Eq Ckts Voltage Division Current Division

Embed Size (px)

Citation preview

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    1/33

    1

    Equivalent Circuits

    Originalcircuit

    I

    V+

    -

    1

    2

    The Current Voltage (I-V) Relationshipdefines any element. It can also be used todefine any circuit in the box. We assumethe original circuit is complicated.

    Equivalentcircuit

    I

    V

    +

    -

    1

    2

    Replace original circuit with simplerequivalent circuit that exhibits the same I-Vrelationship (at nodes 1 & 2) !

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    2/33

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    3/33

    3

    Circuit Simplification for Parallel Current Sources & ResistancesIS

    VS R 1 R 2 R 3

    IS1 IS2 IS3

    IR1 IR2 IR3

    IS

    VS R 1

    R 2 R 3IS1 IS2 IS3

    IR1 IR2 IR3

    Apply arbitrary voltage source Vs

    Since all elements are in parallel, they alsohave Vs across them.We assign currents in red

    KCL at top node I in = I out

    IS + I S2 = I S1 + I R1 +I R2 +I R3 +I S3

    Is = (I S1 -I S2+ I S3 )+I R1 +I R2 +I R3

    IS= I STOT +I R1 + I R2 + I R3

    ISTOT -

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    4/33

    4

    Continued..

    IS

    VS R 1 R 2 R 3

    ISTOT

    IR1 IR2 IR3

    Therefore, the ckt can be redrawn asshow on the left where:

    IS= I STOT +V S(1/R 1 + 1/R 2 + 1/R 3)

    IS= I STOT +V S(1/R TOTAL )

    321 /1/1/11

    R R R R TOTAL

    N

    i i

    TOTAL

    R

    R

    1

    11

    IS

    VSRTOTALISTOT

    +

    -

    VS

    Resistors in parallel

    1. So we can simply add curr ent sources in paral lel bu t consideri ng theirorientation* For th is problem, Curr ent sour ces point in g down are posit ive (I s1 and I s3) thosepoint in g up are negative (Is2)2. And we can combine paral lel r esistors

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    5/33

    5

    Numeric ExampleIS

    VS 6K 3K1A 3A 10A

    2K

    IS

    VS RTOTALISTOT

    +

    -

    VS

    Find Circuit 2 that is equivalent toCircuit 1

    ISTOT = 1 + 10 3 = 8 A K

    K K K R TOTAL 1

    )3/1()2/1()6/1(1

    IS = 8A +V S/1K=IS = (1/1K)V S + 8A

    I S

    V S

    1/1K=slopey = mx + b

    8 A

    - 8000 V

    Circuit 1

    Circuit 2

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    6/33

    6

    Similar Numeric ExampleIS

    VS 6K 3K1A 3A 10A

    2K

    IS

    VS RTOTISTOT

    +

    -

    VS

    Find Circuit 2 that is equivalent toCircuit 1 ( changing the orientation ofIsTOT ):ISTOT = -1 - 10 + 3 = -8 A

    K K K K RTOTAL 1)3/1()2/1()6/1(

    1

    Circuit 1

    Circuit 2

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    7/337

    Last Numeric ExampleIS

    VS 12K 6K

    -3A 4A -5A12K

    IS

    VS RTOTISTOT

    +

    -

    VS

    Find Circuit 2 that is equivalent to Circuit 1:ISTOT = -(-3A) (4A) + (-5A)= -6A

    K K K K RTOTAL 3)6/1()12/1()12/1(

    1

    Circuit 1

    Circuit 2

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    8/338

    Circuit Simplification for Series Voltage Sources & Resistances

    IS R 1VS1

    +

    -

    VS

    R 2

    R 3

    VS2

    VS3IS

    Is there a way to combine series resistances and voltage sources in the gray box (circuit on the

    left)? The resulting simplified circuit will be in the form of the circuit on the right.

    Apply arbitrary current source I S. I S is the only current in the circuit; it enters and leaves allof these elements in series.

    KVL gives us:-V S + V S1 + R 1IS VS2 + R 2I S +V S3 + R 3I S = 0

    -V S + (V S1 VS2 +V S3) + R 1I S + R 2IS + R 3I S = 0

    Algebraic properties allows us to change the order of the items in the circuit and in theequation, so we can rewrite it as

    -V S + V STOTAL + I S(R 1+R 2+R 3) =0

    VSTOTAL

    IS

    RTOTAL

    VSTOTAL

    +

    -

    VS

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    9/339

    Continued..-V S + V STOTAL + I S(R 1+R 2+R 3) =0

    Now solving the previous equation for I S:

    321 R R R R TOTAL

    N

    i

    iTOTAL R R1

    IS

    RTOTALV

    TOTAL

    +

    -

    VS Resistors in series

    * * * 1. So we can simply add voltage sources in series but consider in g their ori entation* * * 2. Simply add series resistors together

    TOTAL

    STOTALS

    TOTAL

    STOTALS S R

    V V

    R R R RV

    V R R R

    I

    1)(

    1

    321321

    This gives us Linear relationship such asy = mx + b

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    10/3310

    Numeric Example

    Find V TOTAL and R TOTAL so that the circuit on the right has the same I-V

    characteristic as the circuit on the left??

