105
EPOCH 1000i Feature Overview Encoded and Timed C-scan

EPOCH 1000i Feature Overview Encoded and Timed C-scan

Embed Size (px)

Citation preview

Page 1: EPOCH 1000i Feature Overview Encoded and Timed C-scan

EPOCH 1000i Feature OverviewEncoded and Timed C-scan

Page 2: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Presentation Contents Feature Overview

Creating an Encoded C-scan from a Sectorial Scan

Creating an Encoded C-scan from a Linear Scan

Creating a Timed C-scan from a Linear Scan

Reviewing Acquired C-scan Data

Page 3: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Presentation Contents– Demonstration Procedures Attaching the Mini-Wheel Encoder

Encoder Calibration

Tips for Weld Inspection

Demonstration Procedure: Zero Degree Flaw Inspection

Page 4: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Feature Overview

Page 5: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Option Overview The encoded C-Scan software option is an added cost option to the

standard EPOCH 1000i instrument.

It is the same part number and price as the previously released manual Linear scan and C-scan software. – P/N EP1000I-ECSCAN (U8140141)

When this software option is purchased it can be remotely activated on the EPOCH 1000i via a software code provided.

This option adds:– Encoded and timed C-Scan

– Linear scan capability (L-scan or E-scan for electronic scan)

– Increases the phased array configuration from the standard 16:16 to 16:64.

Page 6: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Option Overview The Encoded C-scan option allows you to create phased array C-

scans from both linear and sector scan data.– This is an added feature from the previous option which only allowed C-

scan creation from linear scans.

C-scan creation from S-scans makes this software option especially helpful in weld inspection as you can view gated data over a sweep of angles at multiple probe positions.

Page 7: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Required Equipment Encoded C-Scan Software Option Mini-Wheel Encoder

– Other encoders can also be used Encoder Adaptor Cable 5L16-A10P or 5L64-A12 Probe (or equivalent)

– Any phased array probe that attaches to an encoder and has 16 elements for S-Scans and up to 64 elements for Linear Scans can be used

Encoder Compatible Wedges– Special phased array wedges are required for use with encoded scans with

the A10, A10P and A12 style probes. These wedges have threaded inserts for connecting to encoders.

Page 8: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Creating an Encoded C-scan from a Sectorial Scan (S-scan)

Page 9: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Creating a C-scan from an S-scan To create a C-scan from a sector scan, begin with a fully

calibrated S-scan

Completed Zero and Gain calibrations

Page 10: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Depth Gates Gates can be displayed in True Depth mode on the S-scan allowing

you to collect C-scan measurements from a constant depth area in the part.

To set up True Depth gates:1. Select Gate Setup > Setup

2. Set Gates Type to Depth– Gate type is a global setting

that is applied to all active gates

– Gates will only display as horizontal lines on the S-scan only, A-scan gates will remain in soundpath mode

Page 11: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Depth Gates (cont.)3. Adjust the G1Start and

G1Width parameters to capture the desired depth within the test piece

– Leg Indicators can be useful when collecting data for an entire skip distance at once

NOTE: Make sure that the gate is still capturing data at higher focal laws or you will not have a complete C-scan. If not, increase your range!

Page 12: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Attaching the Encoder For encoded C-scans, a positional encoder is used to track

distance traveled along the scan axis.– Encoder-compatible wedges and an EPOCH 1000i adaptor cable are

required for proper setup.

For detailed information on setting up the mini-wheel encoder, please use the following link:– Attaching the Mini-Wheel Encoder

Page 13: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Calibrating the Encoder Once the encoder has been attached to the probe, it must

be calibrated to ensure proper distance values are collected during the scan.

For instructions on how to calibrate the encoder, please use the following link:– Encoder Calibration

Page 14: EPOCH 1000i Feature Overview Encoded and Timed C-scan

C-scan Setup Now you are ready to set up your C-scan using the

following steps:1. Turn ON the option in the C Scan > C Scan menu.

