20
Espectros ópticos Cuando se hace pasar la radiación emitida por un cuerpo caliente a través de un prisma óptico, se descompone en distintas radiaciones electromagnéticas dependiendo de su distinta longitud de onda (los distintos colores de la luz visible, radiaciones infrarrojas y ultravioleta) dando lugar a un espectro óptico. Todas las radiaciones obtenidas impresionan las películas fotográficas y así pueden ser registradas. Cada cuerpo caliente da origen a un espectro diferente ya que esta depende de la propia naturaleza del foco. Los espectros pueden ser de emisión y absorción. A su vez ambos se clasifican en continuos y discontinuos: El espectro electromagnético - Espectros de emisión: Son aquellos que se obtienen al descomponer las radiaciones emitidas por un cuerpo previamente excitado. - Los espectros de emisión continuos se obtienen al pasar las radiaciones de cualquier sólido incandescente por un prisma. Todos los sólidos a la misma Temperatura producen espectros de emisión iguales. Espectro continuo de la luz blanca - Los espectros de emisión discontinuos se obtienen al pasar la luz de vapor o gas excitado. Las radiaciones emitidas son características de los átomos excitados.

Espectros ópticos

  • Upload
    mau365

  • View
    9.628

  • Download
    25

Embed Size (px)

Citation preview

Page 1: Espectros ópticos

Espectros ópticos

Cuando se hace pasar la radiación emitida por un cuerpo caliente a través de un prisma óptico, se descompone en distintas radiaciones electromagnéticas dependiendo de su distinta longitud de onda (los distintos colores de la luz visible, radiaciones infrarrojas y ultravioleta) dando lugar a un espectro óptico. Todas las radiaciones obtenidas impresionan las películas fotográficas y así pueden ser registradas.

Cada cuerpo caliente da origen a un espectro diferente ya que esta depende de la propia naturaleza del foco.

Los espectros pueden ser de emisión y absorción. A su vez ambos se clasifican en continuos y discontinuos:

El espectro electromagnético

- Espectros de emisión: Son aquellos que se obtienen al descomponer las radiaciones emitidas por un cuerpo previamente excitado.

- Los espectros de emisión continuos se obtienen al pasar las radiaciones de cualquier sólido incandescente por un prisma. Todos los sólidos a la misma Temperatura producen espectros de emisión iguales.

Espectro continuo de la luz blanca

- Los espectros de emisión discontinuos se obtienen al pasar la luz de vapor o gas excitado. Las radiaciones emitidas son características de los átomos excitados.

Espectro de emisión de vapores de Li

- Espectros de absorción: Son los espectros resultantes de intercalar una determinada sustancia entre una fuente de luz y un prisma

- Los espectros de absorción continuos se obtienen al intercalar el sólido entre el foco de radiación y el prisma. Así, por ejemplo, si intercalamos un vidrio de color azul quedan absorbidas todas las radiaciones menos el azul.

Page 2: Espectros ópticos

- Los espectros de absorción discontinuos se producen al intercalar vapor o gas entre la fuente de radiación y el prisma. Se observan bandas o rayas situadas a la misma longitud de onda que los espectros de emisión de esos vapores o gases.

Espectro de absorción de vapores de Li

Se cumple así la llamada ley de Kirchhoff, que dice:

Todo cuerpo absorbe las mismas radiaciones que es capaz de emitir.

Teoría de Planck

En 1900 emitió una hipótesis que interpretaba los resultados experimentales satisfactoriamente como los cuerpos captaban o emitían energía.

Según Planck, la energía emitida o captada por un cuerpo en forma de radiación electromagnética es siempre un múltiplo de la constante h, llamada posteriormente constante de Planck por la frecuencia v de la radiación.

ε = n.h.v

h = 6,62 10-34 J.s, constante de Planck

v = frecuencia de la radiación

A hv le llamó cuanto de energía. Que un cuanto sea más energético que otro dependerá de su frecuencia.

Modelo atómico de Bohr

Para salvar los inconvenientes del modelo anterior, Neils Bohr estableció una serie de postulados (basados en la teoría de Planck y los datos experimentales de los espectros) que constituyen el modelo atómico de Bohr:

Admitió que hay ciertas órbitas estables en las cuales los electrones pueden girar alrededor del núcleo sin radiar energía. Deduce que sólo son posibles aquellas órbitas en las que el momento angular del electrón es múltiplo entero de h/2.π

m.v.r = nh/2.π

Introduce un número n, llamado número cuántico principal, que da nombre a las distintas órbitas del átomo.

El electrón, cuando emite energía cae de una órbita a otra más próxima al núcleo. Lo contrario ocurre si capta energía.

Como según la teoría electromagnética una carga acelerada tiene que irradiar energía, no puede haber ningún orbital permanente. Por eso, Neils Bohr argumentaba que no se podía perder energía continuamente, sino en cuantos (de acuerdo con la teoría de Planck) equivalentes a la diferencia de energía entre las órbitas posibles.

Cuando a un átomo se le suministra energía y los electrones saltan a niveles más energéticos, como todo sistema tiende a tener la menor energía posible, el átomo es inestable y los electrones desplazados vuelven a ocupar en un tiempo brevísimo (del orden de 10-8) el lugar que dejasen vacío de menor energía, llamados niveles energéticos fundamