253
Epistasis and Pleiotropy in Evolving Populations Citation Jerison, Elizabeth. 2016. Epistasis and Pleiotropy in Evolving Populations. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Permanent link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33840657 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA Share Your Story The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story . Accessibility

Epistasis and Pleiotropy in Evolving Populations

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Epistasis and Pleiotropy in Evolving Populations

Epistasis and Pleiotropy in Evolving Populations

CitationJerison, Elizabeth. 2016. Epistasis and Pleiotropy in Evolving Populations. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.

Permanent linkhttp://nrs.harvard.edu/urn-3:HUL.InstRepos:33840657

Terms of UseThis article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your StoryThe Harvard community has made this article openly available.Please share how this access benefits you. Submit a story .

Accessibility

Page 2: Epistasis and Pleiotropy in Evolving Populations
Page 3: Epistasis and Pleiotropy in Evolving Populations
Page 4: Epistasis and Pleiotropy in Evolving Populations
Page 5: Epistasis and Pleiotropy in Evolving Populations
Page 6: Epistasis and Pleiotropy in Evolving Populations
Page 7: Epistasis and Pleiotropy in Evolving Populations
Page 8: Epistasis and Pleiotropy in Evolving Populations
Page 9: Epistasis and Pleiotropy in Evolving Populations
Page 10: Epistasis and Pleiotropy in Evolving Populations
Page 11: Epistasis and Pleiotropy in Evolving Populations

1

Page 12: Epistasis and Pleiotropy in Evolving Populations
Page 13: Epistasis and Pleiotropy in Evolving Populations

s

Page 14: Epistasis and Pleiotropy in Evolving Populations

)LJXUH ���� +LVWRJUDP RI WKH ĆWQHVV HIIHFWV RI DOO WKH QRQ�OHWKDO VLQJOH JHQH GHOHWLRQV LQ \HDVW� PHDVXUHG LQ <3'� D ULFK

ODERUDWRU\ JURZWKPHGLXP �GDWD UHSORWWHG IURP >���@��

Page 15: Epistasis and Pleiotropy in Evolving Populations

s > 10−2

10−7

1s

1s

11/s = s n n − 1

1s

s s ≪ 1

s

Page 16: Epistasis and Pleiotropy in Evolving Populations
Page 17: Epistasis and Pleiotropy in Evolving Populations
Page 18: Epistasis and Pleiotropy in Evolving Populations

103

.5%

1%

Page 19: Epistasis and Pleiotropy in Evolving Populations
Page 20: Epistasis and Pleiotropy in Evolving Populations
Page 21: Epistasis and Pleiotropy in Evolving Populations
Page 22: Epistasis and Pleiotropy in Evolving Populations
Page 23: Epistasis and Pleiotropy in Evolving Populations
Page 24: Epistasis and Pleiotropy in Evolving Populations

pfix

104 107

s r

N = 104

Page 25: Epistasis and Pleiotropy in Evolving Populations

⟨n(t+ τ)⟩ = Nn(t)e(r+s)τ

ne(r+s)τ + (N − n)erτ

≈ n(t)(1 + sτ − n(t)

Nsτ)

τ ≈ 10

sτ ≪ 1 s ≈ 10−2

s =1

tln

x1fx2f

x2ix1i

i f x1i

i t

τ

⟨(∆n(t+ τ))2⟩ ≈ n(t)(1− n(t)

N)

Page 26: Epistasis and Pleiotropy in Evolving Populations

sτ ≪ 1

n t

n(t+ δt) = n(t) + n(t)s(1− n(t)

N)δt+

√n(t)(1− n(t)

N)√δtη(t)

η(t) ⟨η(t)⟩ = 0 ⟨η2(t)⟩ = 1 N s = sτ

∂tx = Nsx(1− x) +√

x(1− x)η(t)

x = nN

N

S = Ns

Page 27: Epistasis and Pleiotropy in Evolving Populations

x ≫ 1Ns

Ns ≪ 1

pfix =1− e−2s

1− e−2Ns.

Ns ≫ 1

s s ≪ 1

Ns ≫ 1s ≈ 10−2 s ≈

10−1 N ≈ 104 1Ns ≈ 10−3

H(z, t) = ⟨ex(t)z(t)⟩

∂H(z, t)

∂t= (sz +

z2

2)∂H

∂x+ (sz +

z2

2)∂2H

∂x2

z = −2Ns ∂H(z,t)∂t = 0

x = 1 x = 0

H(2Ns, t = 0) = H(2Ns, t → ∞) → e−2Nsx0 = pfixe−2Ns + (1− pfix)

pfix =1− e−2Nsx0

1− e−2Ns

Page 28: Epistasis and Pleiotropy in Evolving Populations

Ns ≪ 1 pfix ≈ 1N

1Ns

t = 1s

Ns

∂tx = Ns(t)x(1− x) +√

x(1− x)η(t).

s

1s

s(t) s

s

Page 29: Epistasis and Pleiotropy in Evolving Populations

NUb

Ub s

1Ns T ≈ 1

s lnNs

1NUbs

≫ 1s lnNs

NUb lnNs ≫ 1

5 − 10%

s > 10−2 10−7

Ub ≈ 5× 10−5

NUb lnNs ≈ 5

Page 30: Epistasis and Pleiotropy in Evolving Populations

2

Page 31: Epistasis and Pleiotropy in Evolving Populations
Page 32: Epistasis and Pleiotropy in Evolving Populations
Page 33: Epistasis and Pleiotropy in Evolving Populations
Page 34: Epistasis and Pleiotropy in Evolving Populations

104 303 3 2 1 1

2 3 1∆ 2

±

Page 35: Epistasis and Pleiotropy in Evolving Populations

104

µl

104

104

3

s = 1τ ln(

nft

nfr

nirnit

) τ

Page 36: Epistasis and Pleiotropy in Evolving Populations

nit nft

nfr nir

dij =∑8

k=1 |uik − ujk| uik i

k

dij

Page 37: Epistasis and Pleiotropy in Evolving Populations

µl

µl µl

µl

µl

µl

Page 38: Epistasis and Pleiotropy in Evolving Populations

h = −∑

i pilogpi pi i

h h > 3

Page 39: Epistasis and Pleiotropy in Evolving Populations

pi = niτi∑i niτi

ni i

τi i

X

g m = (0, 1)

g

I(X, g) =∑

X

= (X1, ...Xn)∑

m=(0,1)

p(m|X) log2p(m|X)

p(m).

M(X, g) = I(X, g) − I(X, g) I(X, g)

pi =niτi∑i niτi

M(X, g)

M(X, g)

Page 40: Epistasis and Pleiotropy in Evolving Populations

yjk

j k

sk =1∑

i,j ωij

m∑

j=1,j =k

nj∑

i=1

ωij(yijk− yjk)−1∑

i,j(1− ωij)

m∑

j=1

nj∑

i=1

(1−ωij)(yijk− yjk)

ij j sk

k ωij ij

sk

fsfgL fs

fg

L fs fg

Page 41: Epistasis and Pleiotropy in Evolving Populations

L

χ2 =∑

i(Oi−Ei)2

EiOi i

Ei i

χ2

pi =niτi∑i niτi

ni i τi

i

dN/dS = 1

χ2

χ2

3 104

3 104

104

Page 42: Epistasis and Pleiotropy in Evolving Populations

3 37

3

104

3

3

3

10 α 104 3 104

3

3

Page 43: Epistasis and Pleiotropy in Evolving Populations

20 α 17 α 7 α

20 17 7

10ρ0 17ρ0 7ρ0 20ρ0 10 17 7

20

17 α 104 20 α 104

7 α 104 10 α 17 10 α 7 10 α

20 17 α 17 20 α 20 7 α 7 10

α 104 10ρ0 α 17 10ρ0 α 20 10ρ0

α 7 10 α 17ρ0 10 α 20ρ0 10 α

7ρ0

10 α 20ρ0

104

10 α 17 10ρ0 α 17 10

α 17 ρ0

Page 44: Epistasis and Pleiotropy in Evolving Populations

µ

µ

µ

µ

104 104 104

1 : 105 µ

104

104

104 104

Page 45: Epistasis and Pleiotropy in Evolving Populations

104

104

104 104 104

104 104

104

Page 46: Epistasis and Pleiotropy in Evolving Populations
Page 47: Epistasis and Pleiotropy in Evolving Populations

)LJXUH ���� )LWQHVV JDLQHG DQG ORVW E\ HDFK HYROYHG FORQH LQ D VHW RI HLJKW

GLDJQRVWLF HQYLURQPHQWV� 7KLQ OLQHV FRQQHFW ĆWQHVV PHDVXUHPHQWV IRU HDFK FORQH� 7KH ĆUVW PDMRU SKHQRW\SLF GLYLVLRQ

LV EHWZHHQ OLQHV WKDW ORVW ĆWQHVV LQ 6&� ORZ WHPSHUDWXUH� DQG JDODFWRVH �EOXH�� DQG WKRVH WKDW PDLQWDLQHG ĆWQHVV LQ

WKHVH HQYLURQPHQWV �UHG�� %ROG OLQHV LQGLFDWH WKH DYHUDJH ĆWQHVV IRU HDFK JURXS RI FORQHV�

Page 48: Epistasis and Pleiotropy in Evolving Populations

)LJXUH ����

&ORQHV IURP HDFK RI QLQH KRPH HYROXWLRQ HQYLURQPHQWV �SDQHOV�� DQG WKHLU ĆWQHVVHV DFURVV WKH HLJKW GLDJQRVWLF FRQGL�

WLRQV� )LWQHVVHV LQ HDFK GLDJQRVWLF FRQGLWLRQ DUH VFDOHG WR WKH DYHUDJH ĆWQHVV DPRQJ WKH VHW RI FORQHV ZLWK WKHPD[LPDO

ĆWQHVV LQFUHDVH LQ WKDW HQYLURQPHQW� 2QO\ FORQHV IURP WKH UHG SKHQRW\SLF FOXVWHU LQ ĆJ� ��� DUH VKRZQ� FRORUV DUH DUEL�

WUDU\� :KLOH VRPH VXEVHWV RI FORQHV IURP SDUWLFXODU HYROXWLRQ FRQGLWLRQV VKRZ FRUUHODWHG HIIHFWV� WKHUH LV FRQVLGHUDEOH

KHWHURJHQHLW\�

Page 49: Epistasis and Pleiotropy in Evolving Populations

)LJXUH ���� )LWQHVV JDLQV DQG ORVVHV� SHU ��� JHQHUDWLRQV� IRU WKH

FORQHV IURP HDFK HQYLURQPHQW LQ WKH UHG SKHQRW\SLF FOXVWHU ������ ,Q JHQHUDO JURXSV RI FORQHV KDYH D FRPSHWLWLYH DG�

YDQWDJH LQ WKHLU KRPH HQYLURQPHQW �UHG EDUV�� DOWKRXJK QRWH WKDW S+ � LV DQ H[FHSWLRQ� *URXSV RI FORQHV H[SHULHQFHG

QHW GHFOLQHV LQ ĆWQHVV UHODWLYH WR WKHLU DQFHVWRU SULPDULO\ LQ S+ ��� DQG KLJK VDOW�

Page 50: Epistasis and Pleiotropy in Evolving Populations

)LJXUH ���� 3DLUZLVH FRUUHODWLRQV LQ

ĆWQHVVHV RI FORQHV EHWZHHQ HDFK RWKHU GLDJQRVWLF FRQGLWLRQ DQG S+ ��� DQG KLJK VDOW� (YHQ WKRXJK DYHUDJH ĆWQHVV IRU

PRVW JURXSV RI CCDZD\ FORQHV GHFOLQHG LQ WKHVH WZR FRQGLWLRQV� WKHUH DUH QR VLJQLĆFDQW QHJDWLYH FRUUHODWLRQV�

Page 51: Epistasis and Pleiotropy in Evolving Populations
Page 52: Epistasis and Pleiotropy in Evolving Populations

)LJXUH ���� 3DLUZLVH FRUUHODWLRQV EHWZHHQ ĆWQHVVHV DW HDFK S+� IRU

FORQHV HYROYHG LQ RQH RI WKHVH HQYLURQPHQWV� 'LDJRQDO VKRZV WKH H[SHFWHG FRUUHODWLRQ EHWZHHQPHDVXUHPHQWV LQ

WKH VDPH HQYLURQPHQW� JHQHUDWHG E\ UHVDPSOLQJ IURP WKH WHFKQLFDO UHSOLFDWH ĆWQHVV PHDVXUHPHQWV� 8SSHU ULJKW RII�

GLDJRQDO VKRZV WKH GLVWULEXWLRQ RI ĆWQHVVHV LQ WKDW HQYLURQPHQW�

Page 53: Epistasis and Pleiotropy in Evolving Populations
Page 54: Epistasis and Pleiotropy in Evolving Populations

p < .005 p < 10−4

Page 55: Epistasis and Pleiotropy in Evolving Populations

)LJXUH ���� 7DEOH RI PXWDWLRQV LQ WKH �� JHQHV ZLWK XQLTXH QRQV\Q�

RQ\PRXVPXWDWLRQV LQ � RUPRUH HYROYHG OLQHV� (DFK FORQH LV GHVLJQDWHG E\ D FROXPQ� JURXSHG E\ KRPH HQYLURQPHQW�

DQG D EDU LQGLFDWHV WKH SUHVHQFH RI D GH QRYR QRQV\QRQ\PRXVPXWDWLRQ LQ WKLV JHQH� 7KH WRS OLQH LQGLFDWHV FORQHV WKDW

H[SHULHQFHG VSRQWDQHRXV GLSORLGL]DWLRQ� DV GHWHUPLQHG E\ D SORLG\ VWDLQ �0HWKRGV��

Page 56: Epistasis and Pleiotropy in Evolving Populations
Page 57: Epistasis and Pleiotropy in Evolving Populations

)LJXUH ���� )LWQHVVHV RI LQGLYLGXDO

QRQV\QRQ\PRXV DQG IUDPHVKLIW PXWDWLRQV� UHFRQVWUXFWHG LQ WKH DQFHVWUDO JHQHWLF EDFNJURXQG� 0XWDWLRQV DUH RUGHUHG

EDVHG RQ WKHLU FORQH RI RULJLQ� ZLWK GLYLGLQJ OLQHV� 7KH ĆUVW WKUHH FORQHV HYROYHG LQ KLJK VDOW� DQG WKH ĆQDO WZR LQ KLJK

WHPSHUDWXUH� 7KH WRS VHW RI VL[ PXWDWLRQV UHSUHVHQWV WKH FRPSOHWH VHW RI QRQV\QRQ\PRXVPXWDWLRQV IRXQG LQ WKLV

FORQH� WKH RWKHU VHWV DUH SDUWLDO� 7ZR V\PEROV DUH LQFOXGHGZKHQ WZR FRQĆUPHG UHFRQVWUXFWLRQV ZHUH UHFRYHUHG� 1RWH

WKDW WZR GLVWLQFW PXWDWLRQV LQ WKH JHQH 6,5�ZHUH UHFRQVWUXFWHG �WRS WR ERWWRP� 1��' DQG4���IV��

Page 58: Epistasis and Pleiotropy in Evolving Populations
Page 59: Epistasis and Pleiotropy in Evolving Populations

)LJXUH ���� D� )LWQHVVHV RI VHJUHJDQWV IURP IRXU�VSRUH FRPSOHWH

WHWUDGV IURP D FURVV EHWZHHQ D KLJK�VDOW HYROYHG FORQH ZLWK D ĆWQHVV GHIHFW DW �� r& DQG WKH DQFHVWRU� E� )LWQHVVHV RI

VHJUHJDQWV IURP IRXU�VSRUH FRPSOHWH WHWUDGV IURP D FURVV EHWZHHQ WKLV HYROYHG FORQH DQG D0DWα YHUVLRQ RI WKH VDPH

FORQH�

≈ 4

≈ 2

Page 60: Epistasis and Pleiotropy in Evolving Populations

2 kb

4 kb

Anc. 3 4 5 6 721 8 9 10 11 12 13 14

)LJXUH ���� *HO HOHFWURSKRUHVLV RI WRWDO JHQRPLFPDWHULDO

H[WUDFWHG IURP WKH DQFHVWRU� VHYHQ HYROYHG OLQHV ZLWK QR ĆWQHVV GHIHFW DW �� r& ������ DQG VHYHQ HYROYHG OLQHV ZLWK D

ĆWQHVV GHIHFW DW �� r& ������� 7KH \HDVW CKHOSHU GV51$ YLUXV LV DERXW � NE LQ OHQJWK DQG LV SUHVHQW LQ DOO VDPSOHV� 7KH

\HDVW NLOOHU GV51$ LV DERXW � NE LQ OHQJWK DQG LV SUHVHQW RQO\ LQ WKH DQFHVWRU DQG OLQHV WKDW PDLQWDLQHG ĆWQHVV DW ORZ

WHPSHUDWXUH�

Page 61: Epistasis and Pleiotropy in Evolving Populations

)LJXUH ����� )LWQHVVHV RI DOO WKH FORQHV

ZLWK ĆWQHVV EHORZ ��� DW �� r&ZKHQ FRPSHWHGZLWK WKH DQFHVWRU� DQG WKH ĆWQHVVHV RI WKHVH FORQHV LQ WKH VDPH FRQ�

GLWLRQV ZKHQ FRPSHWHGZLWK DQ LVRJHQLF UHIHUHQFH VWUDLQ WKDW KDV EHHQ FXUHG RI WKH NLOOHU YLUXV� 7KH GLVDSSHDUDQFH RI

WKH ĆWQHVV GHIHFWV LQ FRPSHWLWLRQ ZLWK WKH FXUHG UHIHUHQFH LQGLFDWHV WKDW WKH\ ZHUH GXH WR NLOOLQJ E\ WKH YLUXV�FDUU\LQJ

DQFHVWRU�

10−3 10−2

Page 62: Epistasis and Pleiotropy in Evolving Populations

)LJXUH ����� 7KH ĆWQHVVHV

RI VL[ FORQHV LVRODWHG IURP DQ RYHUQLJKW FXOWXUH RI WKH DQFHVWRU� UHODWLYH WR WKH NLOOHU DQG QRQ�NLOOHU UHIHUHQFH� 7KHVH

FORQHV KDYH QHDU�QHXWUDO ĆWQHVVHV UHODWLYH WR ERWK UHIHUHQFHV� LQGLFDWLQJ WKDW WKH\ DUH SKHQRW\SLFDOO\ QRQ�NLOOLQJ

EXW UHVLVWDQW �.�5��� ,Q DOO FDVHV H[FHSW KLJK VDOW� WKHUH LV D VPDOO EHQHĆW WR .�5� DERYH .�5�� DQG .�5� DERYH .�5��

VXJJHVWLQJ D VOLJKW FRVW DVVRFLDWHG ZLWK ERWK NLOOLQJ DQG UHVLVWDQFH�

Page 63: Epistasis and Pleiotropy in Evolving Populations
Page 64: Epistasis and Pleiotropy in Evolving Populations
Page 65: Epistasis and Pleiotropy in Evolving Populations
Page 66: Epistasis and Pleiotropy in Evolving Populations
Page 67: Epistasis and Pleiotropy in Evolving Populations

3

Page 68: Epistasis and Pleiotropy in Evolving Populations
Page 69: Epistasis and Pleiotropy in Evolving Populations
Page 70: Epistasis and Pleiotropy in Evolving Populations

∼ 50, 000 ∼ 25, 000

Page 71: Epistasis and Pleiotropy in Evolving Populations
Page 72: Epistasis and Pleiotropy in Evolving Populations

µ

1 : 210

µ

1 : 29

Ne ≈ 105

−80

Page 73: Epistasis and Pleiotropy in Evolving Populations

s = 1τ ln(

ne,f

nr,f

nr,i

ne,i) τ

ne,i, ne,f nr,i, nr,f

Page 74: Epistasis and Pleiotropy in Evolving Populations

H2

f0 H2f0

f0 k

i

σ2g σ2

ϵ

Page 75: Epistasis and Pleiotropy in Evolving Populations

H2f0 =

σ2g

σ2ϵ + σ2

g,

σ2ϵ =

1

ng

ng∑

i=1

σ2ϵ,i, σ2

g =1

ng

ng∑

i=1

[(Xi − X

)2 − σ2ϵ,i

].

ng σ2ϵ,i =

1nr,i(nr,i−1)

∑nr,i

k=1(Xki− Xi)2

i nr,i Xi

i X

ng H2

H2∆f

∆f

σ2p

H2∆f =

σ2g

σ2g + σ2

p + σ2ϵ.

j

k i Yijk

k Yij j

Page 76: Epistasis and Pleiotropy in Evolving Populations

i

σ2ϵ =

1

n

ng∑

i=1

np,i∑

j=1

σ2ϵ,ij ,

σ2ϵ,ij = 1

nr,ij(nr,ij−1)

∑nr,ij

k=1 (Yijk − Yij)2 + σ2ϵ,i nr,ij

j i np,i

i n =∑ng

i=1 np,i

∆f

∆Xij ∆Xi

σ2p =

1

n

ng∑

i=1

np∑

i=1

(∆Xij −∆X i)2 − σ2

ϵ,j ,

σ2g = V ar(∆Xij)− σ2

p − σ2ϵ .

Xi ∆Xij j

i ζi

ζi = α+m∑

l=1

glial + ϵ,

Page 77: Epistasis and Pleiotropy in Evolving Populations

m gli l i

1m − 1

m ϵ N(0,σ2ϵ ) al 0 σ2

a

V ar(ζi) mσ2a

⟨(ζi − ζp)2⟩ = −2mσ2

a

l

gliglp + δ,

−∑

l gliglp i p

(ζi − ζp)2 = β

l

gliglp + δ,

−∑

l gliglp −β2

ζi = Xi h2 = −β2

1V ar(Xi)

∆Xij h2 = −β2

1V ar(∆Xij)

h2

X i

∆Xij j i

(i) =1

n

log(1− r2i )

2 log 10

Page 78: Epistasis and Pleiotropy in Evolving Populations

ri i

ζi

ζi = α+Glial + ϵi,

Gli i l

p < .05

ζi

W W1, ...Wn

Page 79: Epistasis and Pleiotropy in Evolving Populations

W1 = W2 =

gl m 1

0

W gl

I(W, gl) =∑

W=(W1,...Wn)

p(W )∑

m=(0,1)

p(m|W ) log2p(m|W )

p(m)

p(m)

gl p(m|W = Wj)

Wj p(W = Wj)

Wj

Z

I(W, gl|Z) =∑

Z=(Z1,..Zq)

p(Z)∑

W=(W1,...Wn)

p(W |Z)∑

m=(0,1)

p(m|W,Z) log2p(m|W,Z)

p(m|Z)

M(W |Z) =∑

gl

I(W, gl|Z)

W = Kr W = E

W = F

M(Kr) M(E|Kr) M(F |Kr,E)

Page 80: Epistasis and Pleiotropy in Evolving Populations

M(Kr) − Mp(Kr) Mp(Kr) M(E|Kr) −

Mp(E|Kr) M(F |Kr,E) − Mp(F |Kr,E)

0.5%

w0

wf

Page 81: Epistasis and Pleiotropy in Evolving Populations

H2

h2

H2 − h2

H2 − h2

Page 82: Epistasis and Pleiotropy in Evolving Populations

)LJXUH ���� *UH\ EDUV LQGLFDWH WKH

EURDG�VHQVH KHULWDELOLW\�H2 =σ2tot−σ2

isogenic

σ2tot

� RI HDFK WUDLW� %OXH EDUV LQGLFDWH WKH QDUURZ�VHQVH KHULWDELOLW\�h2�

RU WKH HVWLPDWHG IUDFWLRQ RI WKH YDULDQFH WKDW FDQ EH H[SODLQHG E\ DQ DGGLWLYHPRGHO RI WKH JHQHWLF ORFL� 7KH GLIIHUHQFH

EHWZHHQH2 DQGh2 LV GXH WR HSLVWDVLV �LQWHUDFWLRQV EHWZHHQ ORFL�� /LJKW EOXH EDUV LQGLFDWH WKH IUDFWLRQ RI WKH YDULDQFH

H[SODLQHG E\ DQ H[SOLFLW OLQHDU 47/PRGHO� LQFOXGLQJ �� ORFL IRU WKH LQLWLDO ĆWQHVV WUDLWV� DQG � ORFL IRU WKH ĆWQHVV JDLQ

WUDLWV �0HWKRGV�� *UHHQ EDUV LQGLFDWH WKH IUDFWLRQ RI WKH YDULDQFH LQ ĆWQHVV JDLQV WKDW FDQ EH H[SODLQHG E\ LQLWLDO ĆWQHVV

LQ WKDW FRQGLWLRQ�

H2w0

H2w0

= 0.98

H2w0

= 0.99

h2w0h2w0

≈ 0.65

h2w0= 0.80 h2

H2w0

Page 83: Epistasis and Pleiotropy in Evolving Populations

H2∆w ∆w =

wf − w0

H2∆w

∆w

H2∆w ≈ 0.75

h2∆w h2∆w = 0.36

h2∆w = 0.40

Yi i

Yi = µ+L∑

j=1

Gijaj + ϵi.

µ Gij = ±1 i

j L aj

Page 84: Epistasis and Pleiotropy in Evolving Populations

j ϵi

18%

∆w

67%

49%

Page 85: Epistasis and Pleiotropy in Evolving Populations

)LJXUH ���� $� 3UHGLFWLRQV RI WKH ĆWQHVV LQFUHPHQW DW

��r& IURP D OLQHDU 47/PRGHO� 3RLQWV UHSUHVHQW WKH DYHUDJH ĆWQHVV FKDQJH RI IRXU LQGHSHQGHQWO\�HYROYLQJ SRSXOD�

WLRQV ZLWK WKH VDPH IRXQGLQJ JHQRW\SH� (UURU EDUV DUH � 6�(� DERXW WKHPHDQ� 7KH WUDLW YDOXH LV WKH OLQHDU FRPELQDWLRQ

RI WKH47/V WKDW EHVW SUHGLFWV WKH ĆWQHVV JDLQV� ([SOLFLWO\� ZH UHJUHVV y = α + β · IQTLS + ϵ� ZKHUH IQTLs LV

DQ LQGLFDWRU YDULDEOH RQ WKH DOOHOH DW HDFK47/ ORFXV� 7KH WUDLW YDOXHx LV WKHQα + β · IQTLS � VFDOHG WR KDYH VWDQ�

GDUG GHYLDWLRQ �� 47/V ZHUHPDSSHG DV GHVFULEHG LQ WKH0HWKRGV� 7KH r2 UHSRUWHG KHUH LV WKH IUDFWLRQ RI WKH YDULDQFHDPRQJ WKHPHDQV H[SODLQHG E\ WKHPRGHO� ZKLFK LV HTXLYDOHQW WR WKH IUDFWLRQ RI WKH EURDG�VHQVH KHULWDELOLW\ H[SODLQHG

E\ WKHPRGHO� %� 6DPH DV $� IRU ĆWQHVV LQFUHPHQW DW ��r&� &� 7KH GHSHQGHQFH RI WKH ĆWQHVV LQFUHPHQW DW ��r& RQ WKH

ĆWQHVV RI WKH IRXQGLQJ JHQRW\SH �LQLWLDO ĆWQHVV�� $V LQ $� %� SRLQWV UHSUHVHQW WKHPHDQ ĆWQHVV LQFUHPHQW DPRQJ IRXU

SRSXODWLRQV ZLWK WKH VDPH IRXQGLQJ JHQRW\SH� HUURU EDUV DUH � 6�(� DERXW WKHPHDQ� $V LQ $� %� r2 LV WKH IUDFWLRQ RI WKHYDULDQFH DPRQJ WKHPHDQV H[SODLQHG E\ WKHPRGHO� '� 7KH GHSHQGHQFH RI ĆWQHVV LQFUHPHQW DW ��r& RQ LQLWLDO ĆWQHVV DW

��r&� RWKHUZLVH DV GHVFULEHG LQ &�

Page 86: Epistasis and Pleiotropy in Evolving Populations

h2w0

H2w0

w0

w0

w0

w0

30%

w0

∆w

w0

Page 87: Epistasis and Pleiotropy in Evolving Populations

60%

49%

67%

50%

Page 88: Epistasis and Pleiotropy in Evolving Populations

)LJXUH ���� 7KH VDPH GDWD DV LQ )LJXUH ��� '� �LQLWLDO

)RXQGHU ĆWQHVV DQG DYHUDJH ĆWQHVV JDLQ IRU SRSXODWLRQV HYROYHG DW ��r&�� ZLWK SRLQWV FRORUHG DFFRUGLQJ WR WKH DOOHOH

WKDW WKH\ FDUU\ DW D SDUWLFXODU 47/ ORFXV RQ FKU� ;,9� 1RWH WKDW IRU SRSXODWLRQV RI LQWHUPHGLDWH ĆWQHVV� WKH GHOHWHULRXV

SDUHQWDO DOOHOH LV DOVR DVVRFLDWHG ZLWK VPDOOHU ĆWQHVV JDLQV� 1RWH DOVR WKDW SRSXODWLRQV ZLWK WKH GHOHWHULRXV �\HOORZ�

DOOHOH ZLWK WKH VDPH )RXQGHU KDYH ODUJHU YDULDQFH LQ RXWFRPHV �p < 10−3��

Page 89: Epistasis and Pleiotropy in Evolving Populations

)LJXUH ���� $�0HDQ QXPEHU RI QRQV\Q�

RQ\PRXVPXWDWLRQV IRU SRSXODWLRQV GHVFHQGHG IURP HDFK IRXQGHU� IRU SRSXODWLRQV HYROYHG DW �� &� (UURUV DUH± � 6�'�

%� 6DPH� IRU SRSXODWLRQV HYROYHG DW �� &�

I(G,E;M)

G E M

I(G,E;M)

M G E I

G E M

I(G,E;M)

Page 90: Epistasis and Pleiotropy in Evolving Populations

)LJXUH ���� (DFK FRO�

XPQ LV DQ LQGHSHQGHQW SRSXODWLRQ WKDW ZDV VXEMHFW WR ZKROH JHQRPH VHTXHQFLQJ ���� WRWDO�� HDFK URZ LV D JHQH� $

EODFN EDU LQGLFDWHV D QRQV\QRQ\PRXVPXWDWLRQ LQ WKLV SRSXODWLRQ LQ WKLV JHQH� 1XPEHUV LQ HDFK URZ LQGLFDWH WKH QXP�

EHU RI SRSXODWLRQV ZLWKPXWDWLRQV LQ WKLV JHQH� *HQHV DUH RUGHUHG ĆUVW DFFRUGLQJ WR IXQFWLRQDO JURXSLQJV ��� WKH ĆUVW

JURXS DUH JHQHV LQYROYHG LQ ULERVRPDO ELRJHQHVLV� DQG WKH VHFRQG DUH UHJXODWRUV RI 5DV� 7KH WKLUG JURXS FRPSULVHV

DOO RWKHU GRXEOH�KLW JHQHV� 3RSXODWLRQV DUH RUGHUHG ĆUVW DFFRUGLQJ WR WKHLU SDUHQWDO DOOHOH DW WKH47/ ORFXV LGHQWLĆHG

LQ WKH SUHYLRXV VHFWLRQ� ZKLFK WKH JHQH .UH�� LV ORFDWHG LQ� 3RSXODWLRQV DUH WKHQ RUGHUHG E\ HYROXWLRQ FRQGLWLRQ� DQG

ĆQDOO\ E\ WKH SUHVHQFH RI DPXWDWLRQ LQ WKH RUGHUHG JHQHV� 2QO\ SRSXODWLRQV ZLWK WKH 50 DOOHOH DW WKH47/ ORFXV JRW

PXWDWLRQV LQ WKH ULERVRPDO ELRJHQHVLV SDWKZD\� FRPSULVLQJ ��PXWDWLRQV LQ WRWDO� LQFOXGLQJ WKHPXWDWLRQV LQ .UH���

Page 91: Epistasis and Pleiotropy in Evolving Populations

E M p < 10−4

G

M p = 10−3

0.1 E G

∆w

Page 92: Epistasis and Pleiotropy in Evolving Populations

∼ 25, 000 ∼ 50, 000

Page 93: Epistasis and Pleiotropy in Evolving Populations

90%

Page 94: Epistasis and Pleiotropy in Evolving Populations
Page 95: Epistasis and Pleiotropy in Evolving Populations
Page 96: Epistasis and Pleiotropy in Evolving Populations

4

Page 97: Epistasis and Pleiotropy in Evolving Populations
Page 98: Epistasis and Pleiotropy in Evolving Populations
Page 99: Epistasis and Pleiotropy in Evolving Populations
Page 100: Epistasis and Pleiotropy in Evolving Populations

Gen 0Gen 250Gen 500

Inte

rqua

rtile

inte

rval

, %

012345

−10 −5 0 5 10 15 20 250

20

40

60

80

100

Relative fitness, %

Num

ber o

f pop

ulat

ions

17%

49%

34%31%

3%

21%

29%50%

46%

4%

Founder fitnessFounderEvolutionarystochasticityMeasurement error

Founder genotype

Gen

250

Gen

500

Initial relative fitness, %

Fina

l rel

ativ

e fit

ness

, %

R2 = 0.81R2 = 0.59

−10 −5 0 5 10−10

−5

0

5

10

15

Gen 250Gen 500

Initial relative fitness, %

Fina

l rel

ativ

e fit

ness

, %

Gen 250Gen 500

−10 −5 0 5 10−10

−5

0

5

10

15

R2 = 0.42R2 = 0.23

A B

C D

)LJXUH ���� )LWQHVV HYROXWLRQ� �$� 7KH GLVWULEXWLRQ RI PHDQ SRSXODWLRQ ĆWQHVV RYHU WLPH� UHODWLYH WR 'LY$QF� ,QVHW VKRZV

LQWHU�SRSXODWLRQ ĆWQHVV YDULDWLRQ RYHU WLPH� �%� )UDFWLRQ RI WKH YDULDQFH EHWZHHQ OLQHV LQ ĆWQHVV LQFUHPHQW DIWHU ���

DQG ��� JHQHUDWLRQV RI WKH $GDSWDWLRQ SKDVH WKDW LV DWWULEXWDEOH WR HDFK LQGLFDWHG FRPSRQHQW� $OO YDULDQFH FRPSR�

QHQWV DUH VLJQLĆFDQW �7DEOH 6��� �&� 5HODWLRQVKLS EHWZHHQ )RXQGHU ĆWQHVV DQG SRSXODWLRQ ĆWQHVV DIWHU ��� DQG ���

JHQHUDWLRQV RI $GDSWDWLRQ� �'� 5HODWLRQVKLS EHWZHHQ )RXQGHU ĆWQHVV DQG WKHPHDQ ĆWQHVV RI WKH �� LQGHSHQGHQW OLQHV

GHVFHQGHG IURP WKDW )RXQGHU� DIWHU ��� DQG ��� JHQHUDWLRQV RI $GDSWDWLRQ� (UURU EDUV VKRZ s� VWDQGDUG HUURU RI WKH

PHDQ �VHP��

Page 101: Epistasis and Pleiotropy in Evolving Populations
Page 102: Epistasis and Pleiotropy in Evolving Populations
Page 103: Epistasis and Pleiotropy in Evolving Populations