– Once the C-scan is turned on, additional C-scan parameters will display in the menu.

Page 15: EPOCH 1000i Feature Overview Encoded and Timed C-scan

C-scan Setup (cont.)2. Select C Scan > Setup to enter

the setup screen

3. Choose an Encoder Mode (Uni or Bi-directional)

4. Select a Scan Direction (will determine the display view of the A-scan and C-scan image)

5. Set your Scan Resolution for your C-scan. This parameter will determine maximum scanning speed.

6. Encoder Resolution will automatically populate from the encoder calibration

Page 16: EPOCH 1000i Feature Overview Encoded and Timed C-scan

C-scan Setup (cont.)7. Set the desired Start and End

Co-ordinates for the scan

8. Select whether to Save Ascan images

9. If Gate 2 is being used, select the Amplitude Decimation factor For encoded C-scans, gate 1

amplitude compression is automatically set to maximum and depth compression for gates 1 and 2 is set to minimum.

10. The current Scan File Size based on the selected parameters is displayed. This parameter cannot exceed the Max File Size of approximately 70Mb.

11. Press the [ESCAPE] key to return to the live screen.

Page 17: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Creating a C-scan To acquire data for your C-scan

1. Set the C Scan > Mode to Start

2. Move your encoder and probe along your test piece at the appropriate scan rate so that you do not receive an LOS measurement

Page 18: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Additional Notes Encoded C-scans can also be created from a zero degree sector scan

These types of encoded C-scans can be very helpful in weld inspection applications. For additional information, refer to our Tips for Weld Inspection.

Page 19: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Return to Presentation Contents

Reviewing Acquired C-Scan Data

Page 20: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Creating an Encoded C-scan from a Linear Scan (L-scan)

Page 21: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Creating a C-scan from a Linear Scan To create a C-scan from a linear scan, begin with a fully

calibrated linear scan

Completed Zero and Gain calibrations

Page 22: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Gate Adjustment For zero degree C-scans,

Soundpath gates can be used You should set your gate

position so that you are capturing the desired distance within the part for your C-scan.– Adjust the G1Start and

G1Width parameters to capture the desired distance within the test piece

A second gate can also be helpful for backwall monitoring– Adjust the G2Start and

G2Width parameters to surround the backwall echo

Page 23: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Attaching the Encoder For encoded C-scans, a positional encoder is used to track

distance traveled along the scan axis.– Encoder-compatible wedges and an EPOCH 1000i adaptor cable are

required for proper setup.

For detailed information on setting up the mini-wheel encoder, please use the following link:– Attaching the Mini-Wheel Encoder

Page 24: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Calibrating the Encoder Once the encoder has been attached to the probe, it must

be calibrated to ensure proper distance values are collected during the scan.

For instructions on how to calibrate the encoder, please use the following link:– Encoder Calibration

Page 25: EPOCH 1000i Feature Overview Encoded and Timed C-scan

C-scan Setup Now you are ready to set up your C-scan using the

following steps:1. Turn ON the option in the C Scan > C Scan menu.

– Once the C-scan is turned on, additional C-scan parameters will display in the menu.

Page 26: EPOCH 1000i Feature Overview Encoded and Timed C-scan

C-scan Setup (cont.)2. Select C Scan > Setup to

enter the setup screen

3. Choose an Encoder Mode (Uni or Bi-directional)

4. Select a Scan Direction (will determine the display view of the A-scan and C-scan image)

5. Set your Scan Resolution for your C-scan. This parameter will determine maximum scanning speed.

6. Encoder Resolution will automatically populate from the encoder calibration

Page 27: EPOCH 1000i Feature Overview Encoded and Timed C-scan

C-scan Setup (cont.)7. Set the desired Start and End

Co-ordinates for the scan

8. Select whether to Save Ascan images

9. If Gate 2 is being used, select the Amplitude Decimation factor For encoded C-scans, gate 1

amplitude compression is automatically set to maximum and depth compression for gates 1 and 2 is set to minimum.

10. The current Scan File Size based on the selected parameters is displayed. This parameter cannot exceed the Max File Size of approximately 70Mb.

11. Press the [ESCAPE] key to return to the live screen.

Page 28: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Creating a C-scan To acquire data for your C-scan

1. Set the C Scan > Mode to Start

2. Move your encoder and probe along your test piece at the appropriate scan rate so that you do not receive an LOS measurement

Page 29: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Return to Presentation Contents

Reviewing Acquired C-Scan Data

Demonstration Procedure: Zero Degree Flaw Inspection

Page 30: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Creating a Timed C-scan from a Linear Scan (L-scan)

Page 31: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Creating a C-scan from a Linear Scan To create a C-scan from a linear scan, begin with a fully

calibrated linear scan

Completed Zero and Gain calibrations

Page 32: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Gate Adjustment For zero degree C-scans,

Soundpath gates can be used You should set your gate

position so that you are capturing the desired distance within the part for your C-scan.– Adjust the G1Start and

G1Width parameters to capture the desired distance within the test piece

A second gate can also be helpful for backwall monitoring– Adjust the G2Start and

G2Width parameters to surround the backwall echo

Page 33: EPOCH 1000i Feature Overview Encoded and Timed C-scan

C-scan Setup Now you are ready to set up your C-scan using the

following steps:1. Turn ON the option in the C Scan > C Scan menu.

– Once the C-scan is turned on, additional C-scan parameters will display in the menu.

Page 34: EPOCH 1000i Feature Overview Encoded and Timed C-scan

C-scan Setup (cont.)2. Select C Scan > Setup to enter

the setup screen

3. Set the Encoder Mode to Timed

4. Select a Scan Direction (will determine the display view of the A-scan and C-scan image)

5. Select whether to Save Ascan images for each point on the C-scan

6. The current Scan File Size based on the selected parameters is displayed. This parameter cannot exceed the Max File Size of approximately 70Mb.

7. Press the [ESCAPE] key to return to the live screen.

Page 35: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Creating a C-scan To acquire data for your C-scan

1. Set the C Scan > Mode to Start

2. Once started, the scan will automatically move at a fixed rate along the timed axis

3. Move your encoder and probe along your test piece to capture C-scan data

Page 36: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Return to Presentation Contents

Reviewing Acquired C-Scan Data

Demonstration Procedure: Zero Degree Flaw Inspection

Page 37: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Reviewing Acquired C-scan Data

Page 38: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Completing a C-scan Once you have acquired all the data from a particular

section or have finished your entire scan, you can choose to Stop or Freeze the C-scan.– Stopping a scan will complete the scan. New C-scans will be

started from the start coordinate or zero point depending on the scan mode.

– Freezing a scan will bring you to Review mode. When the scan is unfrozen you can continue the scan from the point where the scan was frozen.

vs.

C Scan > Mode

[FREEZE]

Page 39: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Start/Stop Function The Start/Stop function is used to end your C-scan

– For convenience, the [CHECK] key can also be pressed when Start is highlighted to Stop a C-scan.

Once a C-scan is stopped, you will need to save and recall the scan in order to review the data.

When the C-scan is started again it will create a new scan from the start point rather than resume from the last captured point.

Page 40: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Freeze Function When you have finished your

scan section, or to pause and review your acquired data, press the [FREEZE]

key to enter Review Mode.– An “F” icon will display to the

left of the scan to indicate that you are reviewing a frozen scan.

– The Start/Stop Mode controls will be disabled when review mode is active.

Page 41: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Freeze Function (cont.) Entering Review Mode allows use of the following

functions/features, which are explained further in this section:1. Image cursors (D.T., Angle, Index)

2. Viewing source S-scan or E-scan images

3. Sizing cursors (X, Y)

4. Changing gate source data (Gate 1 or 2, Amplitude or Depth)

Page 42: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Image Cursors Image cursors are available on frozen C-scans and allow you to

individually select all points on the C-scan.– The distance traveled (D.T.) cursor selects a specific distance or timed

point along the scan axis.

– The Angle or Index cursor selects a specific focal law or aperture along the probe.

If selected in C-scan setup, a compressed A-scan will be stored for each point on the C-scan. The image cursors are used to choose a particular C-scan point to view the A-scan image.– These cursors will display as white lines on the C-scan image.

Page 43: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Image Cursors– Distance Traveled (D.T.) Cursor

For encoded C-scans, the D.T. cursor will select a specific encoder position along the scan axis in inches or mm.

For timed C-scans, this cursor will correspond to a specific screen pixel along the scan axis.

To adjust the D.T. cursor select PA Cursors > D.T.

Encoded C-scan from S-scan

Encoded C-scan from linear scan

Timed C-scan from linear scan

Page 44: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Image Cursors– Angle/Index Cursor

For C-scans created from S-scans, the Angle cursor is used to select a specific focal law within the selected angle range of the sector scan.

For C-scans created from linear scans, the Index cursor selects a particular aperture group of elements along the length of the probe.

To adjust the Angle/Index cursor select press the [ANGLE] key

Encoded C-scan from linear scan

Encoded C-scan from S-scan

Page 45: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Screen Views In Review mode, you can view the S-scan or linear scan from which a C-scan

point was generated. – NOTE: You will not be able to adjust gate position or range on the stored C-scan or

linear scans. Angle/Index can be adjusted. After selecting the specific C-scan point using the image cursors, simply adjust

the C Scan > Screen view to display the sector or linear scan for the selected C-scan point (D.T., Index/Angle).

Page 46: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Sizing Cursors Phased array sizing cursors are also available for basic flaw sizing on

the C-scan image. – Based on your screen view, the X and Y cursors will be correspond to focal

law (angle) or position along the probe (index) and distance traveled (scan axis).

To turn the sizing cursors ON, select PA Cursors > Cursors.– The X and Y cursors can then be adjusted to take measurements in both

directions along the scan.

– If you are selected in Auto mode, the relevant cursor measurements will be displayed in the measurement boxes above the scan.

Page 47: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Sizing Cursors (cont.) Encoded C-scans created from S-scans provide information over a

sweep of angles and show flaw position along the encoded scan axis.

Encoded C-scans created from linear scans provide an electronic scan of indexes that properly scale defects along the length of the probe and show flaw position along the encoded scan axis.

Timed C-scans do not provide position information along the scan axis as this timed axis is not to scale.

Page 48: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Sizing Cursors (cont.)

• X cursors size in scan direction

• Y cursors size along probe length using indexes

Encoded C-scan from linear scan with sizing cursors.

Timed C-scan from linear scan with sizing cursors.

• X cursors not used since scan direction is timed and not to scale

• Y cursors size along probe length using indexes

Page 49: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Sizing Cursors– Shading In order to more clearly view the area being sized, you can choose to

shade the area surrounded by the X and Y sizing cursors. To shade the sizing area, select Display Setup > Contrast.

– As the contrast is increased, the sizing area will become darker shaded in blue– NOTE: This contrast feature also controls the contrast of the weld overlay if this

feature is being used.

Page 50: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Gate Source Data Depth and amplitude data for gates 1 and 2 are collected when a C-scan is

created. After acquiring a C-scan, the user can adjust both C Scan > Source parameters

to view other relevant C-scan data.

Gate 1

Gate 2

Amplitude

Depth

Page 51: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Compressed View Since encoded C-scans allow for data collection for lengths longer than the

screen width, you can compress a C-scan to view the entire scan on screen all at once.

To turn compressed view ON, select C Scan > Compressed

Page 52: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Color Palettes Additional color palettes are available for phased array images to provide

different color scales for use with varied applications. To change the color palette

– Select PA Display > Scan Palette (Depth Palette for depth C-Scans) – Or select Display Setup > Color Setup.

The user can also manually modify the color scale of any of the PA color palettes (Display Setup > Color Setup)

– NOTE: Color Palette adjustment will not affect any of the raw data displayed on the A-Scan and will only change the color scale on the PA scan image.

S-scan with Amplitude Palette S-scan with Corrosion Palette

Page 53: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Color Palettes– Color Adjustment: Amplitude Each of the color palettes has a preset color scale that is applied over the full

range of signal amplitudes from 0-110% FSH.

The user can adjust the maximum and minimum amplitude color values using the parameters below under Amplitude Palette Control settings:

– Palette Start: sets the upper color threshold for signals above the set amplitude

– Palette End: sets the lower color threshold for signals below the set amplitude

The new adjusted color scale will be displayed to the left of the settings in the Color Setup menu.

Page 54: EPOCH 1000i Feature Overview Encoded and Timed C-scan

PA Color Palette Adjustment- Amplitude

• Palette Start adjusted from 0% to 20%

• All echoes below 20%FSH are displayed in white on the S-Scan.

Default settings for Amplitude Scan Palette

Adjusted S-Scan using modified Amplitude Scan Palette:

Page 55: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Color Palettes– Color Adjustment: Depth For Depth C-Scans, the color palette scale is set in one of two ways depending

on how the Source parameter is set:– Gate: The color scale is set with the gate

start and end points as the minimum and maximum values of the scale with the colors distributed evenly over the gate width.

– Custom: The user manually sets the start and end points of the color scale. The colors are then distributed evenly between the start and end points.

» NOTE: The Reference Cursors on the A-Scan can be helpful in determining start and end points.

The user can also select how many color levels to use to span across the start and end points using Depth Palette Levels

Page 56: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Color Palettes– Color Adjustment: Depth

Default Palette Source set to Gate:

• Four palette levels distributed over gate width

1”

Page 57: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Color Palettes– Color Adjustment: Depth

1”

• Gate 1 points adjusted to capture only the area of part containing flaws

• Four palette levels now distributed over flaw area only

• Colors can also be adjusted to include entire part thickness without interference from gated initial pulse or backwall echo

Palette Source changed to Custom:

Page 58: EPOCH 1000i Feature Overview Encoded and Timed C-scan

PA Color Palette Adjustment- Depth

Initial timed C-Scan using Corrosion Scan Palette and Gate Source

Adjusted timed C-Scan using Custom Depth Scan Palette. Color gradient restructured around hole

depth rather than gate position

Page 59: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Saving a C-scan The complete C-scan and compressed A-scans can also be stored in

the instrument datalogger for later review. To save a C-scan:

– Create and Open a file of the desired type

– With the C-scan on screen, press the [SAVE] key The C-scan can be saved either while frozen in Review Mode or when

in Stopped mode.

Page 60: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Recalling a C-scan After recalling a saved C-

scan from the Review datalogger menu, press the [ESCAPE] key to exit Recall mode.

To enter Review mode, press the [FREEZE] key. All the features available when reviewing a frozen C-scan will now be available.

Page 61: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Recalling a C-scan If you have recalled a C-scan from an incremental (INC)

file, you will need to press the [ESCAPE] key after the scan is recalled to return to the live screen.– The “R” on the right side of the waveform indicates that you are in

Recall mode.

Page 62: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Return to Presentation Contents

Tips for Weld Inspection

Demonstration Procedure: Zero Degree Flaw Inspection

Page 63: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Tips for Weld Inspection

Page 64: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Weld Sample– Any weld sample with known flaws

similar to the one shown above will work for this demonstration

Couplant– D-12 Gel Type couplant

Transducer and Wedge– 5L16-9.6X10-A10P-P-2.5-OM 16 element PA probe– SA10-N55S wedge

Encoder and Adaptor cable– ENC1-2.5-DE Mini-Wheel Encoder– CABL-10016-0008 EP1000i

Adaptor Cable

Required Equipment

Page 65: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Tips for Weld Inspection For demonstration of the encoded

C-scan feature on a weld, use a weld sample with known flaws

– This can be done on any weld sample, which will have different flaws than the one used here

Encoded C-scans add an additional dimension to standard S-scans by capturing data across a sweep of angles at multiple probe positions along the weld axis.

