41
EE 560 MOS TRANSISTOR THEORY EE 560 MOS TRANSISTOR THEORY Kenneth R. Laker, University of Pennsylvania PART 2 1 GCA (gradual channel approximaton) MOS Tranistor Model Strong Inversion Operation

Ese570 mos theory_p206

Embed Size (px)

Citation preview

Page 1: Ese570 mos theory_p206

1

EE 560MOS TRANSISTOR THEORY

EE 560MOS TRANSISTOR THEORY

Kenneth R. Laker, University of Pennsylvania

PART 2

1

GCA (gradual channel approximaton) MOS Tranistor ModelStrong Inversion Operation

Page 2: Ese570 mos theory_p206

Kenneth R. Laker, University of Pennsylvania

2

VS = 0 V

DS =V

D = V

DSAT

channel

VDS

=VD = small

nMOS TRANSISTOR IN LINEAR REGION

nMOS TRANSISTOR AT EDGE OF SATURATION REGION

pinch-off point

SiO2

depletion regionsubstrate or bulk B p

VS = 0

channel

ID

substrate or bulk B p

depletion region

SiO2

CGC

CBC

CGC

CBC

VGS

= VG > V

T0

VGS

= VG > V

T0

Page 3: Ese570 mos theory_p206

Kenneth R. Laker, University of Pennsylvania

3

nMOS TRANSISTOR IN SATURATION REGION

VS = 0

pinch-off point

channel

depletion region

substrate or bulk B p

SIO2

CGC

CBC

VDS - VDSAT

VCS(y) = VDSAT

x

y = 0

y

VGD

= VG - V

D < V

T0

VDS

= VD > V

DSATVGS

= VG > V

T0

Page 4: Ese570 mos theory_p206

ID

substrate or bulk B p

VS = V

B = 0

VDS

y = L

yx

y = 0

dy

Sourceside

Drainside

y = Ly = 0 y Channel length = L

inversion layer (channel)

Channel width = W

Kenneth R. Laker, University of Pennsylvania

4MOSFET CURRENT - VOLTAGE CHARACTERISTICS

CGC

CBC

VGS

= VG > V

T0

Page 5: Ese570 mos theory_p206

5MOSFET CURRENT - VOLTAGE CHARACTERISTICS

Kenneth R. Laker, University of Pennsylvania

Mobile charge in channel:

µn = electron mobility

= cm2/Vsec[µ −> U0 in SPICE]

dR = − dyW

1µ n QI (y)

QI(y) = −Cox[VGS − VCS(y) − VT 0 ]C

C/s

Incremental R for differential channel segment

VG > V

T0 ID

substrate or bulk B p

VS = V

B = 0

VDS

y = L

yx

y = 0V

CS(y)

CGC

CBC

VGS

= VG > V

T0

Assumptions:V

T0(y) = V

T0

VGS

> VT0

VGD

= VGS

- VDS

> VT0

Ey >> E

x

Boundary conditions:V

CS(y = 0) = V

S = 0

VCS

(y = L) = VDS

(C/cm2)

Page 6: Ese570 mos theory_p206

6MOSFET CURRENT - VOLTAGE CHARACTERISTICS

Kenneth R. Laker, University of Pennsylvania

dVCS = IDdR = − ID

Wµn QI (y)dy

dR = − dyW

1µ n QI (y)

QI(y) = −Cox[VGS − VCS(y) − VT 0 ]

IDdy = −W µn0

L

∫ Q I (y)0

VDS

∫ dVCS

i.e.

= W µn Cox[(VGS− VT 0 ) VDS − VDS2 / 2]

ID = µn Cox

2WL

[2(VGS− VT 0 ) VDS − VDS2 ]

Integrating along the channel 0 < y < L and 0 < VCS

< VDS

:

Voltage drop across incremental segment dy

Boundary conditions:V

CS(y = 0) = V

S = 0

VCS

(y = L) = VDS

Page 7: Ese570 mos theory_p206

ID = µn Cox

2WL

[2(VGS− VT 0 ) VDS − VDS2 ]

Kenneth R. Laker, University of Pennsylvania

7MOSFET CURRENT - VOLTAGE CHARACTERISTICS

= k'2

WL

[2(VGS− VT 0 ) VDS − VDS2 ]

= k2

[2(VGS− VT 0 ) VDS− VDS2 ]

k' = µ n Cox

[k' -> KP in SPICE]

k = k'WL

Page 8: Ese570 mos theory_p206

Kenneth R. Laker, University of Pennsylvania

8MOSFET CURRENT - VOLTAGE CHARACTERISTICSEXAMPLE 3.4For an n-MOS transistor with µ

n = 600 cm2/Vsec, C

ox = 7 x 10-8 F/cm2,

W = 20 µm, L = 2 µm, VT0

= 1.0 V, plot the relationship between ID

and VDS

, VGS

.

k = µ n Cox

WL

= (600cm2/Vsec)(7x10−8 F/cm2 )20µ m2µ m

= 0.42 mA/V2

ID = k2

[2(VGS − VT 0 ) VDS − VDS2 ] where k = µ n Cox

WL

F = C/V

ID = 0.21mA/V2[2(VGS −1.0)VDS− VDS2 ]

ID (mA)

VDS

(V)0

2.0

4.0

1.0 3.0 5.0

VGS

= 5V

VGS

= 4V

VGS

= 3V

VDS

= VGS

- VT0V

DS ≤ V

GS − V

T0 Assumptions:V

GS > V

T0

VGD

= VGS

− VDS

> VT0

LINEAR OR TRIODE REGION

Page 9: Ese570 mos theory_p206

9MOSFET CURRENT - VOLTAGE CHARACTERISTICS

Kenneth R. Laker, University of Pennsylvania

VDS

≥ VGS

- VT0

= VDSAT SATURATION REGION

ID = µn Cox

2WL

[2(VGS− VT 0 ) VDS − VDS2 ] @V

DS = V

DSAT = V

GS - V

T0

= µ n Cox

2WL

[2(VGS − VT 0 )(VGS − VT 0 ) − (VGS− VT 0 )2]

ID (sat) = µn Cox

2WL

(VGS− VT 0 )2

ID (mA)

VDS

(V)0

2.0

4.0

1.0 3.0 5.0

VGS

= 5V

VGS

= 4V

VGS

= 3V

VDS

= VGS

- VT0

LINEAR SAT

ID(sat)

VGS

VT0

Page 10: Ese570 mos theory_p206

10MOSFET CURRENT - VOLTAGE CHARACTERISTICS

Kenneth R. Laker, University of Pennsylvania

CHANNEL LENGTH MODULATION

Boundary conditions:V

CS(y = 0) = V

S = 0

VCS

(y = L) = VDS

QI(y) = −Cox[VGS − VCS(y) − VT 0 ]

QI(y = 0) = −Cox[VGS − VT 0]

= 0 @ VDS

= VDSAT

L' = L − ∆L effective channel lengthV

CS(y = L') = V

DSAT

VS = 0

substrate or bulk B p

LL'∆L

Q1(y = L) = −Cox[VGS− VDS− VT 0 ]

CGC

CBC

VGS

=VG > V

T0V

DS =V

D > V

DSAT

Page 11: Ese570 mos theory_p206

Kenneth R. Laker, University of Pennsylvania

11MOSFET CURRENT - VOLTAGE CHARACTERISTICS

ID (sat) = µn Cox

2WL'

(VGS− VT 0 )2 = µn Cox

2W

L(1 − ∆ L

L)(VGS− VT 0 )2

∆ L ∝ VDS − VDSATwhere

1

1− ∆ L

L

= 1 + λVDSemperical relation:

λ = channel length modulation coefficent (V-1)

[λ -> LAMBDA in SPICE]

VS = 0

substrate or bulk B p

LL'∆LC

GC

CBC

VGS

=VG > V

T0V

DS =V

D > V

DSAT

Page 12: Ese570 mos theory_p206

ID (sat) = µn Cox

2WL'

(VGS− VT 0 )2 = µn Cox

2W

L(1 − ∆ L

L)(VGS− VT 0 )2

12MOSFET CURRENT - VOLTAGE CHARACTERISTICS

Kenneth R. Laker, University of Pennsylvania

1

1− ∆ L

L

= 1 + λ VDS

ID (mA)

VDS

(V)0

2.0

4.0

1.0 3.0 5.0

VGS

= 5V

VGS

= 4V

VGS

= 3V

VDS

= VGS

- VT0

λ ≠ 0

λ ≠ 0

λ ≠ 0

assume λVDS

<< 1

ID (sat) = µn Cox

2WL

(VGS− VT 0 )2 (1+ λ VDS) LEVEL 1 Model

Page 13: Ese570 mos theory_p206

13MOSFET CURRENT - VOLTAGE CHARACTERISTICS

Kenneth R. Laker, University of Pennsylvania

SUBSTRATE BIAS EFFECT

ID = f(V

GS, V

DS, V

SB)

(sat)

LEVEL 1 Model

Page 14: Ese570 mos theory_p206

14MOSFET CURRENT - VOLTAGE CHARACTERISTICS

Kenneth R. Laker, University of Pennsylvania

ID

D

G B

S

+

+

+-V

GS

VDS

VSBI

D

D

G B

S

+

+

+-VGS

VDS

VSB

n-MOS p-MOS

n-MOS for

VGS > VT, VDS < VGS - VT

p-MOS

VGS < VT, VDS > VGS - VT

ID = 0 VGS ≤ VT

forID = 0 VGS ≥ VT

VGS < VT, VDS < VGS - VT

VGS > VT, VDS > VGS - VT

-- -

-

Page 15: Ese570 mos theory_p206

15MOSFET CURRENT - VOLTAGE CHARACTERISTICS

Kenneth R. Laker, University of Pennsylvania

kn = µ n Cox

WL

kp = µ p Cox

WL

MEASUREMENT OF PARAMETERS (VT0

, γ, λ, kn, k

p)

ID (sat) = kn

2(VGS− VT 0 )2

ID(sat) = kn

2(VGS − VT 0 )

ID

D

GB

S

+

+V

GS

VDS

= VGS

VSB

VT1

ID

VGS

VT0

VSB

= 0 VSB

> 0

Gamma

Page 16: Ese570 mos theory_p206

16MOSFET CURRENT - VOLTAGE CHARACTERISTICS

Kenneth R. Laker, University of Pennsylvania

ID

D

GB

S

+

VGS

= VT0

+ 1 V

VDS

> VGS

- VT0

VBS

= 0

+

Lambda

VDS

ID

ID1

ID2

VDS1

VDS2

VGS

= VT0

+ 1 ID (sat) = kn(VGS− VT 0 )2 (1+ λ VDS)

VGS

= VT0

+ 1 V

ID 2

ID1

= 1+ λVD S 2

1 + λ VDS1

DC current meter

Page 17: Ese570 mos theory_p206

Kenneth R. Laker, University of Pennsylvania

17EFFECTIVE CHANNEL LENGTH AND WIDTH

Leff

= LM - 2LD - DL

SPICE Parameters

LD -> under diffusion

DL -> error in photolith and etch

Weff

= WM - DW

SPICE Parameters

DW -> error in photolith and etch

n+

p

GDS

n+

CGC

CBCn+ n+

LD

Leff

LM

LD

B

substrate or bulk B p

L

EFFECTIVE CHANNEL LENGTH AND WIDTH

CGC

CBC

Page 18: Ese570 mos theory_p206

18MOSFET - SCALINGSCALING -> refers to ordered reduction in dimensions of the MOSFET and other VLSI features• Reduce Size of VLSI chips.• Change operational charateristics of MOSFETs and parasitics.• Phyiscal limits restrict degree of scaling that can be achieved.