D Number of populations with mutationACE2 (12)

IRA1 (8)

SUR2 (3)GAT2 (3)

CDC28 (3)DIG1 (3)PIN4 (3)

SUP35 (3)CSI1 (3)

HSL1 (3)MSH3 (3)

ECM21 (3)MIH1 (4)EGT2 (4)IRC8 (4)PTR2 (4)FUS3 (4)

KEL1* (4)GRR1* (5)

WHI2 (5)HMG1 (6)

IRA2 (6)SUN4 (6)SFL1 (6)

Mul

tihit

gene

s (n

umbe

r of h

its)

0 1 2 3

Foun

der m

utat

ions

L003 S121 S028 L096aL096b L041 L094 L048 L098 L102a L013S002 L102

MAG

2

KEL1

*RN

H70

TRZ1

MRH

4TM

A10

TUP1

UBP3

GRR

1*G

SP1

ENA1

ENP1

RPL3

5B P

AU3

TIM

8M

AL33

CIT

2HH

F2CD

C40

ZIP2

UBP1

4PH

M7

ESL2

FM

P43

YLL0

65W

RPO

31

YDR

089W

STO

1PH

O89

MG

A2 A

RO2

NUP8

5 DC

D1

RAD3

3 SP

C2O

SW1

RIF1

RAD

33 S

PC2

ASI1

OSW

1

putatively neutral

putatively functional

intron (11)

synonymous(133)

intergenic(187)

promoter(226)

non-synonymous

(489)

premature stop (54)

frameshift(49)

Founders (fitness, %)

0

5

10

15

20

25

Num

ber o

f put

ative

ly fu

nctio

nal m

utat

ions Clones

Means

L003

(–2.3)

S121

(–1.1)

S028

(0.7

)L0

96a

(1.4

)L0

96b

(2.4

)S0

02 (3

.0)

L041

(3.1

)L0

94 (3

.3)

L048

(5.9

)L0

98 (6

.4)

L102

(6.7

)L1

02a

(6.9

)L0

13 (8

.3)

L003

L003

S121

S121

S028

S028

L096

a

L096a

L096

b

L096b

S002

S002

L041

L041

L094

L094

L048

L048

L098

L098

L102

L102

L102

a

L102a

L013

L013

0 0.07 0.13 0.20 0.27 0.30

2.9 3.8 4.7 5.6 6.5 7.4

Mean number of shared multihit genes

Mean number of shared GO Slim terms

)LJXUH ���� 6HTXHQFH�OHYHO HYROXWLRQ� �$�0XWDWLRQV IURP WKH $GDSWDWLRQ SKDVH DUUDQJHG E\ W\SH� �%� &ORQHV GH�

VFHQGHG IURP GLIIHUHQW )RXQGHUV DFTXLUHG RQ DYHUDJH DERXW WKH VDPH QXPEHU RI SXWDWLYHO\ IXQFWLRQDO PXWDWLRQV

�VHH DOVR )LJ� 6�� 6��� �&� &RQYHUJHQFH DQG SDUDOOHOLVP DW WKH JHQH �WRS� RUDQJH� DQG *2 6OLP �ERWWRP� EOXH� OHYHOV� &HOO

FRORU UHSUHVHQWV WKH DYHUDJH QXPEHU RI PXWDWLRQV VKDUHG E\ WZR FORQHV GHVFHQGHG IURP WKH )RXQGHUV LQGLFDWHG LQ WKH

URZ DQG FROXPQ KHDGHUV� )RXQGHUV DUH RUGHUHG IURP OHDVW�ĆW �OHIW� ERWWRP� WRPRVW�ĆW �ULJKW� WRS�� 5RZ DQG FROXPQ

ZLGWK UHSUHVHQWV WKH QXPEHU RI FORQHV VHTXHQFHG� �'�0XWDWLRQV LQ PXOWLKLW JHQHV DQG WKH )RXQGHU EDFNJURXQGV LQ

ZKLFK WKH\ ZHUH REVHUYHG �WRS�� SXWDWLYHO\ IXQFWLRQDO PXWDWLRQV WKDW GHWHUPLQH WKH )RXQGHU EDFNJURXQG �ERWWRP��

$VWHULVNV LQGLFDWH JHQHVPXWDWHG LQ ERWK 'LYHUVLĆFDWLRQ DQG $GDSWDWLRQ SKDVHV�

Page 104: Epistasis and Pleiotropy in Evolving Populations

1 2 2

Page 105: Epistasis and Pleiotropy in Evolving Populations

∆ ∆ ∆

Page 106: Epistasis and Pleiotropy in Evolving Populations

Fitn

ess

effe

ct o

f kno

ck-o

ut, %

Fitness of background strain, %−2 0 2 4 6 8

−2

0

2

4

6

8whi2∆sfl1∆

gat2∆

ho∆

)LJXUH ���� 'LPLQLVKLQJ UHWXUQV HSLVWDVLV DPRQJ VSHFLĆFPXWDWLRQV� 7KH ĆWQHVV HIIHFW RI NQRFNLQJ RXW JHQHV JDW�� ZKL��

DQG Vć� GHFOLQHV ZLWK WKH ĆWQHVV RI WKH EDFNJURXQG VWUDLQ� 7KH KR NQRFNRXW LV D QHJDWLYH FRQWURO� (UURU EDUV VKRZ s�

VHP RYHU ELRORJLFDO UHSOLFDWHV�

Page 107: Epistasis and Pleiotropy in Evolving Populations

5

Page 108: Epistasis and Pleiotropy in Evolving Populations
Page 109: Epistasis and Pleiotropy in Evolving Populations
Page 110: Epistasis and Pleiotropy in Evolving Populations
Page 111: Epistasis and Pleiotropy in Evolving Populations

Generations, t

�s + s

0

s + s

Fitness,s(t)

T0 T1 T2 T3 T4

s

A

Epoch length, T

0Proba

bility,

f(T

)

�⌧

⌧B

0

1Ns

0.01

0.5

0.99

1 � 1Ns

1Frequ

ency,x(t)

C

one cycle

�x

0 2000 4000 6000 8000 10000

Generations, t

0

1Ns

0.01

0.5

0.99

1 � 1Ns

1

Frequ

ency,x(t)

one cycle

�x

D

)LJXUH ���� )LWQHVV DQG IUHTXHQF\ WUDMHFWRULHV� �$� 6DPSOH ĆWQHVV WUDMHFWRU\� 7KHPXWDWLRQ DULVHV DW D UDQGRP SRLQW

LQ WLPH� �%� (SRFKV KDYH DYHUDJH OHQJWK ⟨T ⟩ = τ DQG YDULDQFHvar (T ) = δτ2� �&���'� ([DPSOHV RI IUHTXHQF\

WUDMHFWRULHV IRU HQYLURQPHQWDO ćXFWXDWLRQV WKDW DUH �&� IDVW DQG �'� VORZ FRPSDUHG WR WKH WLPHVFDOH RI VHOHFWLRQ� ,Q

ERWK SDQHOV�N = 106, s = 10−2, δτ = 0.1� LQ SDQHO &� s = 10−3, sτ = 1 DQG LQ SDQHO '� s = 10−4, sτ = 10�

N

t x(t)

f(x, t)

Page 112: Epistasis and Pleiotropy in Evolving Populations

∂f

∂t= − ∂

∂x[s(t)x(1− x)f ] +

1

2

∂2

∂x2

[x(1− x)

Nf

].

s1 = s + s s2 = s − s s

s(t) s1

s2

s ≫ |s| Ns ≫ 1

N |s| ≫ 1

τ δτ2

µ

Nµ ≪ 1

Nµ ≫ 1

Page 113: Epistasis and Pleiotropy in Evolving Populations

Selection

Genetic drift

Selection andseasonal drift

Dominant force

window of opportunity

Freq

uenc

y of

mut

ant a

llele deleterious

epochbeneficial

epoch

2⌧c

2⌧c

1� x1/2

x1/2

0

1

time

2⌧c

xsel

xseas

0

xsel

xseas

0

xseas

x1/2

0

1 11

1� xseas

1� xseas

1� x1/2

1� xseas

1� xsel

1� xsel

1� xsel

xsel

B C DA

)LJXUH ���� $ VFKHPDWLF LOOXVWUDWLRQ RI WKH FRQFHSWV LQ WKH KHXULVWLF VHFWLRQ� �$� $OO PXWDWLRQV WKDW DULVH RXWVLGH RI WKH

ZLQGRZ RI RSSRUWXQLW\ QHDU WKH EHJLQQLQJ RI D EHQHĆFLDO HSRFK DUH GHVWLQHG WR JR H[WLQFW� :LWKLQ D SDLU RI HQYLURQ�

PHQWDO HSRFKV� JHQHWLF GULIW LV VWURQJHVW ZLWKLQ 2τc JHQHUDWLRQV RI WKHPXWDQW EHLQJPRVW UDUH DV ORQJ DV WKH IUHTXHQF\

RI WKHPXWDQW LV EHORZx1/2 DW WKH EHJLQQLQJ RI WKH EHQHĆFLDO HSRFK� ,I WKHPXWDQW VWDUWV WKH EHQHĆFLDO HSRFK DWx1/2�

VHOHFWLRQ ZLOO WDNH LWV IUHTXHQF\ WR 1 − x1/2 E\ WKH HQG RI WKDW HSRFK� 7KH GRPLQDQW HYROXWLRQDU\ IRUFH GHSHQGV

RQ WKH IUHTXHQF\ RI WKHPXWDWLRQ� �%�:KHQ WKH DYHUDJH VHOHFWLRQ SUHVVXUH DQG WKH YDULDWLRQ LQ HSRFK OHQJWKV DUH

ZHDN� JHQHWLF GULIW GRPLQDWHV DOO RWKHU HYROXWLRQDU\ IRUFHV� 7KHPXWDWLRQ WKXV GULIWV QHXWUDOO\ EHORZx1/2� DW ZKLFK

SRLQW LW KDV D Ć[DWLRQ SUREDELOLW\ RI 1/2� 7KLV SLFWXUH DSSOLHV UHJDUGOHVV RI ZKHWKHUxsel LV ODUJH RU VPDOO FRPSDUHG WR

xseas� �&�:KHQ WKH DYHUDJH VHOHFWLRQ SUHVVXUH LV VXIĆFLHQWO\ ODUJH�xsel ≪ x1/2 DQGxsel ≪ xseas� 7KHPXWDWLRQ

GULIWV QHXWUDOO\ EHORZxsel� DIWHU ZKLFK LWV G\QDPLFV DUH GHWHUPLQLVWLF DQG GRPLQDWHG E\ QDWXUDO VHOHFWLRQ� 7KLV SLF�

WXUH KROGV UHJDUGOHVV RI ZKHWKHUxseas LV ODUJH RU VPDOO FRPSDUHG WRx1/2� �'�:KHQ WKH YDULDWLRQ LQ HSRFK OHQJWKV LV

ODUJH HQRXJK�xseas LV OHVV WKDQ ERWKxsel DQGx1/2� 7KHPXWDWLRQ ĆUVW GULIWV QHXWUDOO\ EHORZxseas� $ERYH WKLV FULWLFDO

IUHTXHQF\� ERWK QDWXUDO VHOHFWLRQ DQG VHDVRQDO GULIW DUH SRWHQWLDOO\ LPSRUWDQW� GHSHQGLQJ RQ WKHPDJQLWXGHV RIxseas�

xsel DQGx1/2�

τ

Page 114: Epistasis and Pleiotropy in Evolving Populations

x t = 1/s√

x2N t =

√x

2Ns

xsel =1

2Ns xsel

xsel

x < xsel x

xselx

xselx = 1

N

1N

1xsel

= 2s[x(t) = 1

sest/

(1 + 1

s (est − 1)

)]

2s log(Ns)

xsel O(1s

)

pfix ≈ 1

2· 2s = s.

sτ ≫ 2 log(Ns)

sτ ≪ 2 log(Ns)

Page 115: Epistasis and Pleiotropy in Evolving Populations

sτ > 1

sτ ≪ 2 log(Ns)

∂f

∂k= − ∂

∂x[⟨δx⟩ f(x, k)] + 1

2

∂2

∂x2[⟨δx2

⟩f(x, k)

],

x

0 = ⟨δx⟩ ∂p(x)∂x

+1

2

⟨δx2

⟩ ∂2p(x)

∂x2,

p(x) x ⟨δx⟩⟨δx2

x

Page 116: Epistasis and Pleiotropy in Evolving Populations

pfix p(x)

⟨δx⟩⟨δx2

pfix s s τ δτ N

s = 0, δτ = 0

τ

1/s

τ 1/s

s

1/s 1/s

−s

Page 117: Epistasis and Pleiotropy in Evolving Populations

∼ 1/s

τc = 1/s

τc/τ ≪ 1

Ns ≫ 1 τc = 1/s

x ≪ e−sτ/2

x

∼ τc ∼ τc

x

τc/τ

e−sτ/2

e−sτ/2

x1/2 = e−sτ/2

p(x1/2) = 1/2

x1/2

x1/2

Page 118: Epistasis and Pleiotropy in Evolving Populations

p(x1/2) = 1/2

x1/2

∼ τc/τ

1N

x1/2 ≈ 1/Nx1/2

pfix ≈ τcτ

· 1/Nx1/2

· 12≈ 2 esτ/2

πNsτ,

O(1) 4/π

sτ ≪ 1

τc = τ x1/2 = 1/2

pfix = 1/N sτ ≪ 1 1 ≪ sτ ≪ log(Ns)

1/N s

sτ ≫ log(Ns)

s = 0

e2sτ

2sτx |s|τ ≪ 1 12sτ

Page 119: Epistasis and Pleiotropy in Evolving Populations

x√

2τcx2N

12sτ

≈√

τcx2Nsτ

xsel =1

2N |s|τcτ |s| xsel ≫ x1/2

x1/2

xsel ≪ x1/2 xsel ≈ τcτ · 1/Nxsel

≈ 2|s|

s

|s| = s∗

s∗ ≡ τc/τ

4Nx1/2≈

⎧⎪⎪⎨

⎪⎪⎩

12N sτ ≪ 1

esτ/2

πNsτ sτ ≫ 1

1/2

pfix ≈

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2s s ≫ s∗

2s∗ |s| ≪ s∗,

0 −s ≫ s∗

−s∗ < s < s∗

sτ ≫ 1 s∗

s∗ ∼ 1N

s ≪ s∗

Page 120: Epistasis and Pleiotropy in Evolving Populations

s = 0

es∆T

es∆T

sδτ ≪ 1 sδτx√

2τcx/2N

xseas =τc

N(sδτ)2

xseas ≫ x1/2

xseas ≪ x1/2

(sδτ)2 ≫ τcNx1/2

⎧⎪⎪⎨

⎪⎪⎩

2τN sτ ≪ 1

esτ/2

Ns sτ ≫ 1

Page 121: Epistasis and Pleiotropy in Evolving Populations

sδτ sτ

xseas

x1/2 xseas log (x/xseas) / log(x1/2/xseas

)

c · xseas

c τcτ

1N

1xseas

∼ (sδτ)2

τ

pfix ∼ p

(1

N→ c · xseas

)· p

(c · xseas → x1/2

)

∼ [sδτ ]2

τ· 1

log[N(sδτ)2x1/2/τc

] .

1/N

sτ ≪ 1 pfix N

s = 0

|s|

xsel ≪ xseas xsel ≈ 2|s|

xseas

x1/2 xsel ≫ xseas

2sτ (sδτ)2 s = 0

log2(x1/2/xseas)/(sδτ)2 xseas x1/2

s

x1/2

Page 122: Epistasis and Pleiotropy in Evolving Populations

s ≪ s∗

s∗ ≡ [sδτ ]2

1

log[N(sδτ)2x1/2/τc

] ,

1/2

s ≫ s∗

2s 0

s∗

sτ ≪ 1 sδτ ≪ 1

sτ ≪ 1

Page 123: Epistasis and Pleiotropy in Evolving Populations

⟨δx⟩ = x(1− x)[2sτ + (1− 2x)(sδτ)2

],

⟨δx2

⟩= x(1− x)

N+ 2x2(1− x)2(sδτ)2.

δτ = 0

s 2τ

δt > 0 δx

sτ ≫ 1

x ≪ 1 − esτ/Ns

⟨δx⟩ = x (2sτ) + x (sδτ)2 + x22esτ

Ns,

⟨δx2

⟩= 2x2(sδτ)2 +

2x

Ns

(1 + x2esτ

).

x ≪ x1/2

τc/τ = 1/(sτ) x ! x1/2

δx

x ! 1− esτ/Ns

s → −s

Page 124: Epistasis and Pleiotropy in Evolving Populations

)LJXUH ���� 7KH HIIHFWV RI HQYLURQPHQWDO ćXFWXDWLRQV RQ WKH IDWH RI D QHZPXWDWLRQ DUH ZHOO VXPPDUL]HG E\ D FKDQJH

LQ WKH GULIW EDUULHU� s∗� +HUH� s∗ LV LQGHSHQGHQW RI WKH DYHUDJH ĆWQHVV� s� EXW GHSHQGV RQ WKH SRSXODWLRQ VL]H DQG WKHG\QDPLFV RI HQYLURQPHQWDO ćXFWXDWLRQV� &RORUHG SRLQWV VKRZ:ULJKW�)LVKHU VLPXODWLRQV RI PXWDQW OLQHDJHV DULV�

LQJ DW UDQGRP SRLQWV LQ WLPH� SHUIRUPHG IRU D UDQJH RI HSRFK OHQJWKV DQG YDULDQFHV LQ HSRFK WLPH� +HUHN = 106�s = 10−2� DQGvar (τ) /τ2 YDULHV IURP 10−4 WR 10� 7KH GLIIHUHQW FRORUV GLVWLQJXLVK EHWZHHQ VLPXODWLRQV LQ ZKLFK

VZLWFKLQJ UDWHV ZHUH GLIIHUHQW DQG WKH GLIIHUHQW VKDSHV GLVWLQJXLVK EHWZHHQPXWDWLRQV WKDW DUH RQ DYHUDJH EHQHĆFLDO

�XSZDUG WULDQJOHV�� QHXWUDO �FLUFOHV� DQG GHOHWHULRXV �GRZQZDUG WULDQJOHV�� 7KH IXOO OLQHV VKRZ WKH WKHRUHWLFDO SUHGLF�

WLRQV IRU WKH Ć[DWLRQ SUREDELOLW\ LQ WKH HIIHFWLYH GLIIXVLRQ OLPLW �(T� ������� DQG WKH GRWWHG OLQH VKRZV WKH SUREDELOLW\ RI

Ć[DWLRQ LQ D VLQJOH HQYLURQPHQWDO HSRFK �(T� �������

p(x)

x = x1/2

pfix(s;N, s, τ, δτ) =2s

1− e−s/s∗,

s∗

s s∗

s N s τ δτ

Page 125: Epistasis and Pleiotropy in Evolving Populations

s∗

|s| ≪ s∗

2s∗ s ≫ s∗ 2s

|s| ≫ s∗ 2|s|e−|s|/s∗

pfix(−s)/pfix(s)

s

pfix(−s)

pfix(s)= e−s/s∗ ,

|s|

s∗

|s| ! s∗ s∗

s∗ = 12N

Ne = 2/s∗

Page 126: Epistasis and Pleiotropy in Evolving Populations

)LJXUH ���� 7KH LQFUHDVH LQ GULIW EDUULHU� s∗� UHODWLYH WR LWV YDOXH LQ D FRQVWDQW HQYLURQPHQW DV D IXQFWLRQ RI WKH VWUHQJWK

RI VHOHFWLRQ�Ns� 7KH YDOXH RI s∗ ZDVPHDVXUHG XVLQJ:ULJKW�)LVKHU VLPXODWLRQV RI DQ RQ DYHUDJH QHXWUDO PXWDQW

�V\PEROV�� /LQHV VKRZ WKHRUHWLFDO SUHGLFWLRQV� )DVW VZLWFKLQJ �sτ = 0.1� LV VKRZQ LQ EOXH DQG VORZ VZLWFKLQJ �sτ =10� LQ RUDQJH� +HUH s = 10−2 DQGN UDQJHV IURP 103 WR 108 WR REWDLQ WKH YDOXHV RINs VKRZQ�

Ne N2e (sδτ)

2/2τ

s < 0

1/N

Page 127: Epistasis and Pleiotropy in Evolving Populations

)LJXUH ���� 7KH GHSHQGHQFH RI WKH Ć[DWLRQ SUREDELOLW\ RQ WKH UDWH DQG UHJXODULW\ RI HQYLURQPHQWDO ćXFWXDWLRQV� 7KH

Ć[DWLRQ SUREDELOLW\ KDV EHHQ VFDOHG E\ WKH Ć[DWLRQ SUREDELOLW\ RI D QHXWUDO PXWDWLRQ LQ D FRQVWDQW HQYLURQPHQW� 1/N �

,Q DOO VLPXODWLRQV�N = 106� s = 10−2� DQG WKH RWKHU SDUDPHWHUV DUH VKRZQ LQ WKH SORW� $V WKH YDULDQFH LQFUHDVHV�

WKH Ć[DWLRQ SUREDELOLW\ EHFRPHV KLJKHU DQG WKH DYHUDJH ĆWQHVV HIIHFW� s� SOD\V DQ LQFUHDVLQJO\ VPDOOHU UROH� 7KH Ć[DWLRQ

SUREDELOLW\ LV DOVR KLJKHU LI WKH HQYLURQPHQWDO FKDQJHV DUH VORZHU�

p(−s, τ > 0)

p(s, τ = 0)=

1

ess∗ − 1

⎧⎪⎪⎨

⎪⎪⎩

s∗

s s ≪ s∗

e−ss∗ s ≫ s∗

.

s∗

pfix ≈ s

Page 128: Epistasis and Pleiotropy in Evolving Populations

dN/dS

s ≈ ±10%

τ ≈ 10 N 106

1 ! sτ ≪ 2 log(Ns)

N

sτ < 2 log(Ns) sτ ≪ 1

sδτ ≪√

τ/N

Page 129: Epistasis and Pleiotropy in Evolving Populations

)LJXUH ���� 3KDVH GLDJUDP VKRZLQJ WKH YDULRXV UHJLPHV GLVFXVVHG LQ WKH SDSHU� DV D IXQFWLRQ RI WKHPDJQLWXGH RI HQ�

YLURQPHQWDO ćXFWXDWLRQV �sδτ � DQG WKH DYHUDJH WLPHVFDOH RI HQYLURQPHQWDO ćXFWXDWLRQV �sτ �� 7KH VKDGHG UHJLRQV DUHWKH RQO\ RQHV LQ ZKLFK WKH HQYLURQPHQWDO ćXFWXDWLRQV GR QRW FKDQJH WKH GULIW EDUULHU� DQG VR WKH HIIHFW RI HQYLURQPHQ�

WDO ćXFWXDWLRQV FDQ EH VXPPDUL]HG E\ DQ HIIHFWLYH ĆWQHVV� 7KH EODFN OLQH VHSDUDWHV WKH UHJLRQ LQ ZKLFK JHQHWLF GULIW LV

WKH GRPLQDQW VRXUFH RI VWRFKDVWLF ćXFWXDWLRQV LQ WKH OLQHDJH VL]H IURP WKH UHJLRQ LQ ZKLFK VHDVRQDO GULIW KDV DPRUH

VLJQLĆFDQW HIIHFW� 7KH HIIHFW RI DQ LQFUHDVH LQ WKH SRSXODWLRQ VL]H RQ WKH ERXQGDULHV RI WKH UHJLRQV LV VKRZQ LQ RUDQJH�

s τ

Page 130: Epistasis and Pleiotropy in Evolving Populations

sτ ≈ 1

N ≈ 105

δτ/τ ≫ 0.01

1/τ

sδτ ! 1

Page 131: Epistasis and Pleiotropy in Evolving Populations

6

Page 132: Epistasis and Pleiotropy in Evolving Populations

N U

s

ϵ ϵ

Page 133: Epistasis and Pleiotropy in Evolving Populations

ωc

ωc

ϵ

ϵc

ϵ > ϵc

ϵc

ϵ < ϵc

ϵc

ωc ϵc

ϵc

Page 134: Epistasis and Pleiotropy in Evolving Populations

Fitness (ω)

Bene

ficia

l fra

ctio

n of

mut

atio

ns (ε

) ω ≈ ω c ϵ (U, s, N)c

Adaptionω< ω c

ω> ω c

ϵ> ϵ c

ϵ< ϵ c

Muller’s ratchet

Attractor

)LJXUH ���� ϵω $ SRRUO\ DGDSWHG SRSXODWLRQ �JUHHQ� ZLWK ω < ωc DQG ϵ > ϵc� ZLOO DGDSW WRZDUGV WKH G\QDPLF

HTXLOLEULXP �$WWUDFWRU� VWDWH �JUD\� ZLWK KLJKHU ĆWQHVV DQG ORZHU ϵ� &RQYHUVHO\� DQ CCRYHU�DGDSWHG SRSXODWLRQ �UHG�ZLWK ω > ωc DQG ϵ < ϵc� ZLOO GHFOLQH LQ ĆWQHVV WRZDUGV WKH G\QDPLF HTXLOLEULXP VWDWH GXH WR0XOOHUV UDWFKHW�

N

s s > 0 k

k

k s(k − k)

nk

U ϵ

Ub = Uϵ

Page 135: Epistasis and Pleiotropy in Evolving Populations

Ud = U(1− ϵ)

k

dnk

dt= s(k − k)nk︸ ︷︷ ︸

I

−Unk︸︷︷︸II

+Udnk−1︸ ︷︷ ︸III

+Ubnk+1︸ ︷︷ ︸IV

.

k

s ≪ 1

ϵ k

k k ϵ

k ϵ

ϵc

nk

k ϵ

nkdnkdt = 0 k

ϵ = 0

nk = Ne−λ λk

k! λ = U/s k = 0

Page 136: Epistasis and Pleiotropy in Evolving Populations

0

1.0

0

250

500

0.5

100 150 200 250 300 350 400 450

Nose fitnessNose occupancy

Nos

e occ

upan

cy

Nos

e fitn

essExtinction Establishment

Numb

er of

indivi

duals

Fitness class

n

n

0

1

Deleterious mutations U(1−ϵ)Beneficial mutations Uϵ

“Nose”

A

B

)LJXUH ���� �$� :H UHIHU WR WKHPRVW�ĆW

FODVV DV WKH CCQRVH RI WKH GLVWULEXWLRQ� �%� ,Q WKH HYHQW

RI H[WLQFWLRQ RI WKH QRVH�n1 EHFRPHV WKH QHZ QRVH DQG UHODWLYH QRVH ĆWQHVV GHFUHDVHV E\ s� &RQYHUVHO\� ZKHQ DPRUH�

ĆW QRVH LV HVWDEOLVKHG WKH UHODWLYH QRVH ĆWQHVV LQFUHDVHV E\ s�

Page 137: Epistasis and Pleiotropy in Evolving Populations

ϵc = 0

ϵc > 0

ϵ > 0

ϵc

k

k = λ

nk = Ne−λ(1−2ϵ)+k log

√1−ϵϵ Jk(2α),

Page 138: Epistasis and Pleiotropy in Evolving Populations

−350 −300 −250 −200 −150100

102

104

106

108

Fitness class

Num

ber of individuals

k = λ k⋆

SimulationTheory: nkGaussianPoisson

)LJXUH ����

7KH VLPXODWLRQ UHVXOW LV WKHPHGLDQ ĆWQHVV GLVWULEXWLRQ REVHUYHG

RYHU 106 JHQHUDWLRQV�

Jk k α ≡ λ√

ϵ(1− ϵ)

k k

σ2k = λ(1 − 2ϵ)

ϵ > 0

k⋆

nk k > k⋆

k⋆ k < k⋆

Page 139: Epistasis and Pleiotropy in Evolving Populations

k⋆ k⋆ − 1

III (k− k⋆−λ)nk⋆ +λϵnk⋆+1 = 0

k⋆

k⋆Jk⋆(2α) = αJk⋆+1(2α)

k⋆ ≈

⎧⎪⎪⎨

⎪⎪⎩

λ2ϵ ϵλ2 ≪ 1

2λ√

ϵ(1− ϵ) ϵλ2 ≫ 1.

k⋆ k⋆ = 0

ϵc = 0

e−λ Ne−λ

λ

k⋆ k⋆

ϵ

ϵ = ϵc N

Page 140: Epistasis and Pleiotropy in Evolving Populations

nk⋆ U s ϵ nk⋆

ϵc(N, s, U)

nk⋆ nk⋆

nk⋆

nk⋆

nk⋆s > 1

ϵλ2 < 1 nk⋆ ≈ Ne−λ k⋆ ≈ 0

r−

r− ≈ e−γsnk⋆γs√

γsnk⋆/π γ

r+

r+ = nk⋆UbPest k⋆ ≈ 0

Pest ≈ 2s

ϵc =γ2

e−γsNe−λ

√γsNe−λπ

.

ϵc

λϵc(U,N, s)/γ2 ∼ f(γsNe−λ)

γ

Page 141: Epistasis and Pleiotropy in Evolving Populations

γ = 1/√λ λ

γ ≈ 0.6 0.4 ! 1/√λ ! 0.8

0.1 ! 1/√λ ! 1

γ λ = U/s

ϵc Nse−λ λ

ϵ

nk⋆s ! 1

r−

r− ≈ 1/(2nk⋆)

r+ = ϵUnk⋆Pest Pest

12(k⋆+1)s

Pest = 2(k⋆ + 1)s r− = r+

nk⋆ ≈ 1√4ϵUsk⋆

.

ϵc(N, s, U)

Page 142: Epistasis and Pleiotropy in Evolving Populations

0 2 4 6 810−6

10−4

10−2

100

102

Nse−λ/√

λ

λ2ϵ c

A Slow ratchet regime

1

2

4

8

16

32

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

λ−1 logNs

ϵ c

ϵc (simulation)

ϵ c(n

umer

ics)

B Fast ratchet regime

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

16

32

64

128

256

512

1024

)LJXUH ���� ϵcU s N 6LPXODWLRQ UHVXOWV DUH VKRZQ DV SRLQWV� ZLWK FRORU LQGLFDW�

LQJλ = Us � �$� 6ORZ UDWFKHW UHJLPH� :H VKRZλ2ϵc DV D IXQFWLRQ RI

1√λsNe−λ IRUλ2ϵc < 1� 7KH GDVKHG EODFN

OLQH LV WKH DQDO\WLF VROXWLRQ JLYHQ E\ (T� ������ �%� )DVW UDWFKHW UHJLPH� 1RWH WKDW ϵc LV D IXQFWLRQ RIlogNs

λ � DQG HYHQ LQ

VPDOO SRSXODWLRQV RQO\ DSSURDFKHV ϵc ≈ 12 IRU YHU\ ODUJHλ� 7KH GDVKHG EODFN OLQH VKRZV WKH DV\PSWRWLF VROXWLRQ ϵc

LQ WKH ODUJH SRSXODWLRQ VL]H OLPLW �ϵsλ2 ≫ 1�� (T� ������ 7KH LQVHW FRPSDUHV WKH QXPHULFDO VROXWLRQ IURP (T� ����� WR

VLPXODWLRQ GDWD�

Page 143: Epistasis and Pleiotropy in Evolving Populations

ϵc

λ nk⋆s ! 1

ϵc ≪ 12 λ λ

ϵcλ2 ≫ 1 ϵc ≪ 12

√ϵc log ϵc = λ−1 log

(Nse−λ(1−2ϵc)

)

ϵc ≈z2

log2 [z/ log (z−1)], 2z ≡ 1− logNs

λ.

ϵc Ns λ

ϵc Nse−λ

ϵ = 12

ϵc λ

ϵc ≈1

2−

(3

4λlogNs

)1/3

.

Page 144: Epistasis and Pleiotropy in Evolving Populations

ϵmax ϵc < ϵmax

λ

logNs≤ 3

4

[1

0.5− ϵmax

]3,

ϵmax ! 0.2 ϵmax = 1/4 48 ϵmax = 1/3

Ns ! 1

U ≫ s

ϵc

ϵc

ϵc

ϵc → 0

Page 145: Epistasis and Pleiotropy in Evolving Populations

ϵc → 1/2

ϵc

ϵc Ns

λ ϵc

Ns λ

Nse−λ = 1

ϵ ≪ ϵc ϵ ≫ ϵc ϵ →

ϵc ϵc

ϵc

U/s N

k⋆

Ns ∼ 103

U/s ∼ 8 2%

ϵ > ϵc ϵ < ϵc

Page 146: Epistasis and Pleiotropy in Evolving Populations

1e−10

0.001

0.02

0.05

0.1

0.2

0.3

0.4

102 104 106 108 1010 1012 1014

Ns

λFast ratchet regime

sNe−� < 1

Slow ratchet regimesNe−� > 1

HIV0.5%

1.5%1.0%

VSV

E. coli (WT)

E. coli (MUT)

PhageYeast

2

8

32

128

512

2048

)LJXUH ���� ϵcNs λ = U

s 7KH GRWWHG OLQH VHSDUDWHV WKH VORZ DQG IDVW UDWFKHW

UHJLPHV� ([SHULPHQWV ZLWK YDULRXVPRGHO RUJDQLVPVZLWK GLIIHUHQW SRSXODWLRQ SDUDPHWHUV DUH UHSUHVHQWHG DV SRLQWV�

φX174

s ∼ 0.08 U ∼ 0.13 ϵc

2% 0.2% N 100 200

N ! 30

ϵc

ϵc ϵc ≪ 10−10

Page 147: Epistasis and Pleiotropy in Evolving Populations

s

ϵ

ϵ

N ϵ

Page 148: Epistasis and Pleiotropy in Evolving Populations

ϵ

ϵ

nk k

nk

es(k−k)−α nk

Page 149: Epistasis and Pleiotropy in Evolving Populations

k (k − k) k α =∑

nk−NN

N

±s

Uϵ U(1 − ϵ)

P (i, j) i j

nk nk

k

nk

104

ϵc(U,N, s) ϵ v

v ϵc

ϵ k

k ϵc

Page 150: Epistasis and Pleiotropy in Evolving Populations
Page 151: Epistasis and Pleiotropy in Evolving Populations

A

Page 152: Epistasis and Pleiotropy in Evolving Populations

)LJXUH $��� 0DWUL[ LQGLFDWHV WKH CCGLVWDQFH� EHWZHHQ SKHQRW\SHV

RI D SDLU RI FORQHV� DV GHVFULEHG LQ WKH0HWKRGV� ZKHUH URZV DQG FROXPQV DUH RUGHUHG EDVHG RQ WKH GHQGURJUDP DW

OHIW� 7KH GLVWDQFHPDWUL[ VXJJHVWV WKDW WKHUH DUH WZRPDLQ FOXVWHUV� ZLWK GHQGURJUDP EUDQFKHV FRORUHG UHG DQG EOXH�

6XEVHTXHQW H[SHULPHQWV GHWHUPLQHG WKDW WKHVH FOXVWHUV FRUUHVSRQG WR OLQHV WKDW ORVW WKH \HDVW NLOOHU YLUXV DQG WKRVH

WKDW UHWDLQHG LW� DOWKRXJK VRPH HGJH FDVHV DUHPLV�DVVLJQHG�

Page 153: Epistasis and Pleiotropy in Evolving Populations

)LJXUH $��� ([SHFWHG DQG REVHUYHG GLVWULEXWLRQ RI QRQV\QRQ\PRXV DQG IUDPHVKLIW

PXWDWLRQV SHU JHQH� DFURVV DOO OLQHV LQ WKH H[SHULPHQW�

Page 154: Epistasis and Pleiotropy in Evolving Populations

)LJXUH $��� 7KH QXOO GLVWULEXWLRQ IRU WKH

0, VWDWLVWLF �JUH\� DQG WKH REVHUYHG GLVWULEXWLRQ �EOXH�� 7KHUH LV DQ H[FHVV RI PXWXDO LQIRUPDWLRQ EHWZHHQ WKH JHQHV

DQG HQYLURQPHQW� LQGLFDWLQJ WKDW DERXW ��� RI WKH WULSOH�KLW JHQHV DUH QRQUDQGRPO\ GLVWULEXWHG DPRQJ FRQGLWLRQV�

Page 155: Epistasis and Pleiotropy in Evolving Populations

)LJXUH $��� 0XWDWLRQ UDWHV HVWLPDWHG EDVHG RQ DFFXPXODWLRQ RI V\QRQ\�

PRXVPXWDWLRQV �VHH EHORZ�� 1R UDWH LV VLJQLĆFDQWO\ GLIIHUHQW IURP WKHPHDQ� DQG WKH OHYHO RI SRVVLEOH UHDO YDULDWLRQ

LV ERXQGHG WR ZLWKLQ D IDFWRU RI DURXQG � EHORZ DQG � DERYH WKH RYHUDOO DYHUDJH�

8.7(±.6) × 10−10

p = .04

Page 156: Epistasis and Pleiotropy in Evolving Populations

1.1(±.04)

= 2 = 1.57

Page 157: Epistasis and Pleiotropy in Evolving Populations

)LJXUH $��� )LWQHVV JDLQV DQG ORVVHV QRUPDOL]HG E\ WKH

QXPEHU RI QRQV\QRQ\PRXVPXWDWLRQV LQ HDFK FORQH� DQG DYHUDJHG IRU FORQHV IURP D SDUWLFXODU HYROXWLRQ FRQGLWLRQ�

Page 158: Epistasis and Pleiotropy in Evolving Populations

)LJXUH $��� &RUUHODWLRQV EHWZHHQ ĆWQHVVHV LQ GLIIHUHQW

FRQFHQWUDWLRQV RI VDOW� DPRQJ FORQHV HYROYHG LQ WKHVH HQYLURQPHQWV� 3DQHOV DUH DV GHVFULEHG LQ )LJ� ���

Page 159: Epistasis and Pleiotropy in Evolving Populations

)LJXUH $��� &RUUHODWLRQV EHWZHHQ ĆWQHVVHV LQ GLIIHUHQW FRQFHQ�

WUDWLRQV RI VDOW� DPRQJ FORQHV HYROYHG LQ WKHVH HQYLURQPHQWV� 3DQHOV DUH DV GHVFULEHG LQ )LJ� ���� 1RWH WKDW WKHUH LV

D JURXS RI \HOORZ FORQHV WKDW DSSHDUV WR EHKDYH GLIIHUHQWO\���WKHVH FORQHV KDYH D ĆWQHVV GHIHFW DW ��r& DQG ODUJHU

PHDVXUHPHQW HUURU LQ VRPH HQYLURQPHQWV� 7KHVH FORQHV DUH GLSORLGV �VHHPDLQ WH[W��

Page 160: Epistasis and Pleiotropy in Evolving Populations

)LJXUH $��� &RPSHWLWLRQ EHWZHHQ WKH DQ�

FHVWRU DQG DQ LVRJHQLF FORQH FXUHG RI WKH NLOOHU YLUXV� DW �� r& �VWUDLQV� \*,/104 DQG \*,/104�FLW�Y�� VHH0HWKRGV��

'DWD SRLQWV VKRZ WKH ĆWQHVV RI WKH Y� FORQH UHODWLYH WR WKH Y� FORQH� %HFDXVH WKH Y� FORQH GLUHFWO\ NLOOV WKH Y� FORQH� WKH

ĆWQHVV LQ FRPSHWLWLRQ LV GHSHQGHQW RQ WKH LQLWLDO IUHTXHQF\ RI WKH FRPSHWLWRUV�

Page 161: Epistasis and Pleiotropy in Evolving Populations

B

α∆

Page 162: Epistasis and Pleiotropy in Evolving Populations

x y z x y

z

∆ WT ∆

Page 163: Epistasis and Pleiotropy in Evolving Populations

+30

Page 164: Epistasis and Pleiotropy in Evolving Populations

1 : 215

1 : 25

−80

−0.45 [−3.2%, 0.49%]

0.14

[−2.08%, 2.11%]

−4.9% 1.0% −0.41%

−3.1% 3.4%

0.14%

−2.3% 3.0% −0.67%

Page 165: Epistasis and Pleiotropy in Evolving Populations

1 : 25

−80

Page 166: Epistasis and Pleiotropy in Evolving Populations

1 : 25

1 : 1

1 : 25

F =1

t2 − t1log

(n(t2)

nr(t2)

/n(t1)

nr(t1)

),

n(t) nr(t) t

t1 = 10 t2 = 30

%11-ǥȇȇ0"/$"6(/6�7%&*0(&6ǣ4"�0ǣ ,*ȇ-/,1, ,)0

Page 167: Epistasis and Pleiotropy in Evolving Populations
Page 168: Epistasis and Pleiotropy in Evolving Populations

%11-ǥȇȇ0"/$"6(/6�7%&*0(&6ǣ4"�0ǣ ,*ȇ-/,1, ,)0

2 2 1

2

∆ ∆

Page 169: Epistasis and Pleiotropy in Evolving Populations

%11-ǥ

ȇȇ444Ǹ0".2"+ "ǣ01�+#,/!ǣ"!2ȇ$/,2-ȇ6"�01Ȁ!")"1&,+Ȁ-/,'" 1ȇ-/,1, ,)0ǣ%1*)

Page 170: Epistasis and Pleiotropy in Evolving Populations

Θ

Θ ∼ Beta(α,β)

α = 1ϵ−4 β = 0.271 α = 1ϵ−4

β = 0.434

> 5%

Page 171: Epistasis and Pleiotropy in Evolving Populations

R A

ai

A i ki

A R mi

i

mi =

⎧⎪⎪⎨

⎪⎪⎩

1, i,

0, .

m = (m1,m2, . . . ,mN ) ∈ {0, 1}N N

m

Ppost(m|a,k) m

k = (k1, ..., kN ) A a =

(a1, ..., aN )

Ppost(m|a,k) = Pprior(m) L(a|m,k)∑m

Pprior(m) L(a|m,k),

L(a|m,k) A

Page 172: Epistasis and Pleiotropy in Evolving Populations

m k Pprior(m)

m

Θ A Θ fΘ(θ)

Ppost(m|a,k) =Pprior(m)

∫ 10 L(a|m,k, θ) fΘ(θ) dθ

∑m

Pprior(m)∫ 10 L(a|m,k, θ) fΘ(θ) dθ

.

L(a|m,k, θ) a m

k θ

mi = 0 i

θ mi = 1

1− θ

L(a|m,k, θ) =N∏

i=1

P (ai|mi, θ, ki)

=N∏

i=1

(kiai

)θmi(ki−ai)+(1−mi)ai(1− θ)miai+(1−mi)(ki−ai)

= θ∑

i[mi(ki−ai)+(1−mi)ai](1− θ)∑

i[miai+(1−mi)(ki−ai)]N∏

i=1

(kiai

).

fΘ α β

fΘ(θ) =θα−1(1− θ)β−1

B(α, β),

Page 173: Epistasis and Pleiotropy in Evolving Populations

B(α, β)

Ppost(m|a,k) =Pprior(m)

∫ 10 θα(m,k)−1(1− θ)β(m,k)−1dθ

∑m

Pprior(m)∫ 10 θα(m,k)−1(1− θ)β(m,k)−1dθ

=Pprior(m) B (α(m,k),β(m,k))∑

mPprior(m) B (α(m,k),β(m,k))

,

α(m,k) = α+N∑

i=1

[mi(ki − ai) + (1−mi)ai] ,

β(m,k) = β +N∑

i=1

[miai + (1−mi)(ki − ai)] .

m

10−6

Pprior(m) = 10−6 m

Pprior(m) = 10−12

m

m0 =

(0, 0, . . . , 0)

Pprior(m0)∑

m Pprior(m) = 1

m

m0

Page 174: Epistasis and Pleiotropy in Evolving Populations

t = 0, 250 500

X(t)ijk k j

i t i = 1, 2, . . . nF = 66 j = 1, 2, . . . , npop(i) k = 1, 2, . . . , nrep(i, j)

npop(i) = 10 nrep(i, j) = 2

i t = 0

xi =1

∑nF(i)j=1 nrep(i, j)

nF(i)∑

j=1

nrep(i,j)∑

k=1

X(0)ijk

i xi

k j i t

Y (t)ijk = X(t)

ijk − xi.

t

fN (x;µ,σ2)

µ σ2 x

Yij· =1

nrep(i, j)

nrep(i,j)∑

k=1

Yijk

Page 175: Epistasis and Pleiotropy in Evolving Populations

j i

VijY =1

nrep(i, j)

nrep(i,j)∑

k=1

(Yijk − Yij·

)2

j i

Yi·· =1

∑npop(i)j=1 nrep(i, j)

npop(i)∑

j=1

nrep(i,j)∑

k=1

Yijk

i

ViY =1

∑npop(i)j=1 nrep(i, j)

npop(i)∑

j=1

nrep(i,j)∑

k=1

(Yijk − Yi··

)2

i

Y

Yijk = α+ εijk,

α εijk

σ2e

Page 176: Epistasis and Pleiotropy in Evolving Populations

α σ2e

L1A(Y ;α,σ2

e

)=

nFG∏

i=1

npop(i)∏

j=1

nrep(i,j)∏

k=1

fN (Yijk;α,σ2e).

Yijk = α+ βxi + εijk,

α + βxi i

α β σ2e

L1B(Y ;α,β,σ2

e

)=

nF∏

i=1

npop(i)∏

j=1

nrep(i,j)∏

k=1

fN (Yijk;α+ βxi,σ2e),

Yijk = α+Aij + εijk,

α + Aij j i

Aij σ2s

Page 177: Epistasis and Pleiotropy in Evolving Populations

α σ2s σ2

e

L2A(Y ;α,σ2

s ,σ2e

)=

nF∏

i=1

npop(i)∏

j=1

Arep(i, j) fN(Yij·;α, σ

2ij

),

Arep(i, j) =(2πσ2

e

)−nrep(i,j)−12 (nrep(i, j))

− 12 exp

{− VijY

2σ2e/nrep(i, j)

},

σ2ij = σ2

e/nrep(i, j) + σ2s .

Yijk = α+ βxi +Aij + εijk.

α β σ2s σ2

e

L2B(Y ;α,β,σ2

s ,σ2e

)=

nF∏

i=1

npop(i)∏

j=1

Arep(i, j) fN(Yij·;α+ βxi, σ

2ij

),

Arep(i, j) σ2ij

Page 178: Epistasis and Pleiotropy in Evolving Populations

Yijk = α+Bi +Aij + εijk,

α + Bi i Bi

σ2g

α σ2g σ2

s σ2e

L3A(Y ;α,σ2

g ,σ2s ,σ

2e

)=

nF∏

i=1

⎝npop(i)∏

j=1

Arep(i, j)

⎠Apop(i) fN(Yi··;α,σ

2g + σ2

i

),

Apop(i) = (2π)−npop(i)−1

2

⎝ σ2i∏npop(i)

j=1 σ2ij

12

exp

{−ViY

2σ2i

},

σ2i =

⎝npop(i)∑

j=1

1

σ2ij

⎠−1

,

Yi·· = σ2i

npop(i)∑

j=1

Yij·σ2ij

,

ViY = σ2i

npop(i)∑

j=1

(Yij·

)2

σ2ij

−(Yi··

)2,

Arep(i, j) σ2ij

Page 179: Epistasis and Pleiotropy in Evolving Populations

Yijk = α+ βxi +Bi +Aij + εijk,

α + βxi + Bi i

α β σ2g σ2

s σ2e

L3B(Y ;α,β,σ2

g ,σ2s ,σ

2e

) nF∏

i=1

⎝npop(i)∏

j=1

Arep(i, j)

⎠Apop(i) fN(Yi··;α+ βxi,σ

2g + σ2

i

),

Arep(i, j) Apop(i) σ2i Yi··

σ2e σ2

s σ2g

σ2f = VY − σ2

g − σ2s − σ2

e ,

VY =1

∑nFi=1

∑nF(i)j=1 nrep(i, j)

nF∑

i=1

nF(i)∑

j=1

nrep(i,j)∑

k=1

(Yijk − Y

)2

Y =1

∑nFi=1

∑nF(i)j=1 nrep(i, j)

nF∑

i=1

nF(i)∑

j=1

nrep(i,j)∑

k=1

Yijk

Page 180: Epistasis and Pleiotropy in Evolving Populations

P ≪ 10−3

P = 0.018

σ2g σ2

f σ2s

c nsyn(c) nnon(c)

nstop(c)

νc

%11-ǥȇȇ!,4+),�!0ǣ6"�01$"+,*"ǣ,/$ȇ2+-2�)&0%"!Ȁ!�1�ȇ ,!,+ȇ60 ǣ

,/#ǣ ,!

fi =19

∑c νcni(c) i = syn, non, stop

fstop

Page 181: Epistasis and Pleiotropy in Evolving Populations

χ2

χ2

P < 0.001 < 0.001

7DEOH %��� 2EVHUYHG DQG H[SHFWHG QXPEHUV RI V\QRQ\PRXV �6\Q�� QRQV\QRQ\PRXV �1RQ�� DQG QRQVHQVH �6WRS� PXWD�

WLRQV� /DVW WKUHH FROXPQV VKRZ WKH H[SHFWHG QXPEHUV IRU DOO W\SHV RI PXWDWLRQV� QRQV\QRQ\PRXV UHODWLYH WR V\QRQ\�

PRXVPXWDWLRQV� DQG QRQVHQVH UHODWLYH WR V\QRQ\PRXVPXWDWLRQV� UHVSHFWLYHO\� %RWWRP KDOI RI WKH WDEOH VKRZV WKH

UHVXOWV RI WKH FRUUHVSRQGLQJχ2 WHVWV�

pgene = C(Lgene + Lprom),

Page 182: Epistasis and Pleiotropy in Evolving Populations

Lgene Lprom = 500

C

818

M0 =

815 nk

k k k = 0, 1, 2, . . .

k k > 1

k

i Mi

M0 k

Bk(Mi) = nk − nk(Mi), nk(Mi) k Bk(Mi) > 0

k > 1 kBk(Mi) M0

M0−∑

k>1 kBk(Mi) M0−∑

k>1 kBk(Mi) > Mi

Mi nk(Mi)

k Mi+1 = ⌈M0 −∑

k>1 kBk(Mi)⌉

|Mi+1 −Mi| < 1∑

k>1 kBk(Mi)

i = 4 129

Page 183: Epistasis and Pleiotropy in Evolving Populations

Mij j i

Mij = Bij +Nij ,

Bij Nij

Bij ∼ Poisson(βi) Nij ∼ Poisson(ν)

Page 184: Epistasis and Pleiotropy in Evolving Populations

k k

7DEOH %��� 1XPEHU RI k�KLW JHQHV DIIHFWHG E\PXWDWLRQ� ([SHFWDWLRQV DUH JHQHUDWHG XQGHU UDQGRP GLVWULEXWLRQ RI ���

PXWDWLRQV DPRQJ DOO \HDVW 25)V �VHH VHFWLRQ CC(VWLPDWLQJ WKH QXPEHU RI EHQHĆFLDO PXWDWLRQV�� $OO REVHUYHG QXPEHUV

RI PXOWL�KLW JHQHV KDYHP < 0.01�

M = N−1∑ij Mij , EM ≡ λ = β + ν,

β = N−1∑iNiβi Ni

i N =∑

iNi = 104

λ = 7.9

β ν λ

β = fλ ν = (1 − f)ν f = N−1∑iNifi

fi = βi/λ

i

fi

fi = f − α

λ

xi − x

xmax − xmin,

xi i x = N−1∑iNixi = 3.2%

α > 0

Page 185: Epistasis and Pleiotropy in Evolving Populations

xmin = −2.3%

xmax = 8.3% α

f α

0 ≤ fi ≤ 1

α ≤ αmax(f) ≡ min

{λf

xmax − xmin

xmax − x,λ(1− f)

xmax − xmin

x− xmin

}.

f

fi

fi f = (xmax − x)/(xmax − xmin ) = 0.48

1000 f = 0.1, 0.25, 0.5, 0.75, 0.9 α

0 αmax(f)

Mij

P

α f

Page 186: Epistasis and Pleiotropy in Evolving Populations

Mij

Var Mij = βi + ν = λf − αxi − x

xmax − xmin+ λ− λf = λ− α

xi − x

xmax − xmin

f

0.60 P 0.05 α ≥ 2.1

%11-ǥȇȇ!,4+),�!0ǣ6"�01$"+,*"ǣ,/$ȇ 2/�1&,+ȇ)&1"/�12/"ȇ$,Ȁ0)&*Ȁ*�--&+$ǣ1��

c(i, j)

i j CI

PI

CI =2

N(N − 1)

i

j>i

c(i, j),

P I =2∑

k Nk(Nk − 1)

i

j>i:φ(i)=φ(j)

c(i, j).

