EScholarship UC Item 5087z1zd

  • Upload
    garycwk

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

  • 8/11/2019 EScholarship UC Item 5087z1zd

    1/104

    eScholarship provides open access, scholarly publishing

    services to the University of California and delivers a dynamic

    research platform to scholars worldwide.

    Center for the Built Environment

    UC Berkeley

    Peer Reviewed

    Title:

    Shading and Cooling: Impacts of Solar Control and Windows on Indoor Airflow

    Author:

    Hildebrand, Penapa Wankaeo

    Publication Date:

    01-30-2012

    Series:

    Envelope Systems

    Permalink:https://escholarship.org/uc/item/5087z1zd

    Keywords:

    indoor air flow, air velocity, thermal comfort, natural ventilation, solar control, passive solar ,windows, overhangs

    Abstract:

    In a suitable climate, winddriven ventilative cooling has the potential to lowerdependenceon fossil fuels in both new construction and building renovations by minimizing theamount ofmechanical cooling energy used. Utilizing exterior shading with windows significantlyreduces theneed for cooling by lowering solar heat gain, thus increasing the chances that lowenergycoolingstrategies, like natural ventilation, will work. While the main function of exteriorshading is to

    block direct sun, such projections also directly affect the incoming airflow throughopen windows,interior daylighting, and the buildings form and faade. Thus, exterior shadingis likely to obstructairflow into the building3. Screenlike shading systems mounted in front ofoperable windows areparticularly susceptible to this effect.

    Given the desire to shade and ventilate naturally, what is the affect of screen shadingsystemson the indoor airflow in the occupied zone? What combination of window and shademinimizesobstruction to, or perhaps even enhances, airflow?

    This thesis examines these questions via wind tunnel tests of a lowrise classroomlikebuildingmodel with interchangeable shades and windows. This first chapter introduces thecore issuesinvolved in this study: the tropical climate, tropical vernacular and modernbuildings, screen shadesin contemporary architecture, and classroom buildings.

    Copyright Information:All rights reserved unless otherwise indicated. Contact the author or original publisher for anynecessary permissions. eScholarship is not the copyright owner for deposited works. Learn moreat http://www.escholarship.org/help_copyright.html#reuse

    https://escholarship.org/https://escholarship.org/uc/item/5087z1zdhttps://escholarship.org/uc/cedr_cbe_eshttps://escholarship.org/uc/search?creator=Hildebrand%2C%20Penapa%20Wankaeohttp://www.escholarship.org/help_copyright.html#reusehttps://escholarship.org/uc/item/5087z1zdhttps://escholarship.org/uc/cedr_cbe_eshttps://escholarship.org/uc/search?creator=Hildebrand%2C%20Penapa%20Wankaeohttps://escholarship.org/uc/ucbhttps://escholarship.org/uc/cedr_cbe_eshttps://escholarship.org/uc/cedr_cbe_eshttps://escholarship.org/https://escholarship.org/https://escholarship.org/https://escholarship.org/
  • 8/11/2019 EScholarship UC Item 5087z1zd

    2/104

    ShadingandCooling:ImpactsofSolarControlandWindowsonIndoorAirflow

    by

    PenapaWankaeoHildebrand

    Athesissubmittedinpartialsatisfactionofthe

    requirementsforthedegreeof

    MasterofArchitecture

    inthe

    GraduateDivision

    ofthe

    University

    of

    California,

    Berkeley

    Committeeincharge:

    ProfessorM.SusanUbbelohde,Chair

    ProfessorCharlesC.Benton

    ProfessorPeterC.Bosselmann

    Spring2011

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    3/104

    i

    ContentsTable

    of

    Contents............................................................................................................................. i

    List

    of

    Symbols................................................................................................................................ iii

    CHAPTER1:INTRODUCTION/ARCHITECTUREINTHETROPICALCLIMATE ...............................1

    1.1

    TheTropical

    Context

    ..................................................................................................

    2

    1.2 TropicalVernacularandModernBuildings............................................................... 4

    1.3 ScreenShadesinContemporaryArchitecture.......................................................... 7

    1.4 Classrooms .............................................................................................................. 11

    CHAPTER

    2:

    VENTILATION

    2.1 TheRoleofVentilationinBuildings......................................................................... 15

    2.2 ThermalComfortStandards.................................................................................... 18

    2.3 Objectives................................................................................................................ 20

    2.4

    Approach

    ..................................................................................................................

    21

    CHAPTER

    3:

    PREVIOUS

    RESEARCH

    3.1 ExistingDesignGuidelines ...................................................................................... 23

    3.2 Regionspecificguidelines........................................................................................ 25

    3.3 MethodsofTestingWinddrivenNaturalVentilationinBuildingDesign...............25

    3.4 AcademicPapersandParametricWindTunnelVentilationStudies.......................29

    3.4.1 Consolidationoftheresultsofmultiplewindtunneltests

    3.4.2 BoundaryLayerandSiteDensity

    3.4.3 Buildingmassingandshape

    3.4.4

    Roomdepthandproportions

    3.4.5 OpeningSizeandLocation

    3.4.6 WindowGeometryandDetails

    3.4.7 ExteriorProjectionsandShading(OverhangsandWingWalls)

    CHAPTER

    4:

    EXPERIMENTAL

    METHODS

    4.1 Testingconditions:BoundaryLayerWindTunnel&DataAcquisition...................37

    4.2 BuildingModelDescription..................................................................................... 38

    4.3 VelocityMeasurements........................................................................................... 39

    4.4

    FlowVisualization

    ....................................................................................................

    41

    4.5 SelectionofShadingDevicesandWindowTypes...................................................41

    CHAPTER

    5:

    RESULTS ................................................................................................................... 45

    5.1 WindTunnelTestResults........................................................................................ 45

    5.1.1 Outletopeningtests............................................................................................. 48

    5.1.2 Inletwindowtests................................................................................................. 53

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    4/104

    ii

    5.1.2.1 Awningwindowtest.......................................................................................... 54

    5.1.2.2 Casementwindowtest...................................................................................... 56

    5.1.2.3 Doublehungwindowtest................................................................................. 58

    5.1.3 ShadeScreenTests............................................................................................... 60

    5.1.3.1

    Louver

    Screen

    Test

    ............................................................................................

    61

    5.1.3.2 PerforatedPanelTest ....................................................................................... 63

    5.1.4 ShadeandWindowCombinedTests.................................................................... 65

    5.1.4.1 LouverScreenandAwningWindow.................................................................. 68

    5.1.4.2 LouverScreenandDoublehungWindow.........................................................70

    5.1.4.3 PerforatedPanelwithAwningWindow............................................................72

    5.1.4.4 PerforatedPanelwithDoublehungWindow...................................................74

    5.2 ExploringthePotentialforThermalComfort .........................................................76

    5.3 LimitationsoftheMethods..................................................................................... 81

    CHAPTER

    6:

    DISCUSSION

    6.1 Whatcombinationsofshadescreensandwindowtypescreateuniformlyhigh

    velocityratiosacrosstheoccupiedzone?...............................................................82

    6.2 Howdoexteriorshadescreensinfrontofoperablewindowsaffectairflowand

    shouldtheybeusedifnaturalventilationisagoal?Whatwindowtypeismost

    compatiblewithascreenshadeintermsofoccupantcooling? ............................82

    6.3 Whatcharacteristicoftheshadescreengeometryreducesairvelocity?Howdo

    thedifferenttypestestedcompareintermsofchangingthevelocityofairflow? 83

    6.4 Howdoestheairflowvarywithwindowtype? ......................................................86

    6.5

    Givenacombination

    of

    shades

    and

    windows

    that

    effectively

    promotes

    air

    movementintheoccupiedzone,atwhattimesiswinddrivencoolingacceptable

    forthermalcomfort?Whatfactorscanexpandtheuseofnaturalcoolingina

    classroomsetting?................................................................................................... 91

    CHAPTER

    7:

    CONCLUSIONS

    7.1 Conclusions.............................................................................................................. 92

    7.2 SuggestionsforFutureWork................................................................................... 93

    BIBLIOGRAPHY..............................................................................................................................

    94

    APPENDIX

    A:

    THERMAL

    COMFORT

    EXPLORATION

    TABLE..........................................................95

    APPENDIXB:SENSORCALIBRATION..................................................................................................

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    5/104

    iii

    ListofSymbols

    VPLAN = meanspatialvelocityratioinplan,ND

    SPLAN = standarddeviationofthevelocityratioinplan,ND

    VSECT = meanspatialvelocityratioinsection,ND

    SSECT = standarddeviationofthevelocityratiosinsection,ND

    CSV = coefficientofspatialvariation,ND

    Vi = meaninteriorvelocitylocationi,m/s

    Vref = meanreferencevelocitylocation,takenintheunobstructedfreestreamupwind

    ofthemodelat1.1mseatedheadheight(modelscale)orabovethemodelfloor

    level,or5abovethewindtunnelfloor.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    6/104

    1

    CHAPTER1 INTRODUCTION

    Throughmostofhistory,naturalventilationwasacommonlyusedpassivecooling

    strategyinbuildingdesign.Today,inalargepartofthedevelopingworld,naturalventilationis

    stillamainformofcooling.Thisisalsothecaseformanybuildingsintendedtobeenergy

    conscious.Itiscommonformanybuildingstodaytoheavilyrelyonairconditioningtoachieve

    thermalacceptability,ataskthestructureitselfonceperformed.Reinforcingwhatmany

    intuitivelyalreadyknow,research1andrecentthermalcomfortstandards

    2agreethatincreasing

    airflowimprovesthermalcomfortinwarm,humidenvironments.

    Inasuitableclimate,winddrivenventilativecoolinghasthepotentialtolower

    dependenceonfossilfuelsinbothnewconstructionandbuildingrenovationsbyminimizingthe

    amountofmechanicalcoolingenergyused.Utilizingexteriorshadingwithwindowssignificantly

    reducestheneedforcoolingbyloweringsolarheatgain,thusincreasingthechancesthatlow

    energycoolingstrategies,likenaturalventilation,willwork.Whilethemainfunctionofexterior

    shadingistoblockdirectsun,suchprojectionsalsodirectlyaffecttheincomingairflowthrough

    openwindows,interiordaylighting,andthebuildingsformandfaade.Thus,exteriorshading

    islikelytoobstructairflowintothebuilding3.Screenlikeshadingsystemsmountedinfrontof

    operablewindowsareparticularlysusceptibletothiseffect.

    Giventhedesiretoshadeandventilatenaturally,whatistheaffectofscreenshading

    systemsontheindoorairflowintheoccupiedzone?Whatcombinationofwindowandshade

    minimizesobstructionto,orperhapsevenenhances,airflow?

    1Givoni1962,Chand1974,Arens1986.2ASHRAE552010,section5.2.3.3Sobin1981.Aynsley1979.Smith1970.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    7/104

    2

    Thisthesisexaminesthesequestionsviawindtunneltestsofalowriseclassroomlike

    buildingmodelwithinterchangeableshadesandwindows.Thisfirstchapterintroducesthe

    coreissuesinvolvedinthisstudy:thetropicalclimate,tropicalvernacularandmodern

    buildings,screenshadesincontemporaryarchitecture,andclassroombuildings.