First-order "constant field" MOS scaling theory:

The electric field E is kept constant, and the scaled device is obtained by applying a dimensionless scale-factor α to reduce dimensions by (1/α) and maintain E unchanged:

a. All dimensions, including those vertical to the surface (1/α)

b. device voltages (1/α)

c. the concentration densities (α).

Kenneth R. Laker, University of Pennsylvania

SCALING FACTOR = α > 1 --> S

α(1/α) = 1(1/α)/(1/α) = 1<=>

Page 19: Ese570 mos theory_p206

Constant Voltage Scaling, i.e. VDD

is kept constant, while the process dimensions are scaled by (1/α).

a. All dimensions, including those vertical to the surface (1/α)

b. device voltages (1)

c. the concentration densities (α2) to preserve charge-field relations.

Lateral Scaling: only the gate length is scaled L = 1/α (gate-shrink).

Alternative Scaling Rules:19MOSFET - SCALING

Kenneth R. Laker, University of Pennsylvania

Feature Size(µm)

Year 1991 1993 1997 1999 2001 2003 2005

1.00 0.80 0.60 0.35 0.25 0.18 0.13 0.09

Historical reduction in min feature size for typical CMOS Process

α2(1/α) = α1/(1/α) = α

<=>

1995

Page 20: Ese570 mos theory_p206

Kenneth R. Laker, University of Pennsylvania

20Influence of Scaling on MOS Device Performance

PARAMETER SCALING MODEL

Constant Field Constant Voltage Lateral

Length (L) 1/α 1/α 1/α

Width (W) 1/α 1/α 1

Supply Voltage (V) 1/α 1 1

Gate Oxide thickness (tox

) 1/α 1/α 1

Junction depth (Xj) 1/α 1/α 1

Substrate Doping (NA) α α2 1

Current (I) - (W/L) (1/tox

)V2 1/α α α

Power Dissipation (P) - IV 1/α2 α α

Power Density (P/Area) 1 **(α3)** α2

Electric Field Across Gate Oxide - V/tox

1 α 1

Load Capacitance (C) - WL (1/tox

) 1/α 1/α 1/α

Gate Delay (T) - VC/I 1/α 1/α2 1/α2

Page 21: Ese570 mos theory_p206

Kenneth R. Laker, University of Pennsylvania

21MOSFET CAPACITANCES

n+

p

GDS

n+

CGC

CBCn+ n+

LD

Leff

LM

LD

B

p

n+ n+

LD

LD

Y

CGC

CBC

p

substrate or bulk B

substrate or bulk B

Page 22: Ese570 mos theory_p206

22MOSFET CAPACITANCES

Kenneth R. Laker, University of Pennsylvania

S

MOSFET

(DC MODEL)

D

BG

Cgd

Cgs

Cgb

Cdb

Csb

Cgd

, Cgs

, Cgb

-> Oxide Capacitances

Cdb

, Csb

-> Junction Capacitances

Page 23: Ese570 mos theory_p206

23MOSFET CAPACITANCES

OXIDE Capacitances

a. Overlap Caps

Cox = εoxtox

b. Gate - ChannelMOSFET - Cut-off Region

Cgb

= Cox

W Leff

Cgs = Cgd = 0

Kenneth R. Laker, University of Pennsylvania

p

CGS0(overlap) = Cox W LD

CGD0(overlap) = Cox W LD

ALL MOSFET OPERATION REGIONS

CGB0(overlap) = Cox WovLeff

SPICE: Cox

LD = CGS0; C

oxL

D = CGD0; C

oxW

ov = CGB0

LD = LD in SPICE

Cgb

, Cgb

and Cgb

(no conducting channel in cut-off)

Page 24: Ese570 mos theory_p206

Kenneth R. Laker, University of Pennsylvania

24MOSFET CAPACITANCESb. Gate - Channel

Cgb

= 0

Cgs

= (1/2) Cox

W Leff

MOSFET - Linear Region

Cgd

= (1/2) Cox

W Leff

Cgb

= 0

Cgs

= (2/3) Cox

W Leff

Cgd

= 0

p

p

Page 25: Ese570 mos theory_p206

Kenneth R. Laker, University of Pennsylvania

25

Capacitance Cut-off Linear Saturation

Cgb

(total)

Cgd

(total)

Cgs

(total)

Cox

WLeff

+ CGB0

0 + CGB0

0.5Cox

WLeff

+ C

GD0

(2/3)Cox

WLeff

+ CGS0

(C/Cox

WL)

VGS

SaturationCut-off Linear

VT

VT + V

DS

1

2/31/2

Cgb C

gs

Cgd

0 + CGD0

0 +CGS0

0.5Cox

WLeff

+ C

GS0

Gate -to Channel/Bulk Cap Contribution

0 + CGB0

0 + CGD0

CGS0

CGD0

=C

GB0

Page 26: Ese570 mos theory_p206

Kenneth R. Laker, University of Pennsylvania

26JUNCTION Capacitances -> Cdb

, Csb

p xd

xj

Channeln+ n+W

xj

Y

1

2

3

4

5

DrainSource

Page 27: Ese570 mos theory_p206

Channeln+ n+W

xj

Y

1

2

3

4

5

DrainSource

Kenneth R. Laker, University of Pennsylvania

27JUNCTION Capacitances -> Cdb

, Csb

Junction Area Type

1

2

3

4

5

W xj

Y xj

W xj

Y xj

WY

n+/p

n+/p

n+/p+

n+/p+

n+/p+

p - Substrate -> NA

p+ - Channel-stop -> 10NA

[xj -> XJ in SPICE]

Page 28: Ese570 mos theory_p206

28

Kenneth R. Laker, University of Pennsylvania

φ0 = kTq

lnNAND

n i2

built-in junction potential

xd = 2εSi

q1

NA

+ 1ND

(φ0 − V) V = Ext bias --> V

BD , V

BS

Q j = AqNAND

NA + ND

xd = A 2εSi q

NAND

NA + ND

(φ0 − V)

Depletion-region charge

px

d

xj

NA

ND

JUNCTION Capacitances -> Cdb

, Csb

n+, p junctions

A = junction area

[AS, AD -> Source, Drain Areas in SPICE]

[φ0 -> PB in SPICE]

Page 29: Ese570 mos theory_p206

29

Kenneth R. Laker, University of Pennsylvania

Cj(V) = C

j0 when V = 0

m = grading coefficentm = 1/2 for abrupt junction

[m = MJ in SPICE]

EQUIVALENT LARGE SIGNAL CAPACTIANCE

(F/cm2)

(F)

C j0 = εSi q2

NAND

NA + ND

1φ0

0 < Keq

< 1 --> Voltage Equiv Factor

[Cj0 -> CJ in SPICE]

[φ0 -> PB in SPICE]

Page 30: Ese570 mos theory_p206

n+, p+ junctions30

Kenneth R. Laker, University of Pennsylvania

(Sidewalls)

C j 0 s w = εSi q2

NA (sw)ND

NA (sw) + ND

1φ0 s w

(F/cm2)

Since all sidewalls have depth = xj:

(F/cm)

m(sw) = 1/2

EQUIVALENT LARGE SIGNAL CAPACTIANCE

P = sidewall perimeter

[m(sw) -> MJSW in SPICE]

[Cjsw

-> CJSW in SPICE]

[xj -> XJ in SPICE]

[PS, PD -> Source, Drain Perimeters in SPICE]