φ(i) i N = 104 Nk

Page 187: Epistasis and Pleiotropy in Evolving Populations

k

CI

CI

P < 10−4 P = 0.013

PI

PI CI

PI P = 0.055

P = 0.75

Yij

j i

mij

Yij = α+ βmij + εij ,

Page 188: Epistasis and Pleiotropy in Evolving Populations

εij σ2e

α β σ2e

L1A(Y ;α,β,σ2

e

)=

nF∏

i=1

npop(i)∏

j=1

fN (Yij ;α+ βmij ,σ2e).

β = 0

L0(Y ;α,σ2

e

)=

nF∏

i=1

npop(i)∏

j=1

fN (Yij ;α,σ2e),

xi i

Yij = α+ βmij + γxi + εij .

α β γ σ2e

L2A(Y ;α,β, γ,σ2

e

)=

nF∏

i=1

npop(i)∏

j=1

fN (Yij ;α+ βmij + γxi,σ2e).

β = 0

L1B(Y ;α, γ,σ2

e

)=

nF∏

i=1

npop(i)∏

j=1

fN (Yij ;α+ γxi,σ2e),

Page 189: Epistasis and Pleiotropy in Evolving Populations

Yij = α+Ai + βmij + εij ,

Ai σ2g

α σ2g β σ2

e

L2B(Y ;α,β,σ2

g ,σ2e

)=

nFG∏

i=1

A(i) fN(Yi·;α+ βmi·, σ

2i

),

A(i) =(2πσ2

n

)−npop(i)−12 (npop(i))

− 12 exp

{−ViY − 2β Ci [Y,m] + β2 Vim

2σ2e/npop(i)

},

σ2i = σ2

e/npop(i) + σ2g ,

Ci [Y,m] =1

npop(i)

npop(i)∑

j=1

(Yij − Yi·

)(mij − mi·)

i

Yij = α+Ai + εij ,

L1C(Y ;α,σ2

g ,σ2e

)=

nFG∏

i=1

A(i) fN(Yi·;α, σ

2i

),

Page 190: Epistasis and Pleiotropy in Evolving Populations

∼ 6

∼ 5 × 10−10

! 106

Page 191: Epistasis and Pleiotropy in Evolving Populations
Page 192: Epistasis and Pleiotropy in Evolving Populations

fitnesslow high

DivAnc

Diversification240 gen

Adaptation500 gen

Founder 1

Founder 2

Founder 64

...

)LJXUH %��� ([SHULPHQWDO GHVLJQ� :H FUHDWHGPDQ\ LQGHSHQGHQW OLQHV IURP D VLQJOH FORQH �'LY$QF� ZKLFK FDPH IURP D

SUHYLRXV HYROXWLRQ H[SHULPHQW LQ WKH VDPH HQYLURQPHQW >���@ DQG HYROYHG HDFK RI WKHP IRU ��� JHQHUDWLRQV �'LYHU�

VLĆFDWLRQ�� :H WKHQ VHOHFWHG D VLQJOH CC)RXQGHU FORQH IURP �� RI WKHVH OLQHV �FKRVHQ WR VSDQ D UDQJH RI ĆWQHVV� DQG

HYROYHG �� LQGHSHQGHQW UHSOLFDWH SRSXODWLRQV GHVFHQGHG IURP HDFK )RXQGHU IRU ��� JHQHUDWLRQV �$GDSWDWLRQ��

F P−0.5 2.7 3.7 4.36 1, 33 0.045−1.0 1.5 3.31.3 1.8 3.8 0.7 1, 35 0.2801.1 0.9 2.72.3 2.1 5.2 11.69 1, 38 0.0022.4 0.6 2.03.3 1.2 1.8 1.23 1, 37 0.2753.6 0.1 3.0

7DEOH %��� 5HVXOWV RI WKH UHSOD\ H[SHULPHQW� 1HVWHG $129$ZDV XVHG WR WHVW ZKHWKHU UHSOLFDWH SRSXODWLRQV GHVFHQGHG

IURP GLIIHUHQW )RXQGHUV DFKLHYHG V\VWHPDWLFDOO\ GLIIHUHQW ĆQDO ĆWQHVVHV DIWHU ��� JHQHUDWLRQV RI HYROXWLRQ�

Page 193: Epistasis and Pleiotropy in Evolving Populations

Initial relative fitness, %

Fina

l rel

ativ

e fit

ness

, %

−2 0 2 4 6

2

4

6

8

10

12 L041

L094

)LJXUH %��� 5HSOD\ H[SHULPHQW� 7R WHVW ZKHWKHU WKH DSSDUHQW GLIIHUHQFH LQ DGDSWDELOLW\ EHWZHHQ )RXQGHUV ZLWK VLPLODU

ĆWQHVV� /��� DQG /���� LV UHDO� ZH IRXQGHG DQ DGGLWLRQDO �� UHSOLFDWH SRSXODWLRQV IURP HDFK )RXQGHU DQG HYROYHG WKHP

IRU ��� JHQHUDWLRQV LQ FRQGLWLRQV LGHQWLFDO WR WKHPDLQ H[SHULPHQW� :H VKRZ WKH FRUUHODWLRQ EHWZHHQ WKH LQLWLDO ĆWQHVV

RI HDFK UHSOLFDWH OLQH DQG LWV ĆWQHVV DIWHU ��� JHQHUDWLRQV RI DGDSWDWLRQ� )LWQHVVHV RI /���� DQG /����GHVFHQGHG

SRSXODWLRQV ZHUH LQGLVWLQJXLVKDEOH LQLWLDOO\ �1HVWHG $129$�F1,37 = 0.03, P = 0.86�� EXW VLJQLĆFDQWO\ GLIIHUHQWDIWHU ��� JHQHUDWLRQV RI HYROXWLRQ �F1,37 = 15.95, P < 10−3�� 6HH DOVR 7DEOH %��� (UURU EDUV VKRZ±1 VHP�

Page 194: Epistasis and Pleiotropy in Evolving Populations

All

0

20

40

60

80

Num

ber o

f mut

atio

ns

PutativelyNeutral

0

5

10

15

20

25

PutativelyFunctional

0

10

20

30

40

50

60

Likely mutatorsDiploids

Founder

L125

L034

L003

S121

S028

L096

a

L096

b

S002

L041

L094

L048

L098

L102

L102

a

L013

)LJXUH %��� 1XPEHU RI PXWDWLRQV LQ HDFK OLQH GHVFHQGHG IURP HDFK RI WKH �� VHTXHQFHG )RXQGHUV� /DUJHU FLUFOHV LQ�

GLFDWH WKH DYHUDJH QXPEHU RI PXWDWLRQV IRU SRSXODWLRQV GHVFHQGHG IURP WKH VDPH )RXQGHU� &ORQHV VKRZQ LQ \HOORZ

DUH GLSORLG� OLPLWLQJ RXU DELOLW\ WR DFFXUDWHO\ FDOO PXWDWLRQV� &ORQHV VKRZQ LQ SXUSOH DSSDUHQWO\ DFTXLUHGPXWDWRU SKH�

QRW\SHV� 7RS� PLGGOH� DQG ERWWRP SDQHOV VKRZ DOO PXWDWLRQV� SXWDWLYHO\ QHXWUDO PXWDWLRQV� DQG SXWDWLYHO\ IXQFWLRQDO

PXWDWLRQV� UHVSHFWLYHO\� )RXQGHUV DUH RUGHUHG IURP OHDVW�ĆW �OHIW� WR PRVW�ĆW �ULJKW��

Page 195: Epistasis and Pleiotropy in Evolving Populations

Number of mutations

Fitness incre

ment, %

Fitness incre

ment, %

Mutations in genes

hit 3 or more times

Conservative set of

beneficial mutationsA

NC

OV

AM

ultip

le r

egre

ssio

n

0 1 2 3 4 5 6 7

−2

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7

−2

0

2

4

6

8

10

12

14

0 1 2 3 4 5

−2

0

2

4

6

8

10

12

14

0 1 2 3 4 5

−2

0

2

4

6

8

10

12

14L003S121S028L096aL096bS002L041L094L048L098L102L102aL013

L003S121S028L096aL096bS002L041L094L048L098L102L102aL013

L003S121S028L096aL096bS002L041L094L048L098L102L102aL013

L003S121S028L096aL096bS002L041L094L048L098L102L102aL013

A

C

B

D

)LJXUH %��� )LWQHVV LQFUHPHQW RI HDFK OLQH DIWHU ��� JHQHUDWLRQV RI DGDSWDWLRQ DV D IXQFWLRQ RI WKH QXPEHU RI SXWDWLYHO\

EHQHĆFLDO PXWDWLRQV� 3DQHOV � � VKRZ GDWD IRU PXWDWLRQV LQ JHQHV KLW � RU PRUH WLPHV� SDQHOV � � VKRZ GDWD IRU

WKH FRQVHUYDWLYH VHW RI SXWDWLYHO\ EHQHĆFLDO PXWDWLRQV �VHH VHFWLRQ CC(VWLPDWLQJ WKH QXPEHU RI EHQHĆFLDO PXWDWLRQV

IRU GHĆQLWLRQ�� /LQHV GHVFHQGHG IURP HDFK )RXQGHU DUH LQGLFDWHG ZLWK WKH FRUUHVSRQGLQJ FRORU DFFRUGLQJ WR WKH OHJHQG�

2YHUDOO WKHUH LV RQO\ D ZHDN� QRQ�VLJQLĆFDQW FRUUHODWLRQ EHWZHHQ WKH QXPEHU RI PXWDWLRQV LQ PXOWL�KLW JHQHV DQG WKH

LQFUHDVH LQ ĆWQHVV RI D JLYHQ FORQH �JUD\ OLQHV�� +RZHYHU� FRQGLWLRQDO RQ WKH ĆWQHVV RI WKH )RXQGHU � � RU LWV LGHQWLW\

� �� VXFK FRUUHODWLRQ LV VWURQJ DQG VLJQLĆFDQW �FRORUHG OLQHV�� 6HH 7DEOH %�� IRU WKH EHVW�ĆW SDUDPHWHUV XVHG LQ WKLV

ĆJXUH� QRWH WKDW WKH VORSHV RI OLQHV IRU GLIIHUHQW )RXQGHUV DUH LGHQWLFDO E\ FRQVWUXFWLRQ �VHH VHFWLRQ CC DQG 7DEOH %����

'DWD SRLQWV DUH VOLJKWO\ GLVSODFHG DORQJ WKHx�D[LV IRU FODULW\�

Page 196: Epistasis and Pleiotropy in Evolving Populations

Mutations in geneshit 3 or more times

Num

ber o

f mut

atio

ns

0

2

4

6

8

10 Conservative set ofbeneficial mutations

Expanded set ofbeneficial mutations

L003

S121

S028

L096

aL0

96b

S002

L041

L094

L048

L098

L102

L102

aL0

13

L003

S121

S028

L096

aL0

96b

S002

L041

L094

L048

L098

L102

L102

aL0

13

L003

S121

S028

L096

aL0

96b

S002

L041

L094

L048

L098

L102

L102

aL0

13

ClonesMeans

)LJXUH %��� 1XPEHU RI SXWDWLYHO\ EHQHĆFLDO PXWDWLRQV LQ VHTXHQFHG HYROYHG FORQHV� RUJDQL]HG E\ )RXQGHU� /HIW SDQHO

VKRZVPXWDWLRQV LQ JHQHV KLW � RU PRUH WLPHV� 0LGGOH SDQHO VKRZV WKH FRQVHUYDWLYH VHW RI EHQHĆFLDO PXWDWLRQV� ZKLFK

LQFOXGHV DOO SXWDWLYH ORVV RI IXQFWLRQPXWDWLRQV DQGPXWDWLRQV LQ JHQHV KLW DW OHDVW � WLPHV DFURVV WKLV H[SHULPHQW DQG

WKH H[SHULPHQW GHVFULEHG LQ 5HI� >���@� 5LJKW SDQHO VKRZV WKH H[SDQGHG VHW RI EHQHĆFLDO PXWDWLRQV� ZKLFK LQFOXGHV

DOO SXWDWLYH ORVV RI IXQFWLRQPXWDWLRQV DQGPXWDWLRQV LQ JHQHV KLW DW OHDVW � WLPHV DFURVV WKLV H[SHULPHQW DQG WKH H[�

SHULPHQW GHVFULEHG LQ 5HI� >���@� )RXQGHUV DUH RUGHUHG IURP OHDVW�ĆW �OHIW� WR PRVW�ĆW �ULJKW�� 7KHUH LV QR WHQGHQF\ IRU

OLQHV GHVFHQGHG IURP OHVV�ĆW )RXQGHUV WR DFTXLUH PRUH EHQHĆFLDO PXWDWLRQV WKDQ IRU WKRVH GHVFHQGHG IURPPRUH�ĆW

)RXQGHUV� 3RLQWV DUH VOLJKWO\ GLVSODFHG IRU FODULW\�

Page 197: Epistasis and Pleiotropy in Evolving Populations

ℓ P1 P2

α β γ σ2g σ2

e

4.72 11.14 544.8

3.89 0.42 11.02 542.7 0.148

7.08 −0.73 5.49 470.2

4.48 5.44 4.45 487.3

5.75 0.74 −0.77 4.86 456.5 ≪ 10−6 2ϵ−4

3.27 0.62 5.81 3.92 475.5 ≪ 10−6 2ϵ−4

4.72 11.14 544.8

4.08 0.61 10.94 541.9 0.090

7.08 −0.73 5.49 470.2

4.48 5.44 4.45 487.3

6.11 1.08 −0.78 4.60 450.8 ≪ 10−6 1ϵ−5

3.40 1.02 6.13 3.60 471.5 ≪ 10−6 7ϵ−5

7DEOH %���0D[LPXP OLNHOLKRRG SDUDPHWHU YDOXHV IRU PRGHOV RI FRUUHODWLRQ RI WKH ĆWQHVV LQFUHPHQW RI D SRSXODWLRQ

ZLWK WKH QXPEHU RI PXWDWLRQV LQ D FORQH VDPSOHG IURP LW� ℓ = −2 logL� ZKHUHL LV WKH OLNHOLKRRG RI WKH GDWD� P1 DQG

P2 DUH WKHP �YDOXHV IRU WKH FRPSDULVRQ ZLWK WKH WZR QHVWHGPRGHOV XVLQJ WKH OLNHOLKRRG UDWLR WHVW� QXPEHU RI GHJUHHV

RI IUHHGRP LV � LQ DOO FRPSDULVRQV� 0RGHO �$ LV FRPSDUHG RQO\ DJDLQVW PRGHO ��0RGHO �$ LV FRPSDUHG DJDLQVW0RGHOV

�$ DQG �%�0RGHO �% LV FRPSDUHG DJDLQVW0RGHOV �$ DQG �&�

Page 198: Epistasis and Pleiotropy in Evolving Populations

Mutations in geneshit 3 or more times

0

1

2

3

4

5 Conservative set ofbeneficial mutations

0

1

2

3

4

5

6

Expanded set ofbeneficial mutations

Num

ber o

f mut

atio

ns

Founder fitness relative to DivAnc, %−3 −2 −1 0 1 2 3 4 5 6 7 8 90

2

4

6

8

10 All putativelyfunctional mutations

−3 −2 −1 0 1 2 3 4 5 6 7 8 90

5

10

15

20

25

ClonesMeans

)LJXUH %��� 1XPEHU RI PXWDWLRQV LQ VHTXHQFHG HYROYHG FORQHV YHUVXV )RXQGHU ĆWQHVV� 1RWDWLRQV DUH DV LQ )LJXUH %���

Page 199: Epistasis and Pleiotropy in Evolving Populations

0 0.02 0.04 0.06 0.08 0.1 0.120

0.02

0.04

0.06

0.08

0.10

4 4.2 4.4 4.6 4.8 5 5.20

0.002

0.004

0.006

0.008

0.010

0.012

0 0.01 0.02 0.03 0.04 0.05 0.060

0.01

0.02

0.03

0.04

0.05

3 3.5 4 4.5 5 5.50

0.01

0.02

0.03

0.04

Genes GO Slim

Genes GO Slim

Parallelism

Convergence

P < 10–4 P = 0.013

P = 0.055 P = 0.75

PI

CI CI

PI

Pro

bability

Pro

bability

)LJXUH %��� 'HJUHH RI FRQYHUJHQFH DQG SDUDOOHOLVP DW WKH JHQH DQG *2 6OLP OHYHOV DV PHDVXUHG E\ WKH FRQYHUJHQFH

LQGH[CI �WRS� DQG SDUDOOHOLVP LQGH[PI �ERWWRP�� 7KH QXOO GLVWULEXWLRQV IRU WKHCI DQGPI HVWLPDWHG IURP 104 UDQ�GRPL]DWLRQV DUH VKRZQ LQ JUD\ �VHH0DWHULDOV DQG0HWKRGV IRU GHWDLOV�� %ODFN WULDQJOHV VKRZ WKH REVHUYHG YDOXHV RI