    1.1 THETROPICALCONTEXT

    Beforethemid20thCentury,buildingsinthetropicalclimatesofthisstudydidnotuse

    airconditioningtocooltheirinteriors.Incontrastwiththenaturallyventilatedvernacular,

    contemporarytropicalcommercialandinstitutionalbuildingshavebecometaller,mechanically

    cooledandglazed.Today,airconditioningisusedthroughoutcommercial,institutionaland

    someschoolandresidentialbuildingsinmuchofthetropics.Thesebuildingsareoften

    conditionedtothesamethermalcomfortstandardsasthoseusedintemperateclimatesand

    thusconsumeanenormousamountofelectricityintheprocess.Suchthermalconditionshave

    becomecommonplaceinautomobiles,shopsandothertransientspaces.

    Inadditiontorequiringmoreelectricalpowertoday,airconditioningseemsto

    conditionpeopletorequiremoreofitinthefuture,byloweringourabilitytotoleratehigher

    temperatures.4Theaddictiontomechanicalcoolingseemsinsatiable.Isthereawaytoundo

    someofthisdependenceonfossilfuels?Cooledairneedssealedspaces;sealedspacesisolate

    usfromtheoutsideworld.Overtime,thisisolationmakestheoutdoorsseemaforeignplace.

    Whilethisdissociationmaybedesirableforaperformancehall,itisarguablylesscrucialfor

    classrooms,offices,andotherdailyfunctions.Mightreintroducingnaturalventilationindoors

    restoretheawarenessthatairconditioningtookaway?

    4deDearandBrager,2001andBusch,1991.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    8/104

    3

    Figure1.Mapoftropicalandsubtropicalzonesintheworld.(HindrichsandDaniels.2007)

    Thetropicalandsubtropicalregionstakeupaverysignificantportionofearthsland

    massandpopulation.Becauseoftheangleatwhichthesunstrikestheearth,mostareaswithin

    thetropicsarehotyearround.AccordingtoWikipedia,Unliketheextratropics[or

    subtropics],wheretherearestrongvariationsindaylength,andhence[seasonal]temperature

    tropicaltemperaturesremainrelativelyconstantthroughouttheyearandseasonalvariations

    aredominatedbyprecipitation.5Therearethreetypesoftropicalclimates,basedon

    variationsinprecipitation:thetropicalrainforestclimate(dominatedbylowpressure),the

    tropicalmonsoonclimate,andthetropicalwetanddry(orsavanna)climate.Forthesakeof

    simplifyingthestudy,theclimateselectedisthatofBangkok,Thailand,at13.75Nlatitude.

    Bangkoksclimateisacombinationbetweentropicalmonsoonandtropicalsavannah.This

    climateisgenerallymarkedbythreeseasons,withthestartandendofeachseasonvarying

    slightlyintheNorthernHemispheretropics.Thesummer(orthehottestseason)tendstooccur

    aroundMarchthroughJune,withhighdrybulbtemperaturesandmoderatetohighhumidity.

    5http://en.wikipedia.org/wiki/Tropical_climate

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    9/104

    4

    Themonsoonseason,fromaboutJuneorJulythroughOctober,isverywarmandhumid,with

    relativehumidityfrequentlyapproaching100%,makingevaporativecoolingnearlyimpossible.

    Whenthereisprecipitation,temperaturesdropslightly,butquicklyriseagainoncetherain

    stops.Skiesduringthemonsoonperiodtendtobecloudyanddiurnaltemperatureswingsare

    smallerduringthisseason.Thetropicalwinterseasonismarkedbywarmtemperatureswith

    lowerhumiditythantheotherseasons.Diurnaltemperaturestendtovarythemostduring

    winter.

    1.2 TROPICALBUILDINGS

    Onepurposeofbuildingsistoshelterpeoplefromtheelements:sun,windandrain.

    Throughoutthecenturies,thepeoplesofthetropics,havebuilt,adjusted,andperfectedan

    architecturethat,besidesprovidingadequateshelterfromtheelements,wasshapedtotheir

    customsandwassustainedbynaturallyavailableresources.Thisisreflectedinthedistinct

    featuresofthevernaculararchitectureoftropicalregions.(Ingeneral,thesolutionsthathave

    prevailedarethosethatbestservemultiplepurposes.)

    Intheseregions,traditionalhouseswereoftenraisedfromthegroundinordertocatch

    thestrongerbreezeshigherup,toreducemoisturemigrationfromthesoil,andtoprovide

    protectionfromseasonalflooding.Thespaceunderneaththehousewasusedasashaded

    outdoorroom.

    Sometimesitwaswithhighpitchedgablesandlargeeavesthattropicalarchitecture

    respondedtotheabundantrains:rainwaterflowedquicklyoffthesurfaceoftheroofandthis

    protectedtheinteriorfromleaks. Thedeepeavesalsokeptthedriplinefurtherawayfromthe

    house,protectingoftenporouswallsfromrain.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    10/104

    T

    narrowf

    possible

    outdoor

    addition

    shadedt

    I

    directly

    roofsth

    vernacul

    includes

    bringing

    cleardif

    glassto

    hehighroo

    loorplates

    fornatural

    spaceslike

    lrooms.G

    heexterior

    thetropic

    boveinthe

    tgiveprote

    ar,thereis

    creeningel

    inlightand

    erentiation

    eparateins

    salsoallow

    ndtheorga

    entilationa

    hecourtyar

    lleriesand

    allsandwi

    ,thesunhi

    skyresults

    ctionfromr

    otalwaysa

    ments,suc

    air.Feature

    betweensh

    ideand

    out

    edthewar

    nizationof

    nddayligh

    d,orterrac

    erandahsp

    ndows,con

    stheEarth

    inhightem

    ainalsosha

    cleardistin

    asinwoo

    likelattice

    adeandwi

    ide.

    5

    airtorise

    nitscluste

    ingtobem

    ,orthegal

    rovidedsha

    tributingto

    atahighan

    eratures. I

    dethewall

    ctionbetwe

    orstonela

    orkandsh

    dowintrop

    out,helping

    edaround

    oreeffectiv

    leriesandv

    detothese

    keepingthe

    gle.Astron

    nplaceslike

    andprotec

    enwallsan

    tticework,t

    utterssugg

    icalbuildin

    keepthein

    courtyard

    . Inthesel

    randahs,w

    outdoorro

    indoorsco

    ,brightsun

    Southeast

    tfromglare

    windows.

    blockdire

    stthatthe

    s.Rarelydi

    Fi

    la

    A

    a

    o

    w

    c

    P

    (S

    teriorscool.

    lsomadeit

    atitudes,

    ereusedas

    ms,andals

    l.

    suspended

    sia,thesa

    .Inthis

    indowsof

    tsunwhile

    ewasalso

    buildings

    gure2. Left:st

    tticeAgraFort,

    ra,India.(pho

    thor)Right:

    oodenlattice

    eningabove

    ovenbamboo

    nstructioninL

    abang,Laos.

    omsanuk,2004

    The

    o

    e

    ten

    o

    se

    ne

    oby

    all

    ang

    )

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    11/104

    6

    Figure3.Left:Arareuseofstaggeredfixedpaneglazedwindowsallowforthepassagelightandairwhileblockingrain. Wat

    PhraKaeoMuseum.(photobyauthor).Middle:dualactionwindowswithpanelsashesthatcanopenlikeadoublecasement

    orlikeawningwindowsorBahamashuttersatLetsSeaHuaHinResort,Thailand.Windowsashes,whenpresentinthe

    tropicalvernacular,tendtobesolidorslattedshutters.(photobySitthaSukkasi).Right:Overhangsandsolidpanelcasement

    windowsinHappyHausinQueensland,Australia6

    Theintroductionofglassinthecolonialeraseparatedtheinsideandtheoutsidethat

    hadnotbeensoclearlydistinctbefore,asseeninexamplesoftraditionalThaiarchitecture. But

    colonialarchitecturealsoobserveditsneighboringtraditionalhousesandadaptedsomeofits

    elements.Thewalls,nowmadeoutofbrick,furtherseparatedtheoutsidefromtheinside

    environment;thethermallymassivematerialsofbrickandconcreteretaindaytimeheatwell

    intotheevening.

    Largerwindowsthatcouldstillbeclosedwithshutters,createdanewcoolinterior

    space. Verandahsandgallerieswerealsoadaptedtobrick,buttheykeptfunctioningasan

    exteriorshadedroomthatalsoprotectedthewallsfromthesun,loweringtheexteriorheat

    loads. Thechangeinmaterialscreatedanewcontrolledenvironment,slowertorespondtothe

    exteriorconditionsthanthelocalarchitecture.

    6Jordana,Sebastian."HappyHaus/DonovanHill"29Jun2010.ArchDaily.Accessed10Dec2010.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    12/104

    7

    1.3 SHADESCREENSINCONTEMPORARYARCHITECTURE

    Onceairconditioningbecamemorecommon,buildingsincorporatedmoreglass,bothin

    largerwindowsandcurtainwallsystems,anddeeperfloorplates,sinceproximitytowindows

    wasnolongerrequiredtolightandcool.Withtheintroductionofglassseparatinginsideand

    outside,thedifferencebetweenwindowsashandshadeclearlyemerges.Withoutsufficient

    shadingprotectionfromthesun,theseinternalloaddominatedbuildingsquicklyoverheatand

    requireevenmoreenergytocool.Somearchitectsandengineersacknowledgedtheallglass

    dilemmaandincorporatedexternalshadingintobuildingdesigns.Startinginthe1950s,there

    wasanupsurgeinresearchandpublicationsaroundclimateadaptivedesignandmaximizing

    passiveheatingandcooling.PublicationsforarchitectsincludedDesignwithClimate(Olgyay

    andOlgyay1963),SolarControlandShadingDevices(Olgyay1957),andTropicalArchitecturein

    theDryandHumidZones(DrewandFry1964). Beforetheenergyimplicationsoftheallglass

    buildingwerethoughttobeimportant,unprotectedglassstructuresbeganappearingin

    tropicalclimates.Theyarestillbeingbuilttoday,thoughwithmoreadvancedglass

    technologies.

    Figure5.VarioustypesofshadingfromFryeandDrew. Figure4.TheIIMDormitoriesinAhmedabad,India(Louis

    Kahn)weredesignedtobeprotectedfromthesunand

    permeabletothewind.Imagesfromand

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    13/104

    8

    Anincreasedawarenessofenergydepletion,fuelpricerise,andclimatechangehas

    broughtaboutaninterestinloweringallenergyuseandbuildingenergyuseinparticular.Low

    energycoolingstrategies,likenaturalventilation,requirecarefulloadcontrolandblockingheat

    gainfromthestructure,windowsandinteriors.Intropicalbuildings,minimizingsolarheatgain

    isdoneintwomainways:firstbyinsulatingexteriorwalls,(thusrestrictingtheinteriorsurfaces

    fromradiatingheattowardtheoccupiedareas),andsecondbyshadingopeningsfromdirect

    sunpenetration.Thefirstmethodinvolvesinsulativeandradiantbarriersinthebuilding

    enclosure;thoughimportantfortheclimate,thisisoutsidethescopeofthepresentstudy.The

    secondmethod shadingopenings isachievedbyblockingdirectsunfromenteringthe

    occupiedspacewithsomesortofinteriororexteriorshadingdevice.