40 to 70 Degree Angle

Sweep

En

cod

ed S

can

A

xis

Page 66: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Locating Weld Geometry Begin with a fully calibrated S-scan, and face the probe toward a side of the

weld plate and determine the position of probe to see first and second leg signals from top and bottom of the plate.

Then position the probe at this same offset distance to the weld to view reflections from the weld root and weld crown.

Weld Geometry

Page 67: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Weld Overlay The Weld Overlay feature can

also be used to assist in locating weld geometry on your sector scan.

– By inputting your distance away from the centerline of the weld, you can position a basic image of the weld over your S-scan to aid in identifying weld echoes

Weld Centerline

Probe Front Cursor

Page 68: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Depth Gate Adjustment Based on the specific flaws

in your particular weld sample, you can set the depth gates to capture a particular flaw in a C-scan.

Depth gates are especially helpful in weld inspection applications because you can capture an entire leg of a part in a single scan.

– Using leg indicators will allow you to position the gate to create a complete C-scan for a given leg.

Be sure to set your range so that you are capturing

depth data at all focal laws in a given leg!

Depth gates set to capture second leg data

Page 69: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Completed C-scan Overview Weld geometry can be easily identified on a C-scan as root and crown echoes

will appear at each probe position for a particular angle or index

Weld Geometry

Flaw Indications

Page 70: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Analysis with Cursors Once you have completed

your C-scan, press the [FREEZE] key to enter Review Mode

– The D.T. and Angle/Index cursors can be used to select a specific point on the C-scan for flaw analysis

– Sizing cursors can be used on the C-scan image to find the length of a flaw along the weld axis

– Switching the screen view will show you the S-scan from which the selected C-scan point was created

D.T. and Angle Cursors

Page 71: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Angled Linear Scans Angled linear scans can be beneficial when looking for porosity in welds

Crack

Porosity

Page 72: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Return to Presentation Contents

Page 73: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Demonstration Procedure:Zero Degree Flaw Inspection

Page 74: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Test Block– EP1000-PABLOCK-1 Phased

Array Aluminum Demo Block Couplant

– D-12 Gel Type couplant

Transducer and Wedge– 5L64-38.4X10-A12-P-2.5-OM 64 element PA probe– SA12-0L wedge

Encoder and Adaptor cable– ENC1-2.5-DE Mini-Wheel Encoder– CABL-10016-0008 EP1000i

Adaptor Cable

Required Equipment

Page 75: EPOCH 1000i Feature Overview Encoded and Timed C-scan

1. Begin with a fully calibrated linear scan

C-scan Setup

Page 76: EPOCH 1000i Feature Overview Encoded and Timed C-scan

2. Set Range to 1.000”

3. Turn Gate 2 ON (Gate 2 > Status)

4. Set up the Gate start positions and widths as shown

C-scan Setup (cont.)

Page 77: EPOCH 1000i Feature Overview Encoded and Timed C-scan

5. Attach 5L64-A12 probe to encoder

6. Perform encoder calibration

7. Turn C-scan option On (C Scan > C Scan)

8. Set Source (P3) to Amplitude

9. Set Source (P5) to Gate 1

C-scan Setup (cont.)

