = expected energy at r given an ionization event at the origin

= intra-track component + inter-track component

Sba(r) = the BCR-to-ABL distance probability density

g(r) = probability that two DSBs misrejoin if they are created r units apart

Y = 0.004 DSBs per Mb per Gy; = mass density

TBCR = 5.8 kbp; TABL = 140 kbp

2

02

2 )()(4

)(2)|( DDdrrgrS

r

rtDYTTDbaP bababa

DABLBCR

DrrtrtD24)()(

Page 13: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Total Translocations → g(r) estimate

)/(0

0)( rreprg

6

5

4

3

3

2

0 )16/3()4/9(3)(R

r

R

r

R

rrS

0

)/(2

0

20 0

4

)()(

25.6

)(

4

1dre

r

rSrt

Gp rrd

0

)/(2

0

20 0

4

)()(

25.6

)(

4

1dre

r

rSrt

Gp rrxdx

0

)/(0

20

0)()(4

1drerSGp rr

d

G=25 DSB/Gy

6.25 kev/m3 = 1 Gy

R = 3.7 m r0 = 0.24 m, p0 = 0.12

d in [.01, .025], dx in [.04, .05], d in [.05, .06]

Page 14: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Risk and Target Cell Numbers

Dependence of R and N on the choice of fixed LQE parameters ba/ba and ban/ba

BA/BA BAn/BA R (Gy-1) N

.055/.0107 .8/.0107 .0022 (.0012, .0039)a 6.1x108 (3.3x108, 1.1x109) .055/.022 .8/.022 .0039 (.0020, .0073) 5.2x108 (2.7x108, 9.8x108) .45/3.64 .8/.022 .0094 (.0051, .0176) 7.6x106 (4.1x106, 1.4x107)

aIn parentheses are the 95% CI.

bat

ctkc N

k

edtetR t

30

22

22

ba

RN

Higher risk estimate is more biologically plausible

Linear-to-quadratic transition dose changed from [0.011-0.022]/0.055= [0.2-0.4] Gy to3.64/.45= 8.09 Gy

Linear R = 0.0075/Gy for D < 4Sv is higher here at 0.0094/Gy due to cell killing term

Page 15: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Bcr-Abl to CML Waiting Times

2)(

23 tkt

tetktw

ijkkjiijk PYFDAE

1950 1970 1990

IR-to-CML Latency

Year

Ca

ses

pe

r 10

4 P

ers

on

-Ye

ar-

Sv

0

2

4

6 MalesFemales

M/F=1.42tf-tm=6.3y

M/F=1.6tf-tm=10 yrs

0 20 40 60 80

Age

1

10

102

Ca

ses

pe

r 10

6 P

ers

on

-Ye

ars

U.S. CML Incidence 1973-2009

Males k = 0.047Females k = 0.046

Page 16: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Age at Exposure Dependence

10 20 30 40 50Age at exposure

Ca

ses

pe

r 10

5 P

ers

on

-Ye

ars

0.1

11

0

Males

mostly radiogenic

High DoseMedium DoseLow Dose

10 20 30 40 50Age at exposure

Ca

ses

pe

r 10

5 P

ers

on

-Ye

ars

0.1

11

0

Females

mostly radiogenic

High DoseMedium DoseLow Dose

Page 17: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Nagasaki HSC Reserve Loss?

6 Nagasaki CML vs 53 in Hiroshima Hiroshima PY=1558995 Nagasaki PY= 690084 (i.e. 2.26 lower),

53/2.26 = ~23 cases expected in Nagasaki HSC reserve permanently depleted to 25%?

Human T-cell leukemia virus (HTLV): 22 adult T-cell leukemias (ATLs) in Nagasaki compared to 1 in Hiroshima (2.26 more PY => expect ~50)

11

1

10 20 30 40 50 60 70

Age

2

2

2 2

3

3

3

3

10

102

103

Ca

ses

pe

r 10

6 P

ers

on

-Ye

ars

Japanese A-Bomb Survivors

D < 0.02 Sv0.02 < D < 1 SvD > 1 Sv

Page 18: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Dead-Band Control of HSC levels

• Transplant doses of 10, 100, and 1000 CRU => CRU levels 1-20% or 15-60% normal Blood (1996) 88: 2852-2858

• Broad variation in human HSC levels Stem Cells (1995) 13: 512-516

• Low levels of HSCs in BMT patients Blood (1998) 91: 1959-1965

Page 19: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

0 20 40 60 80Age

0.1

1

10

102

Ca

ses

pe

r 10

6 P

Y

Males

1973-1984 k = 0.0581985-1996 k = 0.0481997-2009 k = 0.038

0 20 40 60 80Age

Females

0.1

1

10

102

Ca

ses

pe

r 10

6 P

Y

1973-1984 k = 0.0531985-1996 k = 0.0491997-2009 k = 0.038

HSC Reserve Loss Trend?Ave last 7 ratios0.700.49

1995 data yielded k= 0.041 [Radiat Environ Biophys (1999) 38:201–206]. 0.031 in 2006 is consistent with tlcns leading CML by 10 yrs

0.800.54

Page 20: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

All Cancer Incidence Conclusion: Cancer therapy is not the cause of the HSC reserve depletion

Other Guesses? Does obesity increase bone marrow fat and thus squeeze out HSC? 1. Mississippi (34.4%) 51. Colorado (19.8%) 0.1*x+1(1-x)=0.5 => .5=.9x => x=.555Prevalence of cause must be greater than 55%Cancer Epidemiol Biomarkers Prev 2009;18:1501-1506 => obesity causes CML

Easier travel=> greater loads on immune system?

0 20 40 60 80

Cumulative Incidence of Cancer

age

prob

abili

ty o

f ca

ncer

10 3

10 2

0.1

0.5

malesfemales

0 20 40 60 80Age

0.1

1

10

102

Ca

ses

pe

r 10

6 P

Y

Males

1973-1984 k = 0.0581985-1996 k = 0.0481997-2009 k = 0.038

0 20 40 60 80Age

Females

0.1

1

10

102

Ca

ses

pe

r 10

6 P

Y

1973-1984 k = 0.0531985-1996 k = 0.0491997-2009 k = 0.038

Page 21: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Or is it CMML Misclassification?

CML = ICDO-2 9863 does not include CMML. Maybe all were called CML <1985, 50% in 1985-1995, and 0 after

0 20 40 60 80Age

0.1

1

10

102

Ca

ses

pe

r 10

6 P

Y

Males

1973-1984 k = 0.0581985-1996 k = 0.0481997-2009 k = 0.038

0 20 40 60 80Age

Females

0.1

1

10

102

Ca

ses

pe

r 10

6 P

Y

1973-1984 k = 0.0531985-1996 k = 0.0491997-2009 k = 0.038

CML=ICD9 205.1 includes 20% CMML

0 20 40 60 80Age

0.1

1

10

102

Ca

ses

pe

r 10

6 P

Y

Males

1973-1984 k = 0.0581985-1996 k = 0.0551997-2009 k = 0.053

0 20 40 60 80Age

Females

0.1

1

10

102

Ca

ses

pe

r 10

6 P

Y

1973-1984 k = 0.0531985-1996 k = 0.0541997-2009 k = 0.05

Page 22: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

CMML rises at older ages

ICDO-2 9945 = CMML

0 20 40 60 80Age

0.1

1

10

102

Ca

ses

pe

r 10

6 P

YMales

1985-19961997-2009

0 20 40 60 80Age

Females

0.1

1

10

102

Ca

ses

pe

r 10

6 P

Y

1985-19961997-2009

Counts of CMML per year. None before 19851984 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 1 40 41 43 50 53 70 61 68 66 65 79 93 65 85 78 82 87 2003 2004 2005 2006 2007 2008 2009 93 127 84 91 104 80 123

Page 23: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

AML

More APL or better diagnostics?

0 20 40 60 80Age

10

102

Ca

ses

pe

r 10

6 P

Y

AML Males

1973-19841985-19961997-2009

0 20 40 60 80Age

AML Females

10

102

Ca

ses

pe

r 10

6 P

Y

0 20 40 60 80Age

1

Ca

ses

pe

r 10

6 P

Y

APL Males

1973-19841985-19961997-2009

0 20 40 60 80Age

APL Females

0.1

1

Ca

ses

pe

r 10

6 P

Y

Page 24: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Retinoic Acid and Imatinib

Cures found for cancers that are molecularly homogeneous:simpler cancers are being solved first

0 20 40 60 80 100 1200.