    Externalshadingcanblocksignificantlymoresolarheat7andtendstobeamorevisually

    prominentpartofthearchitecture,ascomparedwithinternalshades.Shieldingthebuilding

    anditsoccupantsfromthesunisespeciallyrelevantinclimateswhereourbodieseasily

    overheat,asinthetropical,lowlatitudeenvironmentsofinterestinthisstudy.Intheseregions,

    thismeanshighangledsunfromthenorthandsouthportionsofabuildingandlowerangled

    sunfromtheeastandwest.Formsofexternalshadingincludehorizontaldevices,like

    overhangs,andverticaldevices,likeverticalfinsorwingwalls,8aswellasarchitecturalfeatures

    suchaslargeroofs,loggiasandothervolumetricforms.

    Ascan

    be

    seen,

    many

    forms

    ofexterior

    shading

    have

    been

    employed

    throughout

    the

    centuries.Whilescreenshadeshavealsobeenutilizedhistorically,suchsystemshavebecomea

    7AccordingtoafieldtestbyLawrenceBerkeleyNationalLaboratory,coolingloadswerereducedby77%with

    exteriorVenetianblindsascomparedtoconventionalinteriorVenetianblindsunderthesameconditions.Lee,

    2009.InnovativeFaadeSystemsforLowenergyCommercialBuildings.(askpermission)8SolarControlandShadingDevicesbyOlgyayandOlgyay,1976(page88)isacomprehensivesourceforexterior

    shading.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    14/104

    clearvis

    building

    (Morpho

    Cultural

    Museum

    Educatio

    Seattle(

    spaces,t

    thought

    altrendin

    .Examples

    sis),theTor

    entreinN

    (Herrzog&

    nAuthority

    eberTho

    heimpacto

    hefullexte

    ontempora

    ofscreensy

    reCubeOff

    wCaledoni

    deMeuron

    inMartiniq

    pson).Som

    fthesescre

    toftheiri

    ryarchitect

    stemsinbui

    icetowerin

    a(RPBW),t

    Arkitekten)

    e(Hauvett

    eofthese

    ntypesha

    pactsisun

    9

    uraldesign,

    ldingsinclu

    Guadalajar

    e NewYor

    theNew

    &Associ

    uildingsare

    ingsystem

    nown,des

    bothintro

    etheSan

    (EstudioC

    kTimesBuil

    useuminN

    ),andtheT

    shownbel

    sislikelyha

    itetheirar

    icalandno

    ranciscoFe

    rmePins),

    ding(RPBW

    ewYork(SA

    erryThoma

    w.Innatur

    esomeaff

    hitecturalp

    Figur

    Cont

    upof

    pane

    Whil

    natu

    ane

    scree

    archi

    Figur

    scree

    inar

    right

    Fede

    (Mor

    (Estu

    Tijba

    (Ren

    Wor

    tropical

    eralBuildi

    theTijbao

    ),theDeYo

    NAA),the

    buildingin

    llyventilat

    ctonairflo

    rominence.

    e7.NewMuse

    emporaryArt:c

    expandedmet

    l.(SANAA)Ne

    ethebuildingis

    allyventilated,

    ampleoftheu

    nsinpopular

    tecture.

    e6:Examples

    nshadingsyste

    hitecture:(left

    )SanFrancisco

    ralBuilding

    phosis),Torre

    dioCarmePino

    louCulturalCe

    oPianoBuildin

    shop).

    g

    ung

    d

    w,

    mof

    lose

    al

    York.

    not

    itis

    eof

    f

    ms

    to

    ube

    s),

    ter

    g

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    15/104

    10

    Figure10.ToulouCollectiveHousinginNanhai,Guandong.URBANUSArchitecture&Design,Inc.

    Figure11.Examplesoflow andmidrisebuildingsinthetropicalclimateofBrisbane,Australia(DonovanHill). left,W4

    Apartments.Right,CornwallApartments.

    Figure9.Multiple

    exteriorshadingtypesin

    MoulmeinRise

    ResidentialBuilding,

    SingaporebyWOHA

    Architects.left:south

    faade.middle:north

    faade.right:

    view

    out

    thenorthfaade.Images

    fromand

    Figure8.Rectorate

    OfficeBuilding.

    Hauvette&Associs.

    Cayenne,French

    Guyana.Imagesfrom

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    16/104

    11

    Figure12.NishorgoOirobotNatureInterpretationCentre.Teknaf,Bangladesh.VittiSthapatiBrindoandEhsanKhan,2008.

    1.4 CLASSROOMS

    Thebuildingofinterestinthisstudyisthelowriseschoolbuilding,andspecificallythe

    classroomspace.Classroomsaregoodcandidatesforstudy;thesettingtendstobeuniformlyand

    denselyoccupiedwithanumberofstudentsseatedatdesks.Exceptforclothingadjustments,students

    donottypicallyhavedirectcontrolovertheirthermalcomfortinclassrooms.Thoughitisparticularly

    challengingtoevenlycoolwithwinddrivenventilationformultipleoccupants,thechallengesassociated

    withthistaskmayhavearoleininformingnaturalventilationstrategiesinothernondomesticspace

    types,suchasopenplanoffices,smallretailandclinicsinlowrisebuildings.

    Twomainrequirementsbracketedthescaleatwhichtosizethemodelinthisstudy:indoorair

    movementstudieswarrantalargermodelforvisualizingtheinterior;tallerbuildingsrequiresmaller

    models(oralargerwindtunnel)soasnottoblockmorethan510%ofthewindtunnelcrosssectional

    Figure13.ElCamion

    Restaurant.

    Llona+Zamora

    arquitectos+Fernando

    Mosquera.Villael

    Salvador,Lima,

    Peru.

    Imagesfrom

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    17/104

    12

    area.Fromthepointofviewofwindtunnelstudiesfornaturalventilation,lowrisebuildingsseemed

    idealfortestingdetailedfaadecomponentssuchasexteriorshadesandwindows.

    Openplanspaces(likeclassroomsorsomeoffices)areparticularlydesirablefromawinddriven

    ventilationpointofviewsincetherearefewobstructions.Intermsofventilative(convective)cooling,it

    isimportantthatfurnitureobstructaslittleaspossibleinthefirsttwelveinches(30cm)abovethefloor.

    Besidesobstructingairflow,furnishingsandfinisheslikeseatsalsoaddtothethermalinsulationatthe

    occupantsbodies;conductiveorbreathableseatselectioncanhelptoremoveheatfromthebody.

    Thoughthetropicalvernacularbuildingsmentionedintheprevioussectiontendtobehousesof

    lightwoodconstruction,thehistoricalbeginningsofformaleducationinThailandexistedintheBuddhist

    temples,whichtypicallyhadmassive(sometimes30thick)loadbearingwalls,shading,andground

    contacts9.Oftenthemainhallwassurroundedonallsidesbyverandas.Templeswereoneofthefew

    nondomesticstructureswhereagroupofpeoplewouldregularlygatherforprolongedperiodsoftime.

    Todaymostclassroombuildingsareoneroomdeepconcreteandmasonryconstruction.Itiscommon

    forstudentstonotwearshoesintheclassroom,furtherfacilitatingheattransferthroughtheirsocks.

    Lowriseschoolbuildingshaveexistedforalongtimeandarelikelytocontinuetobebuiltand

    retrofittedinthefuture.Fromschoolhousestoschoolbuildings,classroomshaveahistoryofhaving

    narrow(1roomdeep)plans,asitiscommonforthemtobedesignedtoaccesslightandair.Lowrise

    buildingsingeneralalsoofferanumberofdistinctiveproperties.Suchbuildingsarecommonwithincity

    9Sresthaputra,2003.

    Figure14.

    Plan

    and

    sectionofclassroom

    model.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    18/104

    centersa

    highrise

    Thought

    makeup

    lowrisec

    Figure16.

    Hoerbst.ht

    Figure17.L

    KathleenH.

    courtesyC

    10EdMazareductioni

    dtheyaree

    uildings.Th

    epercentag

    bout77%o

    lassroomsar

    ETIHandmad

    tp://www.akd

    eft:classroom

    )Right.Classro

    kieStephens)

    riaisthefountheclimatech

    speciallytypi

    yareeasier

    efortropical

    thetotalco

    ebelow.Exc

    School,Dinajp

    .org/architect

    uildingatChia

    minterior,sh

    derofArchiteangecausinggr

    calatacitys

    andcheaper

    regionsisun

    mercialbuil

    ptfortheR

    ur,Bangladesh.

    re/project.asp

    gMaiInternat

    wingjalousie

    ture2030,a

    eenhousegas(

    13

    edges,asth

    torenovate,

    known,itisl

    dingstockin

    yalOaksSch

    25.6Nlatitude

    id=3392Access

    ionalSchool,C

    indowsbehind

    onprofitorgaHG)emissions

    yarelessco

    ascompare

    ikelytobehi

    theU.S.10

    Ex

    ool,theothe

    .AnnaHeringe

    ed5January2

    iangMai,Thail

    insectscreens.

    nizationwhosoftheBuilding

    stlytobuild

    tomid orh

    gh,sincelow

    amplesofon

    rsareintrop

    randElkeRos

    11)

    and.18.8Nlati

    (1971CCCClari

    egoalitisto

    ector

    Fi

    O

    C

    la

    L

    (L

    O

    1

    hanmid an

    ighrisebuild

    risebuilding

    eroomdeep

    icalclimates

    ag,2005.(Kurt

    ude.(Stephens

    onCall(yearbo

    toachieveadr

    gure15.Left:R

    aksSchool,Dua

    lifornia.34.1

    titude.Maynar

    ndon,1951.

    yndon1993)Ri

    aiSection.(Nin

    98)

    ings.

    s

    ,

    .

    ,

    ok,

    matic

    yal

    rte,

    d

    ht:

    dra

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    19/104

    14

    Figure18.TransitionalSchool,Jacmel,Haiti.18Nlatitude.JohnRyanandPlanInternational,2010.(JohnRyan)

    Figure19.PrimarySchool,Gando,Tenkodogo,BurnikaFaso.11.5NLatitude.DibdoFrancisKr,2001.(FrancisKr

    Openarchitecturenetwork.orgAccessed5January2011)

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    20/104

    15

    CHAPTER2 VENTILATION

    2.1 THEROLEOFVENTILATIONINBUILDINGS

    Intropical,lowlatituderegions,minimizingheatgainallowsnaturalventilationand

    otherlowenergycoolingstrategiestowork.Naturalventilationprovidesmultipleservices:it

    removesheataccumulationinthebuildingstructure(600CFM)11;itcoolsthespaceby

    replacingwarmairwithcoolerair(300CFM).Inaddition,theairmovementonhumanskin

    enhancesbodilycooling(300CFM);anditprovidesairforbreathing(roughly10CFM). The

    typeofcoolingthatispossibleisalsoafunctionoftheamountofwindavailableandthediurnal

    temperatureranges(forstructuralcooling)inaparticularsite.Whiletheprimarypurposeof

    naturalventilationinthisstudyisoccupantcooling,theindirectformscoolingoutsidethe

    scopeofthisstudyareimportanttoacknowledge.