CI DQGPI LQ RXU GDWD� 1RWH WKDW WKHPI QXOO GLVWULEXWLRQV DUH FRQGLWLRQDO RQ WKH REVHUYHG GHJUHH RI RYHUDOO FRQYHU�

JHQFH�

Page 200: Epistasis and Pleiotropy in Evolving Populations

R2 = 0.79

Fitness relative to DivAncCit, %

Fitn

ess

rela

tive

to R

mR

ef, %

−2 0 2 4 6 8−4

−2

0

2

4

6

8

10

–1.1%

)LJXUH %��� &RPSDULVRQ RI ĆWQHVV PHDVXUHPHQWV DJDLQVW WZR UHIHUHQFH VWUDLQV� 'LY$QF&LW �x�D[LV� DQG 5P5HI �y�D[LV��IRU DOO VWUDLQV XVHG LQ WKH NQRFN�RXW H[SHULPHQWV� ZLWK WKH H[FHSWLRQ RI VWUDLQ /���D���� �\6$.������ ZKRVH ĆWQHVV

FRXOG QRW EH DFFXUDWHO\ PHDVXUHGZLWK UHVSHFW WR 5P5HI� 'DVKHG OLQH VKRZV WKH GLDJRQDO� VROLG OLQH VKRZV WKH OLQH ZLWK

VORSH �ZLWK WKH EHVW ĆW LQWHUFHSW ZKLFK LQGLFDWHV WKDW 5P5HI LV DERXW ��PRUH ĆW WKDQ 'LY$QF&LW�

Page 201: Epistasis and Pleiotropy in Evolving Populations

Distance between mutations, bp

Num

ber o

f mut

atio

ns in

a c

lone

100

101

102

103

104

105

106

0

400

800

1200

1600

2000

)LJXUH %��� 1XPEHU RI SDLUV RI PXWDWLRQV FDOOHG LQ WKH VDPH FORQH ZLWKLQ D FHUWDLQ GLVWDQFH RI HDFK RWKHU DV D IXQFWLRQ

RI WKLV GLVWDQFH� SULRU WR LGHQWLI\LQJ FRPSOH[PXWDWLRQV� 0XWDWLRQV ORFDWHG RQ GLIIHUHQW FKURPRVRPHV DUH DVVXPHG

WR EH LQĆQLWHO\ IDU DSDUW� $W DERYH ��� ES �YHUWLFDO EOXH OLQH�� WKH QXPEHU RI PXWDWLRQ SDLUV ZLWKLQ D ZLQGRZ RI D JLYHQ

VL]H JURZV OLQHDUO\ ZLWK WKH ZLQGRZ VL]H� LQGLFDWLQJ WKDW PXWDWLRQV DUH LQGHSHQGHQWO\ XQLIRUPO\ GLVWULEXWHG DORQJ WKH

FKURPRVRPH� 7KH LQćHFWLRQ SRLQW DW DURXQG ��� ES LQGLFDWHV WKDW WKHUH LV DQ H[FHVV RI PXWDWLRQV WKDW RFFXU FORVH WR

HDFK RWKHU ZLWKLQ WKH VDPH FORQH� ZKLFK VXJJHVWV WKDW WKHVHPXWDWLRQDO HYHQWV DUH QRW LQGHSHQGHQW� 7KHUHIRUH� ZH

FRQVHUYDWLYHO\ WUHDW VXFK JHQRPLF FKDQJHV DV WKH VDPH FRPSOH[PXWDWLRQDO HYHQW�

Page 202: Epistasis and Pleiotropy in Evolving Populations

2 param

3 param

4 param

5 param

Model 3Aα σg2 σs2 σe2

Model 1Aα σe2

α

Model 2Aσs2 σe2

withoutcovariate

Model 3Bα β σg2 σs2 σe2

Model 2Bα β σs2 σe2

Model 1Bα β σe2

withcovariate

)LJXUH %���� 1HVWHGPRGHOV LQ WKH DQDO\VLV RI FRYDULDQFH RI ĆWQHVV LQFUHPHQW ZLWK LQLWLDO ĆWQHVV� $UURZV SRLQW IURP D

OHVV JHQHUDO WR DPRUH JHQHUDO PRGHO RI ZKLFK WKH OHVV JHQHUDO PRGHO LV D VSHFLDO FDVH�

Page 203: Epistasis and Pleiotropy in Evolving Populations

0 20 40 60 80 1000

100

200

300

400

500

600

700

800

Num

ber o

f gen

es w

ith m

utat

ion

Number of sampled clones

DataRandomization

)LJXUH %���� 5DUHIDFWLRQ FXUYH �EOXH� VKRZLQJ WKH QXPEHU RI XQLTXH JHQHV LQ ZKLFK ZH LGHQWLĆHG DQ\ SXWDWLYHO\ IXQF�

WLRQDO PXWDWLRQ DV D IXQFWLRQ RI WKH QXPEHU RI FORQHV VHTXHQFHG� %ODFN OLQH LQGLFDWHV WKH H[SHFWDWLRQ LI PXWDWLRQV

ZHUH UDQGRPO\ GLVWULEXWHG DPRQJ DOO \HDVW 25)V� (QYHORSHV VKRZ ��� FRQĆGHQFH LQWHUYDOV� 7KH REVHUYHG GHJUHH RI

JHQH�OHYHO FRQYHUJHQW HYROXWLRQ� ZKLOH KLJKO\ VLJQLĆFDQW� LV PXFKZHDNHU WKDQ REVHUYHG LQ (� FROL E\ 5HI� >���@�

Page 204: Epistasis and Pleiotropy in Evolving Populations

0 1 2 3 4 5 6 70

0.2

0.4

0.6

0.8

1

Strength of trend�  α

Pow

er

)LJXUH %���� 3RZHU WR GHWHFW D WUHQG LQ WKH QXPEHU RI DFTXLUHGPXWDWLRQV DPRQJ )RXQGHUV DWP �YDOXH ���� DV D IXQF�

WLRQ RI WKH WUHQG VWUHQJWK� 3RZHU LV WKH SUREDELOLW\ RI UHMHFWLQJ WKH QXOO K\SRWKHVLV WKDW WKHUH LV QR WUHQG �α = 0� VHHWH[W IRU GHWDLOV��

Page 205: Epistasis and Pleiotropy in Evolving Populations

C

Page 206: Epistasis and Pleiotropy in Evolving Populations

sτ ≪ 2 log(Ns) ,

sτ ≪ 1 ,

sδτ ≪ 1 ,

Ns ≫ 1

sτ ≪ 1 ≪ 2 log(Ns)

τ

1/s

dx

dt= x(1− x)s(t) +

√x(1− x)

Nη(t),

η(t) ⟨η(t)⟩ = 0 ⟨η(t)η(t′)⟩ = δ(t− t′)

dx = x(1− x)s(t)dt+

√x(1− x) dt

Nη(t).

δx =∫epoch dx ≪ x x

Page 207: Epistasis and Pleiotropy in Evolving Populations

δx =x(1− x)

(e(s+s)T1+(−s+s)T2 − 1

)

1 + x(e(s+s)T1+(−s+s)T2 − 1

) +

√x(1− x)(T1 + T2)

≈ 2sT2 x(1− x) + s(T2 − T1)x(1− x) +1

2s2(T2 − T1)

2x(1− x)(1− 2x)

+

√x(1− x)(T1 + T2)

Nη.

T1 T2 δx

⟨δx⟩ = x(1− x)2sτ + x(1− x)(1− 2x)(sδτ)2

⟨δx2

⟩= x(1− x)

N+ 2x2(1− x)2(sδτ)2,

⟨δx⟩ = x(1− x)τ

N

[1

xsel+

1

xseas(1− 2x)

]

⟨δx2

⟩= x(1− x)

N

[1 +

1

xseasx(1− x)

].

x

[1

xsel+

1

xseas(1− 2x)

]∂p

∂x+

[1 +

1

xseasx(1− x)

]∂2p

∂x2= 0,

∂x log

[∂xp(x)

∣∣∣∣1 +1

xseasx(1− x)

∣∣∣∣

]= −

1xsel

1 + 1xseas

x(1− x).

x± 1+x(1−x)/xseas x± = (1±√1 + 4xseas)/2

Page 208: Epistasis and Pleiotropy in Evolving Populations

∂xp(x) = C1

|(x− x+)(x− x−)|

∣∣∣∣x+ − x

x− x−

∣∣∣∣λ

= C|x+ − x|λ−1

|x− x−|λ+1,

λ = 1xsel(x+−x−) p(0) = 0

p(1) = 1

p(x) =

1−∣∣∣∣1− x/x+x/x− − 1

∣∣∣∣λ

1− |x−/x+|2λ.

sτ ≪ 1 1N ≪ x±

x

p(x) ≈λ x

x+ − x−x−x+

1− |x−/x+|2λ=

2sNx

1− exp

(2λ log

∣∣∣∣x−x+

∣∣∣∣

) .

pfix = ⟨p(x)⟩ = 2s

1− e−s/s∗,

⟨x⟩ = 1N +O(sτ, sτ, sδτ) s∗

s∗ =

(sδτ)2

√1 + 4τ

N(sδτ)2

log

√1 + 4τ

N(sδτ)2 + 1√

1 + 4τN(sδτ)2 − 1

.

Page 209: Epistasis and Pleiotropy in Evolving Populations

s∗ ≈

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

12N

N(sδτ)2

4τ ≪ 1

(sδτ)2

4τ · 1

log[N(sδτ)2

τ

] N(sδτ)2

4τ ≫ 1

s∗

1 ≪ sτ ≪ 2 log(Ns)

sτ ≫ 1

sτ ≪ 1 sδτ ≪ 1

sτ ≫ 1 s ≪ s δτ ≪ τ

s δτ

χ = x/(1 − x)

∂f

∂t= − ∂

∂χ[s(t)χf ] +

1

2

∂2

∂χ2

[χ(1 + χ)2

Nf

].

χ ≪

(Ns)−1 χ ≫ Ns χ ≪ Ns

∂f

∂t= − ∂

∂χ[s(t)χf ] +

1

2

∂2

∂χ2

[ χN

f].

Page 210: Epistasis and Pleiotropy in Evolving Populations

χ′ = 1/(1− x)

∂f

∂t= − ∂

∂χ′[−s(t)χ′f

]+

1

2

∂2

∂χ′2

[−χ′

Nf

].

χ ≤ 1

χ′ ≤ 1 χ = χ′ = 1,

χ = χ0 ≪ 1 T1

δχ χ

T2 χ(t) Hχ(z, t) =

⟨exp (−zχ(t))⟩ χ(0) = χ0 s(t)

Hχ(z|χ0) = exp

⎣ −z χ0 e∫ t0 s(t

′)dt′

1 + z2N e

∫ t0 s(t

′)dt′∫ t0e

∫ t′0 −s(t′′)dt′′dt′

⎦.

t 1s ≪ t ≪ T1

χ

Hχ (z, t |χ0) = exp

[− zχ0e(s+s)t

1 + z2Nse

(s+s)t

].

ν1 χ(t) = ν1e(s+s)t ν1

χ ν1

Hν1(z, t|χ0) = ⟨exp (−zν1) |χ0⟩ = Hχ

(ze−(s+s)t, t |χ0

)≈ exp

[− zχ0

1 + z2Ns

],

Page 211: Epistasis and Pleiotropy in Evolving Populations

⟨ν1⟩ = χ0, var (ν1) =χ0

Ns.

χ = 1 − log(ν1)s+s T1 + log(ν1)

s+s

χ′ ν1 ν2

χ′(t′) = ν2e(s−s)t′ t′

χ′ = 1 (T1 + log(ν1)/(s + s))

ν2 t′ 1s ≪ t′ ≪ T2

Hν2(z, t|ν1, T1) = exp

[−z 1ν1e−(s+s)T1

1 + zNs

],

ν2

⟨ν2|ν1, T1⟩ =1

ν1e−(s+s)T1 , var (ν2|ν1, T1) =

2

ν1Nse−(s+s)T1 .

χ

1 T2+log(ν2)/(s−s)

Hχ (z|T1, T2, ν1, ν2) = exp

[−z 1ν2e(−s+s)T2

1 + z2Ns

].

δχ Hδχ(z, t) = ezχ0Hχ(z, t)

Page 212: Epistasis and Pleiotropy in Evolving Populations

δχ

⟨δχ|T1, T2, ν1, ν2⟩ =1

ν2e−(s+s)T2 − χ0,

⟨δχ2|T1, T2, ν1, ν2

⟩=

x0Ns

+2

2Ns

(1

ν2e−(s+s)T2 − χ0

)+

(1

ν2e−(s+s)T2 − χ0

)2

.

ν1, ν2, T1, T2

T1 T2 ν1 T2 ν2

sτ ≪ 1 sτ ≪ 1

⟨δχ⟩ = χ0

[2sτ + (sδτ)2 +

2esτ

Nsχ0

]

⟨δχ2

⟩= 2χ0

[χ0(sδτ)

2 +1

Ns

(1 + χ2

0esτ)]

.

x ≪ 1 χ ≈ x δx

⟨δx⟩ = x

[2sτ + (sδτ)2 + x

2esτ

Ns

]

⟨δx2

⟩= 2x

[x(sδτ)2 +

1

Ns

(1 + x2esτ

)],

⟨δx⟩ = xτ

N

τcτ

[1

xsel+

1

xseas+ 2

x

x21/2

]

⟨δx2

⟩= 2x

τ

N

τcτ

[1 +

x

xseas+

(x

x1/2

)2].

x−21/2

Page 213: Epistasis and Pleiotropy in Evolving Populations

p(x) x±

1 + xxseas

+(

xx1/2

)2λ =

x21/2

xsel(x+−x−)

p(x) = C

(1− x

x−

1− xx+

+D.

p(0) = 0 x1/2

p(x) =

(1− x

x−1− x

x+

− 1

(1−

x1/2x−

1−x1/2x+

)2λ

− 1

,

p(x) =x

xsel(1−

x1/2x−

1−x1/2x+

)2λ

− 1

x ≪ 1

δττ δ

p(T ) ≈ δ(T − τ),

Page 214: Epistasis and Pleiotropy in Evolving Populations

⟨χ⟩ = 1

⟨∫ T1

0

dt

τ

1

NesT1−sT2

︸ ︷︷ ︸+

1

⟨∫ T2

0

dt

τ

1

Ne−st

︸ ︷︷ ︸=

1

Nsτ+O (sτ, sδτ) .

pfix = p(⟨x⟩) = 2s

1− e−s/s∗,

s∗ =

x+−x−2Nsτx2

1/2

log

[1− x+

x1/2

1− x−x1/2

] ≈

⎧⎪⎪⎨

⎪⎪⎩

esτ/2

πNsτ (sδτ)2 ≪ esτ/2

Ns

(sδτ)2

4τ1

log(Nse−sτ/2(sδτ)2)(sδτ)2 ≫ esτ/2.