    We add R TOTAL = 2K + 5K + 7K = 14KVSTOTAL = -6V -3V + 15V = 6V

    IS 2K6V

    +

    -

    VS

    5K

    7K

    3V

    15V

    IS

    RTOTAL

    VSTOTAL

    +

    -

    VS

    IS

    14K

    6V

    +

    -

    VS

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    11/3311

    Numeric Example

    How to Find Vs and Rs so that the circuit on the right has the same I-V

    characteristic as the circuit on the left??

    VS2

    VS1R 1

    VS3R 2

    VSTOTAL

    R TOTAL

    A

    B

    A

    B

    For V S1 = 3V, R 1 = 5K, V S2 = 7V, R 2 = 2K and V S3 = 11VWe add R TOT = 5K + 2K =7KVTOT = 3V -7V -11V = -15V

    Pay attention to the sign of the final voltage source in the final circuit!

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    12/3312

    Series/Parallel Reduction of Resistance

    R 1

    R 2

    R 3

    R 4

    A

    B

    I3

    I3

    R 1

    R 2

    R 3

    R 4

    A

    B

    R TOTAL

    A

    B

    R 1

    R 2 R 34

    Find R TOTAL

    Step 1: Working with only 2 resistors at a time, start

    opposite ports A and B R 3 and R 4 are in series R 34 = R 3 + R 4

    Step 2: Next we see that R 2 and R 34 have the sameendpoints (ie share the same voltage)

    R 34 // R 2 = R 234

    Step 3: R 1 is in series with R 234 .Therefore R TOT = R 1 + R 234 .

    R TOTAL = R 1 + (R 2//(R 3+R 4))

    R1

    R234

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    13/3313

    Example Series/Parallel Reduction of Resistance

    R 3=1

    A

    B

    R TOTAL

    A

    B

    R 4=5R 2=3

    R 1=8

    R 34 =6

    R 1=8

    R 2=3

    Find R TOTAL

    Step 1:R 3 and R 4 are in series R 34 = 1 + 5 =6New equivalent resistance gets connected across same 2 nodes

    Step 2: R 2 and R 34 have the same endpoints (ie share the samevoltage)

    R 34 // R 2 = R 234R 234 =6//3= 1/{(1/6)+(1/3)}=2

    New equivalent resistance gets connected across same 2 nodes

    Step 3: R 1 is in series with R 234 . Therefore, R TOT = R 1 + R 234 .R TOTAL = R 1 + (R 2//(R 3+R 4))= 8+2 = 10 ohms

    R1=8

    R234 =2

    Step 1:

    Step 2:

    Step 3:

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    14/33

    14

    Voltage Division

    Consider two resistors in series with a voltageacross them:

    R 1

    R 2

    v 1

    +

    +

    v 2

    v s 21

    11 R R

    Rvv s

    21

    22 R R

    Rvv s

    +

    KVL: - Vs + V1 +V

    2 = 0

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    15/33

    15

    Voltage DivisionChanging the orientation of the element voltages:

    R1

    R 2

    v1

    +

    +

    v 2

    v s

    21

    11 R R

    Rvv s

    21

    22 R R R

    vv s+

    +

    _

    +

    vX

    v Y

    21

    1

    R R

    Rvv s X

    21

    2

    R R R

    vv sY If we instead use v X, we make a sign change,since KVL still applies

    KVL: - Vs + V 1 +V 2 = 0KVL: - Vs - V X -V Y = 0

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    16/33

    16

    In General: Voltage Division

    Consider N resistors in series :

    Source voltage(s) are divided between the resistors in direct proportion to their resistances

    N

    j j

    iS

    i R

    R

    RV V

    1

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    17/33

    17

    Voltage Division- example 1

    5

    10

    v 1

    +

    +

    v 2

    Vs=9V V V V

    R R R

    vv s 331

    9105

    5)9(

    21

    11

    +

    +

    _

    +

    v X

    v Y

    V V V R R

    Rvv s 6

    32

    9105

    10)9(

    21

    22

    V V R R

    Rvv s X 3105

    5)9(

    21

    1

    V V R R

    Rvv sY 6105

    10)9(

    21

    2

    KVL: -Vs + V 1 +V 2 = 0.KVL: -Vs - V X -V Y = 0. For the total voltages around the loop to equal zero, V X and V Y must be negative for this circuit! So apply negative sign in voltage dividers for V X and V Y .