    STRUCTURALCOOLING.Structuralcoolingreferstotheremovalofaccumulatedheatwithinthe

    buildingmassattimeswhenoutdoortemperaturesarebelowthecomfortzone;itisdirectly

    relatedtothethermalstoragecapacityofthebuildingandtheexposureofthermallymassive

    elementstoairflow.Areasbeyondtheoccupiedzonenearceilings,wallsandexposedfloors

    tendtobeimportantforindoorspaceandstructuralcooling.Structuralcoolingislesseffective

    wherewidediurnaltemperaturerangesarenotsufficient,asisthecaseduringthetropical

    monsoonorsummerseasons.Thoughstructuralcoolingisnotaprimarypurposeofnatural

    ventilationinthisstudy,itmayhavearoleinthetropicalsavannahclimate.

    SPACECOOLING.Occupiedspacesaccumulateheatfromlighting,people,equipmentsolarand

    envelopeloads,whichincreasestheambientairtemperatureovertime.Spacecoolingrefersto

    11Brown,G,andUniversityofOregon.;NorthwestEnergyEfficiencyAlliance.;SeattleCityLight.2004.Natural

    ventilationinnorthwestbuildings.EugeneOr.:UniversityofOregon.P.11

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    21/104

    16

    thereplacementofthiswarmairwithcooleroutsideair.Balancinglowsolargainsand

    daylightingareverymuchrelatedtothetypeofshadingused,asbothdirectsunandelectric

    lightingcontributetothesethermalloads.Spacecoolingisanindirectformofoccupantcooling

    andisnotaprimarypurposeofnaturalventilationinthisstudy.

    BREATHING.Itwouldbedifficulttoadequatelydiscusstheroleofnaturalventilationin

    buildingswithoutfirstacknowledgingitsroleinourbreathing.Respirationisaminorformof

    bodilycoolingandabiologicalrequirement.Whiletheamountofairrequiredforbreathingis

    muchlessthanthatforcooling,outsideairhasotheramenities.Unlikerecirculatedindoorair,

    outdoorairismorediluted,dynamicinspeedandtemperatureandevencarriessoundand

    smell.Outsideairisreflectiveofmicroclimate,topography,geographyandotherconditions12

    aroundthegivensite.Whenwegooutsideforair,webecomecorporeallyawareofourbodies

    inthesurroundings.Whenoutsideaircomesinside,trancesofthisconnectionarelikelyto

    follow.

    OCCUPANTCOOLING.Thermalcomfortiselusivelycomplextoquantify.Traditionalcomfort

    models(i.e.Fanger)includedsixquantifiablevariables:thetwopersonalvariablesofclothing

    levelandactivitylevel,andthefourenvironmentalvariablesofairtemperature,radiant

    temperature,airvelocityandhumidity.Variableshardertoquantifythathavebeenshownalso

    influencethermalcomfortincludeclimaticadaptation,thermalpreferenceandpersonal

    control

    13

    .

    12Arens,1985.

    13Whenthermalcontroloccursthroughopeningandclosingwindows,theinteractionbetweentheuserandthe

    buildingencouragestheoccupanttobeanactiveparticipantinthespace.Thisoccupantbuildinginteraction

    visuallyactivatesthefaadeforcomfort.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    22/104

    17

    Aspreviouslystated,occupantcoolingistheprimarypurposeofnaturalventilationin

    thisstudy.Airmovementworkstocoolthehumanbodyinanumberofways:firstviathe

    evaporationofsweatfromtheskin,secondbyconvectivelyreplacingthewarmerairnearthe

    skinwithcoolerairandlastbyreplacingwarmexpiredairwithcoolerinspiredair.

    Therearelimitationsandcaveatstotheeffectivenessofairmovementforthermal

    comfort:evaporativecoolingislesseffectivewhenthehumidityishigher;convectivecoolingis

    noteffectivewhentheairtemperatureiswarmerthanbodytemperature;themaximum

    allowableairspeedatthewarmhumidendofthecomfortzonedependsonoccupant

    preferenceandactivity.Findingsfromrecentresearchandpreviousstudies14suggestthatin

    bothairconditionedandnaturallyventilatedbuildings,mostoccupantsprefertohavemoreair

    movementandveryfewwantless.Howcanthisfindingapplytothedesignofwindowsand

    shades?

    Whileitispossiblefornaturalventilationtodirectlycooloccupants,thisscenariois

    oftenmoreeffectiveforoccupantsclosertothewindowthanforthosewhoarefurtheraway.

    Whenthemodeofthermalcontroloccursthroughtheopeningandclosingofwindows,the

    requiredinteractionbetweentheuserandthebuildingencouragestheoccupanttobean

    activeparticipantinthespace.Thearchitecturebecomesvisuallyrelatedtothermalcomfort

    overtimeviathisoccupantbuildinginteraction.Provisionforoccupantcontrolhasalsobeen

    shownto

    expand

    the

    zone

    ofthermal

    comfort.

    At

    the

    warm,

    humid

    end

    ofthe

    comfort

    zone,

    themaximumallowableairspeeddependsonoccupantpreferenceandexpectations.15

    14Arens,E.,Turner,S.,Zhang,H.,&Paliaga,G.2009.MovingAirforComfort.

    15ASHRAE552010,section5.2.3.Thisstandardalsostipulatesthattherequiredairspeedforlight,primarily

    sedentaryactivitiesmaynotbehigherthan0.8m/s.Whenunderlocalcontroloftheaffectedoccupants,theair

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    23/104

    18

    Figure20.Compoundwindowswithmultipleoperationtypeswithinthesameopening.Leftandmiddle,BoydEducational

    Center,GlennMurcutt,2005.34.8Slatitude.Illaroo,NSW,Australia.ImagefromDahl,2010.

    2.2 THERMALCOMFORTSTANDARDS

    BuildingdesignersusethermalcomfortstandardssuchasASHRAEStandard55201016,

    ISO773017

    andEN/DIN15251200818todesignbuildingsforhumanoccupation.These

    standardsestablishspecificcriteriaforacceptablethermalenvironmentsincludingallowable

    rangesforairtemperature,radianttemperature,humidityandairspeeds.Inadditiontothe

    narrowlydefined,laboratorybasedresultsonwhichtheywereoriginallybased,thestandards

    havecometoincorporatevariousadaptivemodelsforthermalcomfort,whicharemostly

    basedonfieldstudies19.Thatis,thestandardsnowrecognizethatthermalcomfortand

    preferencescandifferforpeopleofdifferentclimatesandhabits.ASHRAE55wasrecently

    modifiedtoexpandtheallowablerangeofairspeedsinneutraltowarmconditions.20Thisis

    importanttonotewhendiscussingwhetherornotnaturalventilationisadequateinproviding

    speedmaybeashighas1.2m/s,thoughitisnotexplicitlystated.Thestandardnotesthatthesefiguresare

    conservativeforactivitiesabove1.3metsandforclothinginsulationlessthan0.5clo.16ThermalEnvironmentalConditionsforHumanOccupancybytheAmericanSocietyofHeatingRefrigerationand

    Air conditioningEngineers17ErgonomicsoftheThermalEnvironmentbytheInternationalStandardsAssociation

    18IndoorenvironmentalInputParametersforDesignandAssessmentofEnergyPerformanceofBuildings

    addressingIndoorAirQuality,ThermalEnvironment,LightingandAcoustics.19deDearandBrager2002.Rajaetal2001.Kwok,1997.Busch1992.

    20ASHRAE552010,section5.2.3. ElevatedAirSpeed.Thisstandardalsostipulatesthattherequiredairspeedfor

    light,primarilysedentaryactivitiesmaynotbehigherthan0.8m/s.Whenunderlocalcontroloftheaffected

    occupants,theairspeedmaybeashighas1.2m/swithoccupantcontrol.Thestandardnotesthatthesefigures

    areconservativeforactivitiesabove1.3metsandforclothinginsulationlessthan0.5clo.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    24/104

    19

    comfortatthewarmerendofthecomfortzone,suchasthosefoundintropicalenvironments.

    Thisencouragesbuildingdesignerstouseairmovementtoimprovebothenergyandcomfort

    performanceandalsoopensopportunitiesforimplementinglowenergysystemsthathave

    coolingcapacitylimitations.21ASHRAE55srecentmodificationincreasestheupperlimitofair

    movementto1.2m/s,thoughthenumberisnotclearfornaturallyventilatedspaces.Notethat

    theupperlimitofrelativehumidityfornaturallyconditionedspacesisalsonotclearlydefined

    forthesespaces.

    CRITERIA.Giventhecontextofaclassroominthisstudy,airflowcharacteristicsaredesirable

    whentheairflowplan(attheseatedheadheightof1.1m)hasahighvelocitywithalowspatial

    variation,orvPLANandcsvrespectivelyinthewindtunneltestresults.Moreuniformityin

    airspeedacrosstheairflowplanisconsideredtobedesirable,asahighvariationinindoor

    airspeedcanleadtopointsthataresimultaneouslytoowindy(i.e.neartheinlet)andpoints

    thataretoowarm(i.e.farfromwindows)inthesamezone.Thisstudyassumesthatthe

    maximumallowableindoorairspeedis3m/s22andthatoccupantshavethecanreduceair

    velocitybyoperatingwindowsorchangingseatsifspeedsarehigherthanpreferred.Thermal

    acceptabilityforourpurposesiswhentheSET*adjustedPMV23isbetweenslightlycool(1)and

    slightlywarm(1),whichequalsa26%peopledissatisfied(PPD). ASHRAEconsidersaPMV

    between 0.5and0.5oraPPDof10%tobeacceptable.Airvelocitiesareconsideredtohave

    21Zelenay,K.,Perepelitza,M,Lehrer,D.2010.

    22Basedonadiscussionwiththermalcomfortresearchers, 3m/swasconsideredtobeanexuberantnumber;this

    numberwasalsothemaximumairvelocityinputallowablefortheASHRAEThermalComfortTool.23TheStandardEffectiveTemperature(SET)modelusesathermophysiologicalsimulationofthehumanbody

    Thismodelenablesairvelocityeffectsonthermalcomforttoberelatedacrossawiderangeofairtemperature,

    radianttemperature,andhumidity.ASHRAE552010,section5.2.3.2.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    25/104

    20

    occupantcoolingpotentialwhentheycanoffsethighertemperaturesintheSET*adjustedPMV

    thermalcomfortmodel.

    2.3 OBJECTIVES

    Itisthehopethatthisdocumentshedslightononeofthemanymethodsofstudying

    airflowandinspiresarchitects,especiallythosedesigningfortropicalclimates,toconsiderthe

    designchallengesassociatedwithnaturalventilationasopportunitiesratherthansimply

    acceptingthistobeoutsidetheirscopeandbeyondtheircontrol.