Cjsw

= Cj0sw

xj

Keq (sw) = − 2φ0 s w

(V2 − V1)1 − V2

φ0 s w

1 /2

− 1 − V1

φ0 s w

1 /2

Page 31: Ese570 mos theory_p206

31

Kenneth R. Laker, University of Pennsylvania

EXAMPLE 3-8Determine the total junction capacitance at the drain, i.e. C

db, for

the n-channel enhancement MOSFET in Fig. 1. The process parameters are

Substrate doping NA = 2 x 1015 cm-3

Source/drain (n+) doping ND = 1020 cm-3

Sidewall (p+) doping NA(sw) = 4 x 1016 cm-3

Gate oxide thickness tox

= 45 nmJunction depth x

j = 1.0 µm

10 µm

5 µm

2 µm

n+ n+

G

D S

Figure 1

Source, Drain are surrounded by p+ channel-stop. The substrate is biased at 0V. Assume the drain voltage range is 0.5 V to 5.0 V.

Page 32: Ese570 mos theory_p206

C j 0 s w = εSi q2

NA (sw)ND

NA (sw) + ND

1φ0 s w

C j0 = εSi q2

NAND

NA + ND

1φ0

where

32

Page 33: Ese570 mos theory_p206

φ0 = kTq

lnNAND

n i2

= 0.026Vln

(2x1015)1020

2.1x1020

= 0.896V

10 µm

5 µm

2 µm

n+ n+

G

D S

Figure 1

NA = 2 x 1015 cm-3

ND = 1020 cm-3

NA(sw) = 4 x 1016 cm-3

tox

= 45 nmx

j = 1.0 µm

φ0, φ

0sw

φ0 s w = kTq

lnNA (sw)ND

ni2

= 0.026Vln

(4 x1016 )1020

2.1x1020

= 0.975V

C j0 = εSi q2

NAND

NA + ND

1φ0

= (1.04x10−12 F/cm)(1.6x10−19 C)2

(2x1015)1020

2x1015 +1020

10.896V

= 1.35x10−8 F/cm2

33

Kenneth R. Laker, University of Pennsylvania

Cj0, C

j0sw

F = C/V

Page 34: Ese570 mos theory_p206

34

Kenneth R. Laker, University of Pennsylvania

C j0 sw = εSi q2

NA (sw)ND

NA(sw) + ND

1φ0sw

= (1.04 x10−12 F/cm)(1.6x10−19 C)2

(4 x1016)1020

4x1016 + 1020

10.975V

= 5.83x10−8 F/cm2

Cjsw

Cjsw

= Cj0sw

xj = (5.83x10−8 F/cm2 )(10−4 cm) = 5.83pF/cm

Keq

, Keq

(sw)V

BD2 = V

B - V

D2 = 0 - 5V = -5V

VBD1

= VB - V

D1 = 0 - 0.5V = -0.5V

and xj = 1.0 µm = 10-4 cm

Page 35: Ese570 mos theory_p206

Kenneth R. Laker, University of Pennsylvania

Area, Perimeter

10 µm

5 µm

2 µm

n+ n+

G

D S

Figure 1

AD: n+/p junctions:

AD = (5 x 1) µm2 + (10 x 5) µm2

= 55 µm2

PD: n+/p+ junctions:

PD = 2Y + W = 20 µm + 5 µm = 25 µm

Channeln+ n+

W = 5 µm

xj = 1µm

Y=10µm

1

2

3

4

5

DrainSource

PD

35

Page 36: Ese570 mos theory_p206

Short Channel Effects - Leff

--> xj

Narrow Channel Effects - W --> xdm

Kenneth R. Laker, University of Pennsylvania

36

Subthreshold Current - VGS

< VT0

Important 2nd Order Effects

Page 37: Ese570 mos theory_p206

VELOSITY SATURATIONMobility Degradation due to Lateral Electric Field:

(very small channel lengths + high supply voltages)

velosity(vD)

E

vDsat

slope = µ0

slope µs

Ecrit

µ0 = v

sat/E

crit

Note µs < µ

0

[SPICE Parameters: U0 -> µ0, UCRIT -> E

crit, VMAX -> v

sat]

ID(sat) = W v

DSAT C

ox (V

GS - V

T)