Ns

τ1 = τ2

s s τ δτ s1 s2 τ1 τ2 δτ1 δτ2

τ ≡ τ1 + τ22

,

s ≡ s1τ1 + s2τ22τ

,

s ≡ s1τ1 − s2τ22τ

,

δτ ≡√

(s1δτ1)2 + (s2δτ2)2

2s2,

Page 215: Epistasis and Pleiotropy in Evolving Populations

Nµ ≫ 1

µ

ν

µ = ν

Ns ≫ 1 µ ≪

s

Nµ → 0

Nµ ≫ 1

N ττcx

x µ ·N ττcx ·

τcτ = Nµ · x τc/τ

Nµ ≫ 1

Page 216: Epistasis and Pleiotropy in Evolving Populations

s · N ττcx · x

(sδτ)2

τ · N ττcx · x xsel = µ 1

|s|τcτ

xseas = µ 1(sδτ)2 τc

xsel

xsel

xsel

xsel xsel < x1/2

12

1−xsel

12 xsel < x1/2 xsel ! x1/2

12 s∗ = µ τc

τ1

x1/2

s∗ = 1N

τcτ

1x1/2

|s| ! s∗

12

12

xseas 1 − xseas

xseas x1/2 1− xseas 1− x1/2

Page 217: Epistasis and Pleiotropy in Evolving Populations

|s| ! s∗ ∼ (sδτ)2

τ1

log(x1/2/xseas)

Nµ ≫ 1

Nµ ≪ 1 N 1/µ

s∗

xseas 1 − xseas

0 =∂

∂x[−2sτ x(1− x)f(x)] +

∂2

∂x2[2(sδτ)2 x2(1− x)2f(x)

].

ξ = log(

x1−x

)

f(ξ) ξ1/2 = log(

x1/2

1−x1/2

)−ξ1/2

f(ξ) ∝

⎧⎪⎪⎨

⎪⎪⎩

exp[

s(sδτ)2 ξ

], ξseas < ξ < ξ1/2

exp[2 s(sδτ)2 ξ1/2

]exp

[s

(sδτ)2 ξ], −ξ1/2 < ξ < −ξseas,

f(x)

f(x) ∝ 1

x(1− x)exp

[s

(sδτ)2log

(x

1− x

)],

xseas 1 − xseas f(x)

Page 218: Epistasis and Pleiotropy in Evolving Populations

xseas 1− xseas

f(xseas)

f(1− xseas)= exp

[2s

(sδτ)2log

(xseas

1− xseas

1− x1/2x1/2

)]≈ exp

(− s

2s∗

).

log(

x1−x

)

12

2T

⟨log

(x

1− x

)⟩

cycle

=1

2T

∫ 2T

0dt log

(x(t)

1− x(t)

)= log

(x(0)

1− x(0)

)+

sT

2.

⟨log

(x

1− x

)⟩=

⟨log

(x(0)

1− x(0)

)⟩+

2.

⟨log

(x

1−x

)⟩

⟨log

(x

1− x

)⟩=

∫ ξ1/2ξseas

(ξ + sτ2 )f(ξ)dξ +

∫ ξseas−ξ1/2

(ξ − sτ2 )f(ξ)dξ

∫ ξ1/2ξseas

f(ξ)dξ +∫ ξseas−ξ1/2

f(ξ)dξ,

Page 219: Epistasis and Pleiotropy in Evolving Populations

⟨log

(x

1−x

)⟩

ξ1/2 − ξseas= coth

( s

2s∗

)− 2s∗

s=

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, s ≫ s∗

0, |s| ≪ s∗

−1, s ≪ −s∗

.

12

s∗

|s| > s∗

sτ ≪ 2 log(Ns) ,

sτ ≪ 1 ,

sδτ ≪ 1 .

1 ≪ 2 log(Ns) ≪ sτ

sτ ≫ 2 log(Ns) ≫ 1

Page 220: Epistasis and Pleiotropy in Evolving Populations

δττ δ

f(T ) ≈ δ(T − τ) .

δ

log(Ns)−1

f(Tfix) ≈ δ

(T − 2

slog[Ns]

).

pfix ≈ 1

2︸︷︷︸×

︷ ︸︸ ︷P [T0 > Tfix] × 2s︸︷︷︸

s

,

T0

P [T0 > Tfix]

pfix ≈ s

[∫ τ− 2s log(Ns)

0

dT0

τ

]≈ s

[1− 2 log(Ns)

].

sτ !

2 log(Ns)

Page 221: Epistasis and Pleiotropy in Evolving Populations

)LJXUH &��� 7KH VFDOHG Ć[DWLRQ SUREDELOLW\ DV D IXQFWLRQ RI sτ � ZKLFK VKRZV WKH WUDQVLWLRQ EHWZHHQ WKH HIIHFWLYHGLIIXVLRQ DQG VLQJOH HSRFK OLPLWV� 6\PEROV VKRZ:ULJKW�)LVKHU VLPXODWLRQV DQG OLQHV VKRZ WKHRUHWLFDO SUHGLFWLRQV

�N = 106, s = 10−2 � δτ = 0, DQG WKH RWKHU YDULDEOHV DUH LQGLFDWHG RQ WKH JUDSK��

sτ ! 1

s ∼ s s1 s

pfix s

s/s∗ = 1/ (s∗τ) ≫ 1

s

x ≪ 1

∂x

∂t≈ s(t)x+

√x

Nη(t) .

Page 222: Epistasis and Pleiotropy in Evolving Populations

pfix = 1−⟨exp

[− 2Nx∫∞0 e−

∫ t0 s(t′)dt′dt

]⟩

{T},x

,

B

B ≡∫ ∞

0e−

∫ t0 s(t′)dt′dt .

B

B =

∫ T1

0e−s1t dt+

∫ T1+T2

T1

e−s1T1−s2t dt+

∫ ∞

0e−s1T1−s2T2−

∫ t0 s(t′+T1+T2) dt′ dt ,

=1− e−s1T1

s1+ e−s1T1

1− e−s2T2

s2+ e−s1T1−s2T2B .

=1− e−(s+s)τ

s+ s+ e−2sτ 1− e−(s−s)τ

s− s+ e−2sτB

sδτ (sτ)−1

B

B

B =1−e−(s+s)τ

s+s + e−2sτ 1−e−(s−s)τ

s−s

1− e−2sτ,

pfix = 1−⟨exp

[−x · 2N(1− e−2sτ )

1−e−(s+s)τ

s+s + e−2sτ 1−e−(s−s)τ

s−s

]⟩

x

,

= 1−Hx

(z =

2N(1− e−2sτ )1−e−(s+s)τ

s+s + e−2sτ 1−e−(s−s)τ

s−s

).

Hx(z)

Page 223: Epistasis and Pleiotropy in Evolving Populations

sδτ

Hx(z) =

∫ τ

0

dt

2τexp

[−

zN es1(τ−t)−|s2|τ

1 + z2N |s2|

(1− e−|s2|τ

)+ z

2Ns1e−|s2|τ

(es1(τ−t) − 1

)]

+

∫ τ

0

dt

2τexp

[−

zN e−|s2|(τ−t)

1 + z2N |s2|

(1− e−|s2|(τ−t)

)]

≈ 1 +1

τ

{log

[1 +

z

2N |s2|

(1− e−|s2|τ

)+

z

2Ns1e−|s2|τ

(es1(τ−t) − 1

)]τ

0

+ log

[1 +

z

2N |s2|

(1− e−|s2|(τ−t)

)]τ

0

= 1− 1

τlog

[1 +

z

2N |s2|

(1− e−|s2|τ

)+

z

2Ns1e−|s2|τ (es1τ − 1)

],

z < ∞

pfix =1

τlog

[1 +

e2sτ − e−(s−s)τ + s+ss−s

(1− e−(s−s)τ

)

1− e−(s+s)τ + s+ss−s · e−2sτ

(1− e−(s−s)τ

)(1− e−2sτ

)]

=1

τlog

[e2sτ

]= 2s.

sδτ ≫ 1

sδτ ≫ 1

δτ ∼ τ

sδτ ≫

1

Page 224: Epistasis and Pleiotropy in Evolving Populations

)LJXUH &��� /HIW� 3KDVH GLDJUDP VKRZLQJ WKH UHJLPH LQ ZKLFK WKH DYHUDJH ĆWQHVV HIIHFW LV VXEVWDQWLDO� DV D IXQFWLRQ

RI sτ DQG s1τ1� 5LJKW� &RPSDULVRQ EHWZHHQ WKH SUHGLFWLRQV REWDLQHG DQG:ULJKW�)LVKHU VLPXODWLRQV IRU SHUIHFWO\

SHULRGLF HQYLURQPHQWV �δτ = 0� SXUSOH� DQG IRU H[SRQHQWLDOO\ GLVWULEXWHG HSRFK OHQJWKV �δτ = τ � EOXH� �N =106, s1 = 10−2, s1τ = 10� s YDULHG IURP 10−6 WR 10−1��

sδτ =

sτ ≫ 1

sδτ ≫ 1

δτ ! τ

δτ

δτ ≫ τ

f(T ) ∝ T (τδτ )

2−1e−T τ/δτ2

τ δτ2/τ ≫ τ

Page 225: Epistasis and Pleiotropy in Evolving Populations

f(T |mutation) ∝ (µT )f(T ) ≈ τ

δτ2e−T τ/δτ2

τ δτ2

τ ≫ 2s log(Ns) ≫ τ

δτ/τ → ∞

pfix ≈ s

Page 226: Epistasis and Pleiotropy in Evolving Populations

x = 0 x = 1

O(s2)

s ≪ 1

s

N →

∞ s → 0 Ns

1 ≪ τ ≪ 1/s

Page 227: Epistasis and Pleiotropy in Evolving Populations

s(t)

1/N

Page 228: Epistasis and Pleiotropy in Evolving Populations

D

0 = (k − k)nk − λnk + λ(1− ϵ)nk−1 + λϵnk+1

n(q) =∑

k

e−iqknk

Page 229: Epistasis and Pleiotropy in Evolving Populations

n(q)

d

dqn(q) = −iλ[(1− ϵ)e−iq + ϵeiq]n(q).

ln n(q) = λ[(1− ϵ)e−iq − ϵeiq

]− λ(1− 2ϵ)

∑k nk = 1

nk

nk = e−λ(1−2ϵ)∫ π

−π

dq

2πexp

[ikq + λ(1− ϵ)e−iq − λϵeiq

].

Q∗ = ln√

(1− ϵ)/ϵ q = q′ − iQ∗

nk = e−λ(1−2ϵ)+k log

√1−ϵϵ

∫ π

−π

dq′

2πe

{ikq′+α[e−iq′−eiq

′]}

= e−λ(1−2ϵ)+k log

√1−ϵϵ Jk(2α)

α ≡ λ√

ϵ(1− ϵ)

ϵ → 0 ϵλ2 << 1

nk = e−λ(1−2ϵ)+k log[λ(1−ϵ)]∑∞j=0

(−1)jα2j

j!(k+j)!

= [λ(1−ϵ)]ke−λ(1−2ϵ)

k!

{1− λ2ϵ(1−ϵ)

k+1 + ...}

Page 230: Epistasis and Pleiotropy in Evolving Populations

ϵ → 0

∂tp(x, t) = −∂x [D1(x)p(x, t)] + ∂2x [D2(x)p(x, t)]

p(x) = p(nk⋆/N = x) xk⋆ =

e−U/s D1(x) = sx(1 − x/xk⋆) D2(x) = x(1 −

x)/2N x = 1 x = 0

ϕ(t;x)

∂tϕ(t;x) = D1(x)∂xϕ(t;x) +D2(x)∂2xϕ(t;x)

t x

x = y t = 0 t(y) =∫∞0 tϕ(t; y)dt

− 1 = D1(y)∂y t(y) +D2(y)∂2y t(y).

ϕ(x) = e∫ x0 dz

D1(z)D2(z)

t(xk⋆) =

∫ xk⋆

0dy

1

ϕ(y)

∫ 1

ydζ

ϕ(ζ)

D2(ζ),

ϕ(x) = (1− ζ)2Ns(1−xk⋆ )

xk⋆ e2Nsζxk⋆ ,

Page 231: Epistasis and Pleiotropy in Evolving Populations

Ns ≫ 1

2N

∫ 1

ydζ

(1− ζ)2Ns(1−xk⋆ )

xk⋆ e2Nsζxk⋆

ζ(1− ζ)≈ 2N

∫ 1

ydζ

e2Nsxk⋆

(2ζxk⋆

− ζ2

x2k⋆

)

ζ

x ϕ(x)

ϕ(x) ≈ e2Nsxk⋆

(2ζxk⋆

− ζ2

x2k⋆

)

α = Nsxk⋆ , nk⋆ = Nxk⋆

η = y/xk⋆ − 1, z = ζ/xk⋆ − 1

t(xk⋆) ≈ 2nk⋆

∫ 0

−1dηeαη

2∫ 1/k⋆−1

ηdz

e−αz2

1 + z

α ≫ 1

t(xk⋆) ≈ 2nk⋆

√π

∫ 0

−1dηeαη

2 [erf(

√αβ)− erf(

√αη)

]

β = 1k⋆

− 1 η2 = 1 − θ2/α α ≫ 1

t(xk⋆) ≈ nk⋆

√πα−3/2eα.

r− = 1/t(xk⋆)

Page 232: Epistasis and Pleiotropy in Evolving Populations

ϵc ϵc

1

σ√ϵk⋆

= Ne−λ(1−2λ)+ k⋆2 log 1−ϵ

ϵ Jk⋆(2α).

α ≫ 1 k⋆ + 1 ≈ α

k⋆ ∼ k2/3⋆

λ(1− 2ϵ)− λ√

ϵ(1− ϵ) log1− ϵ

ϵ= logNs

16 O(1) ϵ ≪ 1

λ2ϵ ≫ 1

1− 2ϵ+√ϵ log ϵ = λ−1 logNs

√ϵ log ϵ ≈ λ−1 log(Ns)− 1 = −2z

z ϵ

ϵc =z2

W (−z)2≈ z2

(log(z)− log(− log(z)))2

W (x) −1 W (x)eW (x) = x

ϵi+1 =(z + ϵi)2

W (−z + ϵi)2.

Page 233: Epistasis and Pleiotropy in Evolving Populations

C ϵ C W (x)

ϵ2

ϵ → 1/2

δ = 12 − ϵ

1− 2ϵ−√

ϵ(1− ϵ) log1− ϵ

ϵ=

4

3δ3 +

44

15δ5 +O(δ7) = λ−1 logNs.

ϵ ≈ 1

2−

(3

4λlog(Ns)

)1/3

.

δ5

Page 234: Epistasis and Pleiotropy in Evolving Populations

0.0 0.1 0.2 0.3 0.4 0.5 0.6sU log(Ns)

0.0

0.1

0.2

0.3

0.4

0.5

✏ c

12 �

�3s4U logNs

�1/3z2

W (z)2 , z = s2U logNs� 1

2

Numerical solution

1

10

102

103

)LJXUH '��� 7KH ĆJXUH VKRZV ϵc IRU PDQ\ FRPELQDWLRQV RIU � s DQGN DV D

IXQFWLRQ RI sU logNs� ZKLOH WKH FRORU FRGHV IRU ϵcU2s−2� ,I ϵcU2s−2 ≫ 1� ϵc LV VROHO\ D IXQFWLRQ RI

sU logNs

DQG LV ZHOO GHVFULEHG E\ WKH QXPHULFDO VROXWLRQ RI (T� � LQ0DLQ WH[W� VKRZQ DV D EODFN OLQH� 7KH DV\PSWRWLF DSSUR[LPD�

WLRQV IRU ODUJH ϵc �(T� '���� DQG VPDOO ϵc �(T� '���� DUH VKRZQ DV JUHHQ DQG UHG OLQHV� UHVSHFWLYHO\� 7KH GDVKHG OLQHVFRUUHVSRQG WR WKHPRUH DFFXUDWH YHUVLRQPHQWLRQHG LQ WKHPDLQ WH[W�

Page 235: Epistasis and Pleiotropy in Evolving Populations
Page 236: Epistasis and Pleiotropy in Evolving Populations
Page 237: Epistasis and Pleiotropy in Evolving Populations
Page 238: Epistasis and Pleiotropy in Evolving Populations
Page 239: Epistasis and Pleiotropy in Evolving Populations

φ

Page 240: Epistasis and Pleiotropy in Evolving Populations
Page 241: Epistasis and Pleiotropy in Evolving Populations
Page 242: Epistasis and Pleiotropy in Evolving Populations
Page 243: Epistasis and Pleiotropy in Evolving Populations
Page 244: Epistasis and Pleiotropy in Evolving Populations
Page 245: Epistasis and Pleiotropy in Evolving Populations
Page 246: Epistasis and Pleiotropy in Evolving Populations

+

Page 247: Epistasis and Pleiotropy in Evolving Populations
Page 248: Epistasis and Pleiotropy in Evolving Populations

φ

Page 249: Epistasis and Pleiotropy in Evolving Populations
Page 250: Epistasis and Pleiotropy in Evolving Populations
Page 251: Epistasis and Pleiotropy in Evolving Populations
Page 252: Epistasis and Pleiotropy in Evolving Populations
Page 253: Epistasis and Pleiotropy in Evolving Populations