    Asdiscussedinsection1.2oftheintroduction,architectshavebeenincreasinglyusing

    newtypesofscreensandshadingdevicesthatlikelyaffectairflow.Whileotherformsof

    externalshadinghavebeenstudiedintermsofairflowinthepast,screenshadingsystemshave

    notbeenanalyzedintermsofairflowbefore.Thepurposeofthisstudyistoassesstheimpact

    ofarangeofshadingandwindowconfigurationsonindoorairflowinordertoidentifyhow

    specificinletgeometriesaffecttheeffectivenessofwinddrivencoolinginawarmhumid

    climate.Whilenaturalventilationcanpassivelycooloccupantsandreduceoreliminatethe

    needformechanicalcooling,airflowinbuildingsisinherentlydifficulttoanalyze.Through

    examiningofanumberoffaadeinletconfigurations,thisstudyseekstodevelopabasisfor

    buildingfaadesdesignprinciplesintermsofnaturalventilation.Itisthehopethatthe

    informationpresentedinthisdocumentwillencouragedesignerstoconsiderusingnatural

    ventilationintropical

    climate

    projects

    and

    help

    them

    maximize

    the

    potential

    ofnatural

    ventilationinbuildingdesign.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    26/104

    21

    Theimpactofinletfaadecomponents madeupofexteriorshadingdevicesand

    windows onnaturalventilationwillbeassessedintermsofthemeanvelocityanddistribution

    oftheairflow.Themainquestionsaskedare:

    o Whatcombinationsofshadingdevicesandwindowtypescreateuniformlyhighairflow

    acrosstheoccupiedzone24?

    o Howdoexteriorshadingscreensinfrontofoperablewindowsaffectairflowandshould

    theybeusedifnaturalventilationisagoal?

    o Iftheshadescreenreducesairvelocity,whatcharacteristicofitsgeometryaffectsthis?

    Howdodifferenttypes(e.g.perforatedpanelandthinlouvers)ofshadingdevices

    compareintermsofslowingdownorchangingthedirectingofairflow?

    o Howdoestheairflowvarywithwindowtype?

    o Givenacombinationofshadesandwindowsthateffectivelypromotesairmovement,at

    whattimesmightwinddrivenventilationbeacceptableforthermalcomfort?

    o Howmightdesignteamsapplythisinaproject?

    2.4 APPROACH

    Theindependentandinterdependenteffectsofthetwocomponenttypes(shadesand

    windows)onairflowareexaminedusingaphysicalscalemodelofaclassroominaboundary

    layerwindtunnel.Thedesirableairflowcharacteristicswillhaveahighaveragevelocityratio

    withlowvariationacrosstheairflowplan.Thisstudylooksattwotypesofexternalscreen

    shades:aperforatedpanelsystemandthinexteriorlouvers;andthreetypesofoperable

    windows:awning,casementanddoublehungwindows.Someexamplesofscreenshadesand

    windowtypesareshowninFigure21andFigure22.Outofthetestedconfigurations,themost

    24ASHRAE552010,7.2.2:HeightAboveFloorMeasurements.Airtemperatureandairspeedshallbemeasuredat

    the0.1,0.6,and1.1m(4,24,and43in.)levelsforsedentaryoccupantsatthelocationsspecifiedinSection7.2.1.

    Standingactivitymeasurementsshallbemadeatthe0.1,1.1,and1.7m(4,43,and67in.)levels.Theseheights

    correspondtoseatedandstandingankle,waistandheadlevels.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    27/104

    promisin

    thermal

    gshading

    comfortpot

    indowcom

    entialisass

    inationiss

    ssedforth

    22

    electedfor

    tropicalcli

    moredeta

    mateofBa

    iledexplora

    gkok,Thail

    Figure22:

    Types.(Arc

    Standards

    left:awnin

    action,hop

    combinatio

    multiplety

    including,a

    andhoppe

    Bottomleft

    jalousie,ve

    horizontall

    single and

    Figure21.S

    systemsar

    contempor

    Fromleftt

    panels,thin

    slats.

    tion,where

    nd.

    indowOperat

    itecturalGrap

    1thed.p.186)

    ,casement,du

    peranda

    nwindow,with

    esinonefram

    wning,project

    windows.

    :horizontalslid

    rticallypivoted,

    pivoted,and

    doublehung.

    creenshading

    prevalentin

    ryarchitecture

    right:perforat

    louversandw

    the

    ion

    ic

    op

    al

    e,

    d

    ing,

    .

    ed

    od

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    28/104

    23

    CHAPTER3 PREVIOUSRESEARCH

    Applyingthethermalcomfortstandardsmentionedaboveisnotasimpletaskand

    architectsaretypicallynotinvolvedintheanalysisrelatedtocomfortstandards.Typically,

    consultingengineersaretheoneswhoemploythesestandards.Simplifiedguidelinesfor

    architectshaveattemptedtobridgethisgapandhavehistoricallydiscussedvariousformsof

    mechanicalequipmentrequiredforheating,coolingandventilating.Intheseguidelines,

    ventilationthroughwindowswastreatedmoreasanalternative,nonessentialstrategy.

    3.1 EXISTINGDESIGNGUIDELINES

    Researchonnaturalventilationhasbeenconductedatboththeacademicand

    professionallevels,usingbothphysicalandmathematicalmodels.Whiletherehasbeensome

    efforttoconsolidatesuchresearchintodesignguides,muchthisdatesbacktothe1980sor

    earlierandisnoteasilyaccessibleformostpracticingprofessionalengineersandarchitects

    today.

    Existing

    design

    guides

    common

    in

    architectural

    practices

    do

    not

    have

    specific

    informationonhowtodesignwindowsandshadesforairflow.Whileitisanexcellent

    schematicdesignguideforarchitects,G.Z.BrownsSunWind&Light(SWL)iscursoryinits

    mentionoftheeffectsofsunshadesandwindowtypesonairflow;Brownstatesthatshades

    canobstructflow.Thisisunderstandable,sincethismightbeofmoresignificanceduringlater

    stagesindesign.Thatsaid,BrowndoescitetheRectorateoftheAcademyoftheAntillesand

    Guiana(alsoknownastheEducationAuthorityofMartinique),whichhasfinsfordirecting

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    29/104

    24

    airflowthatalsohelpwithshadingtheopenings.25ThereferencesandstudiescitedinSWL

    arealsohelpfulforfurtherresearch.

    Similarly,MechanicalandElectricalEquipmentforBuildings26

    providesusefulrulesof

    thumbforchoosingwindowtypesforairflowbasedonpercentageofeffectiveopeningarea,

    whichisnotclearlydefined.Figure23(left)wascitedinEnvironmentalControlSystemsby

    FullerMoore,referencingEnergyEfficientFloridaHomeBuildingbyVieiraandSheinkopf).

    Similarwindows(butwithdifferenteffectiveopeningpercentages)arealsoofferedbyKnaack

    inFaades:PrinciplesofConstruction(Figure3,right).Theauthorsabovedidnotdescribehow

    thesepercentageswerederived.(ThoughtherewerenaturalventilationstudiesattheFSECat

    thetime,theauthorsdonotreferenceothersourcesforthis.)Whilethismaysufficeforvery

    earlydesigncalculations,suchomissionsgivenoclueastowhenthesenumbersarereliablefor

    laterdesignphases,whenmoredecisions,likethetypeandnumberofopenings,mustbe

    made.

    Figure23:(Left)Effectiveopenarea,alsocalledwindowporosity,ofvarioustypesofwindowsfromEnergyEfficientFlorida

    HomeBuilding,1988,p.73.Itisunclearhowthesepercentageswerederived.(Right)Notetheverydifferenteffectiveopen

    areasfromFaades:principlesofconstruction,p.75.

    25Brown,SunWindandLightp.184.

    26Grondzik,WalterT.,AlisonG.Kwok,andBenjaminStein.2009.Mechanicalandelectricalequipmentforbuildings.

    Hoboken,N.J.:Wiley.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    30/104

    25

    3.2 REGIONSPECIFICGUIDELINES

    Additionalspecific,andoftenobscure,designguidelinesfornaturalventilationare

    availablefromconferenceproceedingsandenergyresearchcenters,suchastheFloridaSolar

    EnergyCenter(FSEC).ExamplesofthisincludeCoolingwithVentilation27forthesoutheastern

    UnitedStates,VentilationofWideSpanSchoolsintheHotHumidTropics28,NaturalVentilation

    inNorthwestBuildings29.Exceptforthelastbookmentioned,muchofthisworkwasdonein

    thelate1970sandearly1980s;whiletheseeffortshavemuchusefulinformation,itisunlikely

    thatarchitectswhodonothaveaccesstomajorlibrariescaneasilyfindthem.

    3.3 METHODSOFTESTINGWINDDRIVENVENTILATIONINBUILDINGDESIGN

    Thoughwinddrivenventilationinbuildingshasbeenusedforalongtime,methodsof

    estimatingitsperformancehavenotbeenaroundaslong.Rulesofthumbforarchitectsinvolve

    manipulatinginletandoutletareasasafunctionofthefloorarea.Rulesofthumbareperhaps

    acceptableforanapproximatednotionduringveryearlydesignphases,butdonotaddressthe

    interactionbetweensunshadingandopeningareas.Formoresophisticatednaturalventilation

    testing,architectsusuallyrefertoconsultantengineersfordesignguidance.Inturnthese

    mechanicaland/orcivilengineersuseavarietyoftoolsforestimatingairflow.Theseinclude:

    1) Thedischargecoefficientmethod

    2) bulkairflowmodelsbasedonpressurecoefficients

    3) computationalfluiddynamics(CFD)

    27Chandraetal,1986.TheFSEChaspublishedmanydesignguidesandpapers.

    http://www.fsec.ucf.edu/en/index.php28Chand,Ishwar,1977.UNESCOsponsoredresearchdoneatCentralBuildingResesarchInstitute,Roorkee,India.

    29Brown,G,andUniversityofOregon,2004.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    31/104

    26

    Researchersemployanevenbroaderrangeofassessmentmethods.Forthepurposesof

    research,methodsoftestingindoorwinddrivenairflowinbuildingsinclude30:

    a)

    fullandmodelscaleoutdoorinvestigations

    b) bulkairflowmodeling

    c) computationalfluiddynamics(CFD)

    d) theuseofwinddischargecoefficientmethod

    e) directmeasurementofindoorvelocitiesinascalemodelwithinaboundarylayer

    windtunnel

    Thedifferencebetweenthetoolpaletteofthedesignengineerandthatofthe

    researcherariselargelyfromthecostsinvolvedwithwindtunneltestingandtheabsenceofa

    constructedbuilding(asrequiredinfullscaleinvestigations)totestduringthedesignphase.

    Bulkairflowmodelingisnotsoeffectivewhenbuildinggeometriesarecomplexorinthecaseof

    simplegeometrieswithlargeopenings(asisoftenthecaseinhot,humidclimates).Ofthenon

    physicaltoolsinthepalette,onlyCFDcanprovidesomeguidancetotherelativeperformance

    ofdifferentwindowsandshades.ItshouldbenotedthatthekindofCFDusedforbuilding

    designsimulations(asopposedtothoseforaircraftdesignsimulation),rarelymodelseddiesor

    fluctuationsinvelocitythatarecommoninnaturalwind,becausedoingsowouldbetoo

    expensive31.InadditiontothechallengesofmodelingnaturalwindinCFD,utilizingCFD

    effectivelyhasasteeplearningcurveandrequiresmuchoperationalexperiencebeforereliable

    resultscanbeobtained.Whileeachoftheevaluativemethodshaspositivefeaturesand

    drawbacks,windtunnelmodeltestingwasselectedforthepurposesofthisstudy.

    30Ernest1991

    31Theexcessivecostsincludethatfortechnicallyskilledlabor,manyhoursofworkandhighendsoftware.Based

    onaconversationwithDavidBanksofCPPWindEngineeringandAirQualityConsultants

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    32/104

    27

    Therewereanumberofreasonsforthis:windtunneltestinghasallowsforboth

    velocitymeasurementsandflowvisualization;exploringthemethodwasrelativelyaccessible;

    oncebuilt,physicalmodelsarerelativelyeasytoadjust;mostsignificantly,theBuildingScience

    LabatUCBerkeleyhasafunctionalboundarylayerwindtunnelaswellasresearcherswith

    directexperiencewiththisspecificwindtunnel.