Page 78: EPOCH 1000i Feature Overview Encoded and Timed C-scan

C-scan Setup (cont.)10. Select C Scan > Setup to enter the setup screen

11. Set the Encoder Mode to Bi Directional

12. Set the Direction to Left to Right

13. Set your Scan Resolution to 0.100 in.

14. Set the Start Co-ordinate to 0.000 in.

15. Set the End Co-ordinate to 5.000 in.

16. Set Save Ascan to Store All

Page 79: EPOCH 1000i Feature Overview Encoded and Timed C-scan

17. Place the PA Demo Block on its side with the three flat bottom holes (FBH) facing down

18. Place the 64 element probe on top of the block in the middle of the block, spanning the 3” height of the block over the area with flat bottom holes (FBHs)

19. Press [P2] Mode and press [CHECK] to Start

20. Slowly move the probe to the right towards the edge of the block

21. After acquiring the C-scan, press the [FREEZE] key to enter Review Mode

C-scan Setup (cont.)

Page 80: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Zero Degree C-scan Overview

Stored A-scan for selected C-scan point

Amplitude C-scan of 3 FBHs

Linear Scan Axis (length along probe)

Encoded Scan Axis (distance traveled by encoder)

Page 81: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Using Sizing Cursors on the C-scan Encoded zero degree C-scans provide a top-down planar view of the test piece

with properly scaled data collected along both axes of the scan. Sizing cursors positioned along the length of the probe and the encoded scan

axis can be used to find the approximate dimensions of a given flaw.

Use the PA Cursors group menu to adjust X and Y cursor positions

–[P1] toggles the X and Y cursors On and Off–P2, P3, P4, and P5 adjust cursor positions

Page 82: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Using Sizing Cursors on the C-scan (cont.) To find the Width or Length of

the FBH:1. Position the X1 or Y1 cursor

to intersect the yellow amplitude area to the left of the FBH indication (-6dB point of image)

2. Position the X2 or Y2 cursor to intersect the yellow amplitude area to the right of the backwall indication (-6dB point of image)

3. Use the X2-X1 or Y2-Y1 digital measurement to establish the width or length of the FBH

X Cursors Y Cursors

Page 83: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Reviewing Saved Linear Scan Data A linear scan image will be saved for each point on the C-scan. Use the D.T. (PA Cursors > D.T.) and Index ([ANGLE]) cursors to

locate the peak A-scan echo from the large FBH on the C-scan.

D.T. Cursor

Index Cursor

Page 84: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Reviewing Saved Linear Scan Data (cont.) Switch the C Scan > Screen to view the linear scan that was used to

create that particular C-scan point.

Backwall Reflection

Large FBH

Backwall Dropout

Page 85: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Using Sizing Cursors on the Linear Scan The linear scan can be used to find the true depth of the selected FBH. To find the Depth of the FBH:

1. Position the Y1 cursor to intersect the peak amplitude of the FBH indication

2. Position the Y2 cursor to intersect the peak amplitude of the backwall indication

3. Use the Y2-Y1 digital measurement to establish the depth of the FBH

Y Cursors

Page 86: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Return to Presentation Contents

Page 87: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Attaching the Mini-Wheel Encoder

Page 88: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Attaching the Mini-Wheel Encoder The following slides detail how to properly attach the Mini-Wheel

encoder to your 5L16-A10P and 5L64-A12 probes for encoded C-scans.

Please note that there are many ways to attach these parts depending on application and user preference.

Page 89: EPOCH 1000i Feature Overview Encoded and Timed C-scan

5L16-A10 or 5L16-A10P with SA10-N55S (or SA10-0L)

Page 90: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Required Equipment 5L16-A10P (U8330661) Probe Encoder Compatible Wedges

– SA10-0L (U8720544) or SA10-N55S (U8720545)

Mini-Wheel Encoder (U8780197) Hexagonal key screwdriver (included with encoder) Mounting Hardware (see image, included with encoder)

– Brackets A and B– (2) small hex screws

Bracket A

Bracket B Small Hex Screws

Page 91: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Encoder Attachment– 5L16-A10P

1. Begin with your SA10-N55S (or SA10-0L) wedge attached to your probe using couplant

2. Note the location of the threaded hole on the side of the wedge

3. Attach Bracket A to the side of the wedge using (1) small hex screw with the round extrusion on the bracket fitting into the notch on the wedge.

To attach the Mini-Wheel encoder to your 5L16-A10P probe:

Page 92: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Encoder Attachment– 5L16-A10P (cont.)4. Attach Bracket B to the

spring rod on the encoder with the oval slot facing toward the back of the encoder as shown.

5. Use the second small hex screw to attach bracket B on top of Bracket A sliding to the front of the slot in Bracket B.

Page 93: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Encoder Attachment– 5L16-A10P (cont.)7. Place the probe on the scanning

surface so that the center of the wedge is flat.

8. Loosen the screw on Bracket B to and adjust the encoder position so that the back of the encoder does not touch the scanning surface and the encoder wheel turns when the probe is moved. Then retighten the screw.

Page 94: EPOCH 1000i Feature Overview Encoded and Timed C-scan

5L64-A12 with SA12-N55S (or SA12-0L)

Page 95: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Required Equipment 5L64-A12 (U8330593) Probe Encoder Compatible Wedges

– SA12-0L (U8720549) or SA12-N55S (U8720550)

Mini-Wheel Encoder (U8780197) Hexagonal key screwdriver (included with encoder) Mounting Hardware (see image, included with encoder)

– Brackets A, B, and C– (2) small hex screws

Page 96: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Encoder Attachment– 5L16-A10P

1. Begin with your SA10-N55S (or SA10-0L) wedge attached to your probe using couplant

2. Note the location of the threaded hole and larger oval notch in front of the threaded hole on the side of the wedge

3. Attach Bracket A to the side of the wedge using (1) small hex screw with the round extrusion on the bracket fitting into the oval notch on the side of the wedge

To attach the Mini-Wheel encoder to your 5L16-A10P probe:

Page 97: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Encoder Attachment– 5L16-A10P (cont.)4. Attach Bracket B to the spring

rod on the encoder with the oval slot facing toward the back of the encoder as shown.

5. Use the second small hex screw to attach bracket B on top of Bracket A sliding toward the back of the slot in Bracket B.

Page 98: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Encoder Attachment– 5L16-A10P (cont.)7. Place the probe on the scanning

surface so that the center of the wedge is flat.

8. Loosen the screw on Bracket B to and adjust the encoder position so that the back of the encoder does not touch the scanning surface and the encoder wheel turns when the probe is moved. Then retighten the screw.

Page 99: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Return to Presentation Contents

Return to Encoder Calibration (from S-scan)

Return to Encoder Calibration (from Linear scan)

Page 100: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Encoder Calibration

Page 101: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Required Equipment Before creating an encoded C-scan, you must calibrate the encoder

to determine the correct encoder resolution to ensure accurate distance traveled data.

Required Equipment:– Encoder

– Phased array probe and wedge

– Ruler, ideally at least 6 in. (150 mm)

Page 102: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Calibration Setup

Using a greater calibration distance will increase encoder resolution accuracy as error is averaged over a larger distance.

Once the encoder has been properly attached to your probe:1. Enter the Encoder > Calibration menu

2. Press [P3] to Reset the encoder pulses and D.T. values

3. Set the Start and End points to be used for the calibration

Page 103: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Encoder Calibration4. Position the front of the probe

at the zero mark (start point) on your ruler

5. Press [P1] Cal Start to begin the calibration

6. Move the probe until the front is at the end point (6 in.) on your ruler

7. Press [P1] End Cal to complete the calibration

Page 104: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Encoder Calibration (cont.) After the calibration has been complete, the newly calculated Encoder

Resolution will display.– The resolution for the Mini-Wheel Encoder should be approximately 76 pulses/inch

(3 pulses/mm). Press the [ESC] key to return to the live screen

Page 105: EPOCH 1000i Feature Overview Encoded and Timed C-scan

Return to Presentation Contents

Return to C-scan Setup (from S-scan)

Return to C-scan Setup (from Linear scan)