00.

20.

40.

60.

81.

0

APL males

Months

Su

rviv

al

0 20 40 60 80 100 120

0.0

0.2

0.4

0.6

0.8

1.0

APL females

Months

Su

rviv

al

0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

CML males

Months

Su

rviv

al

0 50 100 150 200 250 3000.

00.

20.

40.

60.

81.

0

CML females

Months

Su

rviv

al

1973-19811982-19911991-19992000-2009

Page 25: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

AML and CLL

More typically progress is slower

0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

AML males

Months

Su

rviv

al

0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

AML females

Months

Su

rviv

al

0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

CLL males

Months

Su

rviv

al

0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

CLL females

Months

Su

rviv

al

1973-19811982-19911991-19992000-2009

Page 26: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Acknowledgements

• Department of Epidemiology & Biostatistics • Rainer Sachs (UC Berkeley) • Yogen Saunthararajah (Cleveland Clinic)• Thank you for listening!

Page 27: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

SEER Underreporting Possibility

Most conservative claims-based algorithm vs. SEER. B. M. Craig et al. Cancer Epidemiol Biomarkers Prev; 21(3) March 2012

Page 28: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Radiation Doses Rising

Page 29: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

AML

Assuming all CML-ogens are also AML-ogens, this implies CML decreases are NOT due to decreases in exposures to bcr-abl forming agents.

No AML trend is consistent with target cells being lineage committed and thus more tightly regulated than HSCs.

0 20 40 60 80Age

10

102

Ca

ses

pe

r 10

6 P

Y

AML Males

1973-19841985-19961997-2009

0 20 40 60 80Age

AML Females

10

102

Ca

ses

pe

r 10

6 P

Y

Page 30: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Others

0 20 40 60 80Age

0.1

1

10

102

Ca

ses

pe

r 10

6 P

Y

MML Males

1973-19841985-19961997-2008

0 20 40 60 80Age

MML Females

0.1

1

10

102

Ca

ses

pe

r 10

6 P

Y

0 20 40 60 80Age

0.1

1

10

102

Ca

ses

pe

r 10

6 P

Y

CLL Males

1973-19841985-19961997-2008

0 20 40 60 80Age

CLL Females

1

10

102

Ca

ses

pe

r 10

6 P

Y

Page 31: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

All Cancer Incidence

0 20 40 60 80

Age

Cas

es p

er P

erso

n-Y

ear

10 4

10 3

10 2

Males

1973-19841985-19961997-2008

0 20 40 60 80

Age

Cas

es p

er P

erso

n-Y

ear

Females

10 4

10 3

10 2

Incidence of All Cancers

Page 32: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

All Cancer Incidence

0 20 40 60 80

Incidence of All Cancers

age

Cas

es p

er P

erso

n-Y

ear

10 4

10 3

10 2

femalesmales

2026202 Males 2157740 Females 438616821 MalePY 454528905 FemPY

Page 33: Epidemiology of Chronic Myeloid Leukemia Tom Radivoyevitch, PhD Assistant Professor Epidemiology and Biostatistics Case Western Reserve University

Nagasaki HSC Reserve Loss?

Hiroshima

Nagasaki10 20 30 40 50

Age at exposure

Ca

ses

pe

r 10

5 P

ers

on

-Ye

ars

0.1

11

0

mostly radiogenic

High DoseMedium DoseLow Dose

10 20 30 40 50Age at exposure

Ca

ses

pe

r 10

5 P

ers

on

-Ye

ars

0.1

11

0

High DoseMedium DoseLow Dose

6 Nagasaki CML vs 53 in Hiroshima Hiroshima PY=1558995 Nagasaki PY= 690084 (i.e. 2.26 lower),

53/2.26 = ~23 cases expected in Nagasaki HSC reserve permanently depleted to 25%? Human T-cell leukemia virus (HTLV): 22 adult T-cell leukemias (ATLs) in Nagasaki compared to 1 in Hiroshima (2.26 more PY => expect ~40)

iii

i mmO )log(