    Ascanbesaidofeverymethod,windtunneltestinghasitslimitations.Inordertofitthe

    testingprogramintothewindtunnelmethods,modelscannotobstructmorethan10%ofthe

    crosssectionbeforeresultsbecomeunreliable.(Someresearcherskeeptheirmodelsunder

    5%.)Thislimitsthesizeofthetestmodel,causingmidandhighrisebuildingschallengingto

    study.Thoughoriginallytheideawastotestaroomaspartofabuildingmass,ithadtobe

    modeledasaoneroomboxinordertocapturetheadequatedetailrequiredintheshadesand

    windows.Inadditiontothis,thewindtunnelhadnotbeenusedtocollectvelocity

    measurementsinaboutadecade,somoretimewasrequiredtogettheequipmentfully

    functional.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    33/104

    28

    Figure24.Previousnaturalventilationresearchconductedinthewindtunnel.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    34/104

    29

    3.4 ACADEMICRESEARCHANDPARAMETRICWINDTUNNELVENTILATIONSTUDIES

    Forthisstudy,asurveyofpreviousresearchwasconductedinanefforttoidentifythe

    significantparametersaffectingindoorairflow.Bowen(1981)consolidatedthegeneralfindings

    ofvariouswindtunnelstudiespriorto1981intoaconferencepaper32.Windtunnelstudieson

    naturalventilationinbuildingswerebeguninthe1950s,atTexasEngineeringExperiment

    Station(Smith,1951andHolleman1951)andcontinuedintotheearly1990s.Variousbuilding

    parametersaffectingindoorairmotionwereinvestigatedwithinthisbodyofwork.

    BOUNDARYLAYER/SITEDENSITY.Boundarylayerdescribeslayersofwindneartheground

    whicharealwaysturbulentduetoroughnessinthesurfaceoftheearth.Thewindspeediszero

    atgroundlevel;theamountitincreaseswithheightdependsonthetypeofterrainandiscalled

    aboundarylayerprofile.Thepresenceofneighboringbuildingsreduceswindspeeds.Inthe

    windtunnel,theboundarylayerroughnessisgeneratedbyusingwoodblocks.Ernesttested

    theeffectsofthreeboundarylayers(terrainscorrespondingtoflatfarmland,villagesand

    suburbs)onalowrisebuildingmodelandfoundvirtuallynodifferencesinpressurecoefficients

    33.Healsonotedapreviousstudy(AkinsandCermak1976),whereintheaffectofdifferent

    boundaryconditionshadmuchmoreofaneffectonhighrisebuildings.

    32Bowen1981.

    33Ernest1991.p.4041

    Figure25.Sobin'sdiagram

    describingvariousincidentwind

    angleshetested.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    35/104

    30

    WINDDIRECTION.Givoni(1962)foundthataverageindoorairvelocitywashigherforthe

    incidentwindanglesof45thanfor0(Figure25).Sobintestedmultiplewindowproportions

    andfoundthisonlytobetrueforhorizontalwindows,whilesquarewindowsperformedbetter

    at0.Inhis1977studies,Chandconcludedthatwinddirectioncannotbestudied

    independentlyofothervariables.

    BUILDINGMASSING.Inhisreportontheventilationoftropicalschoolbuildings,Chand(1977)

    comparedvariousbuildingfloorplanshapes;hefoundwindshadowscouldbeminimizedwith

    Lshaped(orreentrantcornered)plans.Inasimilarmanner,Aynsley(1979)studiedsixtypesof

    freestandinghousesforhothumidclimatesinthecontextofQueenland,Australia.He

    concludedthatbothelevatedandgroundlevelhouseswithextendedverandasandendwalls

    (types4and2respectivelyinFigure27)couldprovidethehighestcoolingpotentialinthetest

    set.Thesearchitecturalfeatures,notsurprisingly,arealsocommontoAustraliashothumid

    tropics.ThroughCFDtests,Tantasavasdietal(2001)cametoasimilarconclusion.Hefound

    houseselevatedonstilts,ratherthanongroundlevel,tobemoreeffectivefornatural

    ventilationintheBangkoksuburbanclimate.

    Figure26.Chand

    (1976)studied

    concludedthatwind

    shadowscouldbe

    remediedwithre

    entrantcorners.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    36/104

    31

    Figure27:(Left)HousetypestestedbyAynsley(1979).Types2and4(witheavesandendwalls,withandwithoutstilts)

    showedthemostcoolingpotential.(Right)DesignstrategybasedonfindingsfromCFDsimulations(Tantasavasdietal,2001)

    Atamorebasiclevelofmassing,Ernest(1991)testedtheadditionofmassontohis

    baselinebuilding.Headdedonsupplementaryblocksaboveandbesidethebaselinemodel,

    althoughnotsimultaneouslyinbothplaces,aswouldbethecaseinamidrisebuilding.When

    addingablocktoincreasetheheightofthebuilding,hefounda5%increaseinaverageinterior

    airvelocityatsomeangles(between30and75).Therewaslittledifferenceat0,15and30

    anglesofincidence.Whenablockwasaddedtoonesideofthebuilding,hefoundlessthana

    5%increaseatsomeangles.(Theinteriorairvelocitywasveryclosetothesingleblockexcept

    between3075,wheretherewaslessthana5%increase.)Whentwoblockswereaddedtothe

    rightandleftsideofthebaseline,theaverageairvelocitiesdecreasedslightly,ascompared

    withthesingleblock.

    Figure28(left).Addedheightincreasedaveragevelocityslightlyinbaselinebuildingatincidentanglesbetween3075.

    Figure29(right).Addedwidthinplandecreasedairvelocityexceptwhenatobliqueanglesbetween3070

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    37/104

    32

    ROOMDEPTHandPROPORTIONS.BothSobin(1983)andChand(1966and1977)testedthe

    affectsofroomdepthproportionsonindoorairflow.Inhisstudyonventilationintropical

    schools,Chand(1977)concludedincreaseinthespandepthofabuildingreducesthe

    achievablewindspeedsatallpointsinsidethebuildingandthatthisreductionwasmore

    pronouncedbelowsilllevel,suchasforstudentsseatedonthefloor.Sobins(1983)data

    similarlysuggestedthattheairflowinshallowanddeeproomsislargelydependentonwindow

    geometry.Inaroomwithvertical,floortoceilinginletandoutletopenings,theairvelocities

    significantlydecreasedinthedeeperroomfurtherawayfromthewindow.Forthehorizontal

    windowsinSobinsstudies,however,roomdepthdidnotgreatlyaffecttheaverageindoorair

    velocitiesinplanorsection;inplantheaverageairvelocityactuallyincreased4%whileit

    decreased5%insectionbetweentheshalloweranddeeperrooms.

    OPENINGSIZE,SHAPEandLOCATION.Sobin(1983)didanextensivestudyofvariousopening

    shapes,sizesandgeometries.Heconcludedthatwindowopeningshapewasthesinglemost

    importantwindowdesignparameterindeterminingtheefficacyofwinddrivenventilative

    cooling.34Hisfindingssuggestthathorizontalwindowsproducemoreroomairflowatawider

    rangeofanglesthansquareorverticalwindows(Figure30).Chand(1968)foundthattheheight

    34Sobin,1981.

    Figure30.Theimpactofwindow

    shapeonairvelocity.(Sobin1981,

    modifiedbyChandra1986.)

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    38/104

    33

    ofthewindowsillhadasignificanteffectintheairmovementinthelivingzonebetween0.6

    and1.2m;asillheightof0.9mor85%ofthedesk(workingplane)heightwasidealforachieving

    maximumairmotioninthebreathingzone.

    WINDOWGEOMETRYandDETAILS.Manypastwindtunnelventilationstudiesweredoneon

    thinwalled,oneroommodelswithasingleinletandasingleoutlet,abasicgeometrythat

    mightbefoundinschoolroomsandresidentialstructures.Withfewexceptions,onlyrough

    Figure32.Drawingsof

    fullscaleandmodel

    studiesofdifferent

    windowoperationtypes.

    Chandra1986,

    preprintedfrom

    Holleman1951.

    Figure31.Smith,1951.

    Thebuildingmodel

    showedonlyasmall

    differenceindetail

    comparedtothetest

    facility,causingtheflow

    patterntobevery

    differentfromthatinthe

    actualbuilding.The

    discrepancyresulted

    fromadifferenceinsash

    andframedetail.

    Figure33.CFDtestofan

    extrusiondetailatthe

    bottomofanawning

    windowforflow

    redirectionintothe

    occupiedzone.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    39/104

    opening

    sillwere

    detailsh

    studies(

    theSFF

    Figure34.

    Wall.Belo

    EXTERIO

    concern

    cooling.

    includin

    studiedt

    thatse

    weremo

    35Carter,Bri

    Universityo36

    Sobin,1

    weremod

    notmodele

    avepotenti

    Figure31an

    deralbuildi

    eft:semiboxt

    .EffectofLouv

    PROJECTI

    dwithwin

    36BothSobi

    variousfor

    heimpacts

    iboxtype

    steffective

    ian.2008.GSA/

    f Buffalo,The

    981p.195

    ledthati

    dwithreali

    ltoenhanc

    dFigure32

    ngbelow).35

    peprojectiont

    ers(orhorizont

    NSandSH

    owsystem

    nandChan

    msofshadi

    ofhorizonta

    projections

    promoting

    orphosis/Arup

    tateUniversity

    ,withouta

    ticthicknes

    eorobstru

    aswellasi

    stedbyChand

    alshade).Chan

    DINGDEVI

    selectiono

    (1971,19

    gdeviceso

    landproje

    (Figure34

    r

    irmotioni

    :

    San

    Francisco

    ofNewYork.(i

    34

    windowaf

    ses.Asasig

    tairflowto

    naCFDtes

    .Middle&right

    d,1976.

    ES. Inhise

    thebasiso

    5,and197

    fdifferent

    tionsonin

    ight),made

    theoccupi

    Federal

    building

    sert

    image

    into

    ameormo

    nificantpar

    theoccupie

    eddesigno

    :EffectofVerti

    xtensivest

    fthepote

    )testedmu

    eometries.

    oorairmo

    upof

    an

    ov

    edzonefor

    .Buffalo,NY:S

    document)

    eablesash.

    ofthegeo

    dzone,ass

    fthewindo

    calProjections

    dies,Sobin

    tialforpas

    ltiplefenes

    Chandand

    ement.The

    erhangand

    allangleso

    hoolofArchite

    Oftenwalls

    etry,thes

    howninear

    framedet

    ntheWindwa

    (1983)was

    iveventilati

    rationfeat

    rishak(197

    studyfoun

    avertical

    fi

    incidence

    tureandPlanni

    and

    ly

    ailat

    rd

    ve

    res,

    1)

    ,

    ng,

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    40/104

    35

    between0and90.Chandra(1983)studiedtheeffectsofwingwallsonenhancingnatural

    ventilation.

    Testsontheeffectofshadingdevicesonindoorairflowhavebeenaddressedthrough

    meansotherthanwindtunneltests. Intheexamplesfound,themethodsinvolvedmeasuring

    thepressuredifferenceacrossfullscalelouversinapressurizedtestschamberandcomparing

    resultswithmathematicalmodels.Tsangrassoulisetal(1997)testedmoveableverticaland

    horizontallouversonanoutdoortestcellwithsinglesidedventilationforthepurposeof

    improvinganetworkflowbasedmethodoftestingairflowthroughshading.Pittsand

    Georgiadis(1994)testedVenetianblindanglesandwindowopeningdegreesinawindtunnel.

    Nomentionwasmadeoftheparticulartypeofwindowsusedinthetest.Theyobservedthat

    thinlouversatthepartiallyclosedangleof45showedlittleflowreductionandcouldenhance

    airflowthroughpartiallyopenedwindows.Whensetat85,however,theblindssignificantly

    blockedairflow.Thefindingsinthethreestudiesabovearelimitedtotheregionimmediately

    behindthelouvers.Thisinformationishelpful,butlimitedinapplicabilityinthecontextof

    tropicalclimateswheremuchmoreflowisneededtoachievethermalcomfort.

    Alargeconcentrationofwindtunnelbasednaturalventilationstudiesisconcernedwith

    howtocoolbyconvectioninhothumidandhotdryclimates(Chand,Givoni1962).Itisfrom

    thesetropicalregionsthatmuchofthisresearchoriginates.IshwarChandworkedinIndiaand

    Thailand;Richard

    Aynsley

    resided

    inPapua

    New

    Guinea

    and

    Queensland;

    Baruch

    Givoni

    spent

    a

    significantamountoftimeinHaifa,Israel;HarrisSobindidhiswindtunnelstudiesattheCentre

    forTropicalArchitectureattheArchitecturalAssociation,inLondonandtaughtandpracticedin

    Arizona.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    41/104

    36

    Thegoalofwinddrivenventilationinhot,humidclimatesistoprovideadequateair

    movementprimarilyforbodilycooling.Itisparticularlyinthenonresidentialbuildingsinsuch

    climatesthatthefindingsforsuchresearchcanpotentiallyhaveanimpact.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    42/104

    37

    CHAPTER4 METHODS

    Thischaptercoversthemethodsinvolvedwiththetestingofascalemodelandits

    componentsinaboundarylayerwindtunnel.Eachconfigurationinvolvedtakinginteriorair

    velocitymeasurementsinsidethemodelatthreeanglesofincidence:0,45,and90.Testing

    beganwithconfigurationsofindividualcomponentsfirstandthenmovedontocombinations

    ofcomponentslater.Airvelocitiesarespatiallydescribedthroughisovelocitycontourmapsin

    planandsection.Flowpatternsarethendescribedinairflowplansandsectionsdrawnfrom

    smokestudiesobservedfirsthandandcapturedonvideo.

    4.1 BOUNDARYLAYERWINDTUNNEL

    Velocitymeasurementsandsmokestudieswerecarriedoutintheboundarylayerwind

    tunnel(BLWT)housedinUCBerkeleysBuildingScienceLaboratory.Thewindtunnelisanopen

    circuitdesignwithinteriorcrosssectionaldimensionsof1.5mhighby2.1mwideandan

    overalllengthof19.5m.Thefirst12.8mofthewindtunnel,fromthebellmouthinlet,isthe

    flowprocessingareaandcontainsacombinationofturbulencegeneratingblocksacrossthe

    floortosimulatecharacteristicsofflowapproachingthebuildingmodel.Immediatelyfollowing

    theboundaryelementsisa3.7mlongtestsectioninwhichscalemodelsaretestedona2m

    diameterturntable.Theturntableisusedtostudytheincidentwindanglesof0,45and90

    movingcounterclockwiseinplan.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    43/104

    Figure35.

    4.2

    T

    withina

    modeled

    purpose

    (describ

    expecti

    ceilinga

    toreceiv

    opening

    fullyope

    twowall

    thevario

    mm)hol

    sealinth

    themea

    asemodelwith

    ODELDES

    hemodel,a

    lowrise

    bui

    assinglero

    ofmeasuri

    dearlier)w

    tropicalcli

    dafloor.T

    einterchan

    amountsfo

    n.Theexte

    sweremad

    usheights

    scorrespo

    egapbetw

    urements.

    roughopening

    RIPTION

    tthescale

    lding.In

    ord

    om.Them

    ngandvisu

    hileseemin

    ates,assh

    etwowall

    eablewind

    eachofth

    iorshades

    ofclearac

    ftheoccup

    dingtothe

    enthepro

    s,photograph

    f1=10

    erto

    work

    delhasrec

    lizingairflo

    glyabstract,

    owninthei

    withwind

    owstypesa

    windows,

    ereoffset

    rylicandsc

    iedzone.Th

    pointsofv

    eandthe

    38

    nddrawing.

    IPunits(o

    ithinthe

    m

    nfigurable

    .Theoccu

    asinglero

    ntroduction

    wopening

    ndexterior

    hewindow

    0model

    redatthe

    eclearacry

    locitymeas

    crylichole.

    r1:8),repre

    ethodsof

    t

    indowsan

    pancytype

    mspaceis

    .Themode

    weredesig

    shades.Wh

    configurati

    scalefrom

    easureme

    licceilingo

    urements.

    Unusedhol

    sentsasing

    eBLWT,

    th

    dexteriors

    andmethod

    notfarfro

    lconsistsof

    nedasroug

    ileitispossi

    nswereal

    heexterior

    theightsc

    themodel

    rubberwa

    sweretap

    leclassroo

    classroom

    adingfort

    sinducedli

    whatone

    fourwalls,

    hopenings

    bletoadjus

    aystested

    wall.Theot

    rrespondin

    as3/8(9.

    hercreate

    dshutduri

    was

    e

    its

    an

    oas

    tthe

    as

    her

    to

    a

    g

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    44/104

    39

    ThistestisReynoldsnumberindependent,asthemodelpartshavesharpedgesandthe

    smallestdimensionsexceedthoseallowable.Atthisscale,openingscanbenosmallerthan1/8

    (or3mm)actualsizebeforetheReynoldsnumberbecomesproblematic.Theperforationshad

    tobeenlargedinordertonothaveholessmallerthan1/8.Theactualperforationsscaledto

    modelsizewouldhaveresultedin1/16diameterholes,whichistoosmallfordynamic

    similarity. Thesmallestdimensioninthemodelwasfortheholesintheperforatedpanel

    shade,whichare5/32indiameter.(SeeFigure37foravisualcomparison.)

    4.3 VELOCITYMEASUREMENTS

    VelocitymeasurementsweretakenwithaTSIModel1266hotwireanemometer.The

    hotwiresensoratthetipoftheanemometerismostaccurateatmeasuringairflownormalto

    thewire37,whichinthiscasemeanslocationsinhorizontalplanesparalleltothewindtunnel

    floor.

    Velocitymeasurementpointsweretakenintwoplanes.Ahorizontal5x5grid38of

    points37(or1.1m)abovethemodelfloor,correspondingtoseatedheadheight,was

    establishedtocharacterizeairflowacrosstheroomplan,creatinganairflowplan.Avertical

    gridofpointswasalsotakenat4,24,and67(0.1,0.6,and1.7mrespectively)alongthe

    centerlineofthemodelfrominlettooutletopenings,creatinganairflowsection39.Itis

    expectedthatthecomponentswillbetestedat0,45and90relativetotheincidentwind,

    with0

    being

    head

    on

    from

    inlet

    to

    outlet

    and

    45

    and

    90

    turned

    inthe

    counterclockwise

    directionfromabove.Withtwentyfivepointsinplanandtwentyinsection(and5thatoverlap

    37Cermak,1984[findpage]

    38The5x5horizontalgridintheoccupiedzonecorrespondstotheworkofGivoni,SobinandChand.Sobinalso

    useda5x5gridofpointsinsection.39Sobinusedthistermtodescribethesemeasurementplanes.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    45/104

    40

    both),fortydifferentpointsweremeasuredinsidethemodelforeachsetupateachangleof

    incidence.

    AirflowintheBLWT,likenaturalwind,exhibitsmuchfluctuationinvelocity.Innatural

    wind,especiallyinurbanconditions,thereisyetahigherdegreeoffluctuation,aslargereddies

    arepossible.Tominimizetheeffectsoffluctuationduringthevelocitymeasurements,each

    pointwasmeasured900timesoveroneminute.Themeanwindvelocityduringthatminute

    wascalculatedbyacustomizeddataacquisitionprograminLabView8.Themeanvelocityat

    eachpoint(vi)isthendividedbythereferencevelocity(vref),takenfromanunobstructed

    locationtheapproachflow,inordertoobtainvelocityratios.Inthiscase,thereferencevelocity

    wastakenfromapointmorethanthreetimesthemodelheightandatthesameelevationas

    theplanmeasurementsintheunobstructedstreambetweenthemodelandturbulenceblocks.

    Velocityratiosaredimensionlessvaluesthatalonehavenotmeaning;itisonlywhentheyare

    usedwithwindanddatathattheybegintosuggestinactualairvelocitiesandthussignificance

    foraspecificcase.

    Therearemanyfactorsthataredifficulttocontrolinthewindtunnel.ItisImportantto

    identifywhatismorecontrolledandwhatislesscontrolled.Inthiscase,havingaboundary

    profilewasdeemedmoreimportantthanhavinganappropriatelyscaledboundarylayer

    profile,sincelittledifferenceexistedbetweenvelocityandpressuremeasurementsatdifferent

    boundarylayer

    scales

    for

    previous

    low

    rise

    building

    studies

    40

    .

    40Ernest,1991.p.4041

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    46/104

    4.4 F

    F

    attached

    photogr

    ThoughI

    footage

    physicall

    observat

    smokeh

    quickly;

    againon

    Figure36.I

    conditions

    visualizatio

    4.5 S

    Ofthe

    e

    screena

    41Thispar

    forhuman

    LOWVISUA

    lowvisualiz

    toacompr

    phswasca

    magesalon

    ashelpful

    changevi

    ionswithin

    dtobeint

    hisrequire

    cethemod

    agestakenfr

    t45.Thewoo

    nofthinlouver

    ELECTIONo

    teriorshadi

    efrequentl

    icularbounda

    breathing. Ti

    LIZATION

    tionwaso

    essedairho

    turedfrom

    arenotve

    inreviewin

    wingangle

    intheoccup

    oducedfor

    fillingthe

    lwasfilled.

    mflowvisualiz

    dblocksusedt

    sandroughop

    fSHADING

    ngstrategie

    yvisibleinc

    rylayerwindt

    aniumtetrac

    servedwit

    seandlater

    thesestudi

    rydescripti

    whatwas

    attimes.)

    iedzone.F

    instantane

    odelwith

    ationusingultr

    atcontributet

    ningat0.

    EVICES&

    sdiscussed

    ontempora

    unnelwithin

    loride,them

    41

    smokec

    atheatrical

    esinorder

    easthefo

    mpirically

    ogisdense

    robserving

    usobservat

    mokewith

    sonicfog.(Lef

    otheboundary

    INDOWT

    inChapter

    yhighperf

    sharedoffice

    recommont

    eatedwith

    smokema

    oobservei

    doesnotp

    bservedin

    rthanairan

    flowinthe

    ions.Often,

    thefanoff

    )Modelwitha

    layerarevisibl

    PES

    ,the

    perfo

    rmancebui

    space,sothe

    peused,isto

    anultrasoni

    hine.Video

    teriorflow

    otograph

    pace.(Itw

    dthiswass

    upperporti

    thefogwo

    ndswitchin

    ningwindowi

    einthebackgr

    atedscreen

    ldings.Ast

    typeofsmoke

    ictobreathe.

    cfogger41

    footagean

    direction.

    ell,video

    simportan

    atisfactory

    onsofther

    lddissipat

    gitbackon

    nnearstillair

    und.(Right)Fl

    and

    louver

    erecanbe

    usedhadtob

    to

    or

    om,

    w

    a

    esafe

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    47/104

    42

    widevariationinshadingdevices,thoseselectedfortestingweredesignedandconstructedto

    haveaporosityof53%.WhiletheperforatedpanelwasmodeledaftertheSanFrancisco

    FederalBuilding(SFFB),thelouverscreenwasnotmodeledafteraparticularbuildingexample,

    thougharevisuallyrelatedtotheTerryThomasbuildingandNew42ndStreetStudios.

    Combinationsofshadingdevicesandwindowtypeswerealsoselectedonthebasisoftheiruse

    inhighprofilegreenarchitecture,suchasthosepreviouslynoted.Theperforatedpanelsystem

    basedontheSFFB,wasmadewithperforationsscaledupforwindtunnelmodeling,as

    mentionedinsection4.2.Thethinlouveredscreenismadeupof4xlouverstilted22.5

    downwardandspaced3and7oncenter(forviewandtoequalizeporositywiththe

    perforatedpanel).Thedimensionsofthelouversarecomparabletothatofcommercially

    availableexteriorVenetianblinds.

    Figure37.Perforatedpanelscreen.Left:viewofperforatedscreenasconstructed.Middle:detailviewofactualscreentested

    withlargerholes,butequalporosity.Right:screenasdrawninelevation(Murray2009).

    Figure38.Thinlouverscreen.Left:Generalviewofthinlouverscreenasconstructed.Right:detailviewofactuallouver

    screentested.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    48/104

    43

    Figure39.Left:theSanFranciscoFederalBuildinghasawningwindowsbehindsaperforatedpanelscreen.(Murray2009).

    Figure40.Right:TheNew42ndStreetStudios,NewYork.PlattByardDovelWhite,2000.Elevationandsection.(Murray

    2009)

    Figure41.(Left)TerryThomasBuildinghasawningwindowsbehindsexteriorvenetianblinds.Imagefrom

    .Figure42.(Right)Windowopeningtypestested.(Chandra1986)

    *

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    49/104

    44

    THISPAGEISINTENTIONALLYLEFTBLANK

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    50/104

  • 8/11/2019 EScholarship UC Item 5087z1zd

    51/104

    46

    Atrendcommontoallthetestswasthattheflowstreamwouldexpandanddecelerate

    asitmovedpastthewindowframe,mostclearat0.Eddieswouldformaroundtheopenings

    insidethewindows.Thelowestvelocityratiostendedtooccurbelowtheinletwindow.Not

    surprisinglyata90incidentwind(paralleltothewindow),vPLANandvSECTwerethelowestas

    comparedtotheotheranglestested.

    Withtheexceptionoftheawningwindow,themaximumvPLANandvSECTtendedtooccur

    atthe45obliqueincidentwindangleallfaadeconfigurationstested,astheroughopening

    shapeishorizontal42.(Fortheawningwindow,thoughthemaximumvPLANandvSECToccurredat

    0incidentwindangle.)At45and90,theangledincidentwinddirectionresultedina

    clockwiserotationintheindoorairstream.

    Generally,vSECTtendedtobegreaterthanvPLANat0and45.Theexceptiontothiswas

    thedoublehungwindowtest,whichhadconsistentlyhighervaluesforvPLANatallangles.The

    dimensionofthisinletopeninginsectionwasalsoabouthalfoftheotherinletwindowstested.

    Thetest

    results

    were

    influenced

    by

    the

    ratio

    between

    inlet

    and

    outlet

    size

    (which

    vary

    fromabout2:1or1:1).Itisdifficulttoseparatetheeffectsofinletwindowgeometry

    obstructionsfromtheinfluencesofthisparticularexperimentalsetup(whentheoutletareais

    lessthanorequaltotheinletarea)43.Itiscommoninlargeandespeciallywideopeningsto

    havesimultaneousinflowandoutflowatthesameopening44,acharacteristicofsinglesided

    ventilation.

    42ThisisconsistentwithSobinsfindingsassociatedwithhorizontalwindows.

    43BasedonaconversationwithDavidBanksofCPPWind.

    44Sobin(1981)alsonoticedthisphenomenoninhisstudyofhorizontalwindows.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    52/104

    47

    Table1.Resultsfromtestsperformed.VPLAN=meanvelocityratioforoccupiedareasinplan;VSECT=meanvelocityratiofor

    occupiedareasinsection.Yellowhighlightindicatesthehigherallpointsmeanvelocity,eitherinplanorsection,foratestat

    agivenangleofincidence.Orangehighlightandboldtextindicatethehighestairallpointsmeanvelocitywithina

    configurationatthethreeanglestested.SPLANandSSECTarethestandarddeviationofthevelocityratiosinplanandsection

    respectively.Csv=coefficientofspatialvariation.

    Shade InletWindow OutletWindow Test AngleV

    PLAN

    S

    PLAN Csv

    V

    SECT

    S

    SECT Csv

    none none none RO+RO 0 57.5 24.1 0.4 73.9 39.6 0.5

    none none none RO+RO 45 69.8 33.1 0.5 79.3 39.2 0.5

    none

    none

    none RO+RO 90 20.9 13.5 0.6 19.2 5.4 0.3

    none none DoubleHung,LO RO+VSLO 0 25.1 13.0 0.5 34.2 16.9 0.5

    none none DoubleHung,LO RO+VSLO 45 33.0 22.5 0.7 34.2 26.0 0.8

    none none DoubleHung,LO RO+VSLO 90 17.7 13.4 0.8 13.1 5.2 0.4

    none none DoubleHung,UO RO+VSUO 0 21.9 12.1 0.6 32.5 20.1 0.6

    none none DoubleHung,UO RO+VSUO 45 40.9 22.0 0.5 46.0 26.7 0.6

    none none DoubleHung,UO RO+VSUO 90 14.3 11.9 0.8 10.4 7.0 0.7

    none Awning DoubleHung,UO AW+VSUO 0 50.9 25.8 0.5 77.3 44.1 0.6

    none Awning DoubleHung,UO AW+VSUO 45 44.8 20.1 0.4 47.8 24.9 0.5

    none Awning DoubleHung,UO AW+VSUO 90 10.7 8.2 0.8 9.0 5.2 0.6

    none Casement DoubleHung,UO CA+VSUO 0 22.6 11.6 0.5 32.4 17.8 0.5

    none Casement DoubleHung,UO CA+VSUO 45 27.8 17.8 0.6 42.2 20.9 0.5

    none Casement DoubleHung,UO CA+VSUO 90 18.0 16.5 0.9 17.2 5.8 0.3

    none DoubleHung,LO DoubleHung,UO VSLO+VSUO 0 46.7 32.5 0.7 44.6 23.3 0.5

    none DoubleHung,LO DoubleHung,UO VSLO+VSUO 45 58.9 29.9 0.5 53.9 27.8 0.5

    none DoubleHung,LO DoubleHung,UO VSLO+VSUO 90 11.9 21.2 1.8 7.2 5.1 0.7

    LouverScreen none DoubleHung,UO LSRO+VSUO 0 12.3 3.8 0.3 25.6 14.3 0.6

    LouverScreen none DoubleHung,UO LSRO+VSUO 45 41.2 15.9 0.4 49.8 27.4 0.6

    LouverScreen

    none

    DoubleHung,

    UO

    LS

    RO

    +VS

    UO

    90 18.7 14.6 0.8 13.9 12.4 0.9

    PerfPanel none DoubleHung,UO PFRO+VSUO 0 10.6 2.8 0.3 21.7 13.4 0.6

    PerfPanel none DoubleHung,UO PFRO+VSUO 45 34.3 11.7 0.3 46.4 25.5 0.6

    PerfPanel none DoubleHung,UO PFRO+VSUO 90 19.3 15.9 0.8 14.7 11.2 0.8

    LouverScreen Awning DoubleHung,UO LSAW+VSUO 0 17.7 7.5 0.4 30.6 19.3 0.6

    LouverScreen Awning DoubleHung,UO LSAW+VSUO 45 43.5 19.2 0.4 46.6 24.3 0.5

    LouverScreen Awning DoubleHung,UO LSAW+VSUO 90 13.7 11.1 0.8 11.3 8.5 0.7

    LouverScreen DoubleHung,LO DoubleHung,UO LSDHLO+VSUO 0 30.9 13.6 0.4 39.5 22.0 0.6

    LouverScreen DoubleHung,LO DoubleHung,UO LSDHLO+VSUO 45 50.0 25.3 0.5 54.9 27.7 0.5

    LouverScreen DoubleHung,LO DoubleHung,UO LSDHLO+VSUO 90 12.6 14.1 1.1 7.6 6.2 0.8

    PerfPanel Awning *60%complete

    DoubleHung,UO PFAWLO+VSUO 0 12.0 2.4 0.2 25.9 22.2 0.9

    PerfPanel Awning DoubleHung,UO PFAWLO+VSUO 45 36.7 14.0 0.4 45.6 24.0 0.5

    PerfPanel Awning DoubleHung,UO PFAWLO+VSUO 90 13.7 12.0 0.9 12.0 9.4 0.8

    PerfPanel DoubleHung,LO DoubleHung,UO PFVSLO+VSUO 0 32.2 16.6 0.5 33.3 18.4 0.6

    PerfPanel DoubleHung,LO DoubleHung,UO PFVSLO+VSUO 45 44.1 22.8 0.5 50.4 25.2 0.5

    PerfPanel DoubleHung,LO DoubleHung,UO PFVSLO+VSUO 90 14.0 16.5 1.2 8.5 8.3 1.0

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    53/104

    47a

    Ditribuo of iet tet -

    widow, hde d combied

    - i term of the me eocity

    ro i (V) d the

    coeciet of rice

    (C) for ge of icidece

    teted.

    Ide codio woud he

    high Vplan d ow Csv.

    Ditribuo widow tet t

    ech of the icidet ge.

    Other tet re how greyed

    out. Note the three dieret

    chge i Vplan t 0o, 45

    od

    90o.

    Ide codio woud he

    high Vplan d ow Csv.

    MS Thesis, Dept. of Architecture, UC Berkeley 2011 http://escholarship.org/uc/item/5087z1zd

  • 8/11/2019 EScholarship UC Item 5087z1zd

    54/104

    48

    5.1.1 OUTLETOPENINGTESTS

    Whatqualitiesaredesirableinanoutletopeningforstudyingfaadeinletconditions?

    Thepurposeoftheoutletopeningtestistocharacterizetheoutletopeningintermsofindoor

    flowinordertodeterminewhichoutletwindowtousewithallfollowingfaadeinlettests.The

    outletopeningareaaffectshowairflowsthroughtheinletwindow;thisinturnimpactst