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    18/33

    18

    Voltage Division- example 2

    10

    30

    v 1

    +

    +

    v 2

    Vs=12V V V V

    R R R

    vv s 341

    123010

    10)12(

    21

    11

    + +

    _

    +

    v X

    v Y

    V V V R R

    Rvv s 9

    43

    123010

    30)12(

    21

    22

    V V R R

    Rvv s X 33010

    10)12(

    21

    1

    V V R R

    Rvv sY 93010

    30)12(

    21

    2

    Note: The orientation of the source voltage has been flipped from previous example!

    KVL: Vs + V 1 +V 2 = 0. For the total voltages around the loop to equal zero, V 1 and V 2 mustbe negative for this circuit! So apply negative sign in voltage dividers for V 1 and V 2 .KVL: Vs - V X -V Y = 0

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    19/33

    19

    10

    V s

    5

    +- Find I x , V S

    I X

    + -10 V

    20 30

    Where to start?1) Try Ohms Law 2) Use the values found to write KVL or KCL3) Alternative: use voltage division

    Example 1 similar to HW

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    20/33

    20

    10

    V s

    5

    +- Find I x , V S

    I X +

    ++

    +

    --

    -

    -10 V

    20 30

    V 20

    V 10

    V 30

    I 5 I 30

    I 10

    I S

    Making assignments shown in blue

    1) Ohms Lawassign I 5 so I 5 = - (10V/5 ) = - 2A (note not PSC)2)KCL at B : 0=I 5 + I 10 therefore I 10 = -(-2A) = 2A3) V 10 = I 10(10 ) = (2A)(10 )=20 V4) Cannot apply KCL yet to get other unknown currents

    Example 1B

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    21/33

    21

    10

    V s

    5

    +- Find I x , V S

    I X +

    ++

    +

    --

    -

    -10 V

    20 30

    V 20

    V 10

    V 30

    I 5 I 30

    I 10

    I S

    5) Instead apply KVL

    +10+V 10-V 20=0 +10+20-V 20=0 V 20 = 30V6) I x=V 20 /20 = 30/20 = 1.5 A note: follows PSC7) KCL at A: I 5 = I S +I X IS=I 5 I X = (-2A)-1.5A = - 3.5A =I 30 8) V 30=I 30(30 ) = (-3.5A)(30 ) = -105 V9) KVL: +V S +V 30-V 20 =0 V S= V 20-V 30 =30-(-105) = 135 V

    AExample 1

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    22/33

    22

    10

    V s

    5

    +- Find I x , V S

    I X +

    ++

    +

    --

    -

    -10 V

    20 30

    V 20

    V 10

    V 30

    I 5 I 30

    I 10

    I S

    Alternative: Applying Voltage Division would have saved us steps

    205105

    5 V V V V V 30)5105(1020

    Example 1

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    23/33

    23

    Review: Voltage DivisionConsider two resistors in series with a voltage v

    across them:

    R1

    R 2

    v1

    +

    +

    v 2

    v s

    21

    11 R R

    Rvv s

    21

    22 R R R

    vv s+

    +

    _

    +

    vX

    v Y

    21

    1

    R R

    Rvv s X

    21

    2

    R R R

    vv sY

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    24/33

    24

    How do I know if I need to apply a negative signwhen using voltage division?

    Answer: Pay attention to the orientation of the element voltages withrespect to the source voltages, knowing that the sum of the voltagesaround a closed loop must be zero (they must cancel each other out KVL still applies!)

    For the circuit on the previous page:

    KVL: -V S + V 1 + V 2 =0 so V S = V 1 + V 2

    These voltages have the same signs as the source voltage

    KVL: -V S + V X + V Y =0 so V S = -V X - V Y

    These voltages have the signs opposite the source voltage

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    25/33

    25

    Example: Voltage Division

    RX

    R Z

    v

    X

    +v s

    3 R R R

    Rvv

    Z X

    X s

    X

    +

    R4 R 5

    R 3

    Resistors in Series indicates voltage division.

    Do NOT include R 4 and R 5 which arent inseriesnot part of the divider, they also havevoltage v S

    Find VX

    v S

    +

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    26/33

    26

    Example: Double Voltage Divider

    VS

    R 1

    R 234 +

    - V 2

    FIND V 4

    First assign element voltages V 2 and V 3 as shown in blue in themiddle diagram.

    We will first find an expression for V 2 in terms of V S, and thenwe will find an expression for V 4 in terms of V 2 which we willthen combine.