Kenneth R. Laker, University of Pennsylvania

36

Note: ID(sat) = linear f(V

GS - V

T), independent of L

Ey

Mobility Degradation due to Normal Electric Field:(due to gate voltage across very thin oxide-depletion layer)

[SPICE Parameter: THETA -> θ]

Ex

θ = imperical mobility modulation factor

Page 38: Ese570 mos theory_p206

37

Short Channel Effect - Leff

--> xj (source, drain diffusion depth)

Kenneth R. Laker, University of Pennsylvania

VT0

(short channel) = VT0

- ∆VT0

∆LS, ∆L

D = lateral extensions at source, drain of depletion

region due to reverse biased sourse, drain junctions with substrate

Narrow Channel Effect - W --> xdm

(depletion region depth)

[SPICE Parameter: DELTA -> δ = imperical channel width factor]

VT0

(narrow channel) = VT0

+ ∆VT0

Subthreshold Current - VGS

< VT0

(Spice Model)

Ion = ID in strong inversion and VGS = Von is the boundary weak and strong inversion

Page 39: Ese570 mos theory_p206

Kenneth R. Laker, University of Pennsylvania

38SPICE SIMUATION - MODELSLevel 1 (MOS1) - analylitical mode, I

D(sat) is described by square

law - strong inversion (with Channel Length Modulation). Based on GCA (gradual channel approximaton) equations in Ch3.

Level 2 (MOS2) - anaylitical model, more detailed than MOS1. Includes second order effects, e.g. mobility degradation, small channel effects and sub-threshold currents. Relaxes some simplifying GCA assumptions.

Level 3 (MOS3) - semi-emperical model. Uses simpler expressions than MOS2 plus emperical equations to fit experimental data. Improves accuracy and reduces simulation time.

BSIM3 (Berkeley Short-Channel IGFET Model) - includes sub-micron MOSFET characteristics. Analytically simple, makes full use of parameters extracted from experimental data.

Page 40: Ese570 mos theory_p206

M1 4 3 5 0 NFET W=4U L=1U AS=15P AD=15P PS=11.5U PD=11.5U....MODEL NFET NMOS+ TOX=200E-10+ CGBO=200P CGSO=300P CGDO=300P+ CJ=200U CJSW=400P MJ=0.5 MJSW=0.3 PB=0.7

M1 4 3 5 0 NFET W=4U L=1U AS=15P AD=15P PS=11.5U PD=11.5U D G S B

SPICE MODELING OF MOS CAPACITANCES

Cgb

= W × L × Cox

= (4E-6 m) × (1E-6 m) × (17E-3 F/m2) = 6.8 fF

U = 10-6

P = 10-12

m

m F/m

F/mF/m2

m2 m

V

Kenneth R. Laker, University of Pennsylvania

39

Page 41: Ese570 mos theory_p206

M1 4 3 5 0 NFET W=4U L=1U AS=15P AD=15P PS=11.5U PD=11.5U..MODEL NFET NMOS+ TOX=200E-8+ CGBO=200P CGSO=300P CGDO=300P+ CJ=200U CJSW=400P MJ=0.5 MJSW=0.3 PB=0.7

CJ = zero-bias junction capacitance per junction area

(200 × 10-6 F/m2 = 2 × 10-4 pF/µm2)

CJSW = zero-bias junction capacitance per junction periphery

(400 × 10-12 F/m = 4 × 10-10 pF/µm)

MJ = grading coefficient of junction bottom (0.5)

MJSW = grading coefficient of junction side-wall (0.3)

VJ = the junction potential (Vsb, V

db for n-channel, V

bs, V

bd for p-channel)

PB = the built-in voltage (+0.7 V)

Area = AS or AD, the area of source or drain (15 × 10-12 m2 = 15 µm2)

Periphery = PS or PD, the periphery of source or drain

(11.5 × 10-6 m = 11.5 µm) Kenneth R. Laker, University of Pennsylvania

40