    To find our first expression, we combine resistances obtain thelast circuit where we apply voltage division:

    )//(432234

    R R R R

    S V R R R

    V 123 4

    23 42

    Returning to the middle circuit:

    234

    44 V R R

    RV

    Substituting we get our double divider:

    S V R R R R R R R

    R R R

    V 1432

    432

    34

    44 )]//([

    )//(

    +

    - V 4 VS

    R 1

    R 2

    R 3

    R 4

    +

    - V 2

    +- V 3

    +

    - V 4 VS

    R 1

    R 2

    R 3

    R 4

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    27/33

    27

    Example: Numeric Double Voltage DividerFIND V 3

    First assign element voltage V 30 as shown in blue in the middlediagram.

    We will first find an expression for V 30 in terms of V S, and thenwe will find an expression for V 3 in terms of V 30 which we willthen combine.

    To find our first expression, we combine resistances obtain thelast circuit where we apply voltage division:

    5.7)532//(30 NEW

    R

    V V V 30405.25.7

    5.730

    Returning to the middle circuit we write another voltage

    division equation where we substitute :

    V V V V 9)30(103

    5233

    303

    +

    -

    V 3

    40 V

    2.5

    30

    5

    3

    2

    +

    -

    V 3

    40 V

    2.5

    30

    5

    3

    2

    +

    - V 30

    40 V

    2.5

    7.5

    +

    - V 30

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    28/33

    28

    Review: Current Divider

    I s R

    2 R 1

    I 1 I

    2

    21

    11

    11

    1

    R R

    R I I S

    Consider tworesistors in parallel that divide current I S:

    21

    21 R R

    R I I S

    Current divider presented last week: Equivalent to:

    WHY?

    Multiply fraction by R 1R 2:

    21

    2

    2

    21

    1

    21

    1

    21

    21

    21

    211

    1

    *11

    *1

    R R R

    I

    R

    R R

    R

    R R R R R

    I

    R R

    R R

    R R R I I S S S

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    29/33

    29

    More on Current Divider

    R X R 2

    I 2

    I X

    2

    2

    211

    1 R R

    R I R R

    R I I X

    S

    X

    X S X

    I s

    Resistors in Parallel indicate currentdivision.

    Do NOT include R 1 which isnt in parallel with Isnot part of thedivider

    In general DO NOT include

    resistors in series with IS

    R1

    Find IX

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    30/33

    30

    More on Current Divider

    R X R 2

    I 2

    I X

    52111

    1

    R R R

    R I I X

    X S X

    I s

    R1

    Find IX

    R 5

    The addition of R 5 tothe circuit

    R 5 is in parallel with I Sas well!

    I 5

    52

    55 111

    1

    R R R

    R I I X

    S

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    31/33

    31

    Review: Current Divider

    R2 R 1

    I 1 I

    2

    V S+

    21

    21 R R

    R I I S

    I s

    21

    12 R R

    R I I S

    I X I Y

    21

    2

    R R R I I S X

    21

    1

    R R R I I S Y

    Pay attention to the orientation

    of the element currents withrespect to the source currents.For currents directed oppositethe source, use a negative signin the current divisionequation

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    32/33

    32

    Double Current Divider Example 1

    R 2 IS

    R 1 R3

    I5

    R 4 R 5

    R2

    IS

    R1R3'

    IyIx

    R 2 IS

    R 1 R 3

    I5

    R 4 R 5

    Iy

    Ix

    Original Problem: Find I 5

    Disregard R1 since it is in series withthe current source and doesnt dividecurrent. Assigning Currents I x andIy, we can write the first currentdivider:

    y I R R

    R I

    45

    55

    /1/1

    /1

    Obtain new resistanceR3 and write thesecond current divider:

    )//(' 5433 R R R R

    S y I R R R

    I 23

    3

    /1'/1'/1

    Finally substituting (2) into (1) we get:

    (1) (2)

    S I R R R

    R R R

    I 23

    3

    45

    55 /1'/1

    '/1/1/1

    /1

  • 8/13/2019 Eq Ckts Voltage Division Current Division

    33/33

    Double Current Divider Example 2

    Original Problem: Find i 1 thru i 4

    SECOND CURRENT DIVIDERReturning to the original circuit, we can nowutilize the values we just found for ia and ib tofind the currents through each resistor:

    FIRST CURRENT DIVIDERFirst combine resistors on the right in parallel, thencombine resistors on the left in parallel:20//30=(20*30)/(20+30)=600/50=1210//40=(10*40)/(10+40)=400/50=8

    Define new currents i a and i b and apply current division:

    30A

    20

    3040

    10

    i1

    i2i4

    i3

    30A

    128

    ibia

    A Aia 18)30(12812

    A Aib 12)30(1288

    A Aii b 2.7)12(203030

    )(2030

    301

    A Aii b 8.4)12(203020

    )(2030

    202

    A Aii a 4.14)18(401040

    )(4010

    403

    A Aii a 6.3)18(401010

    )(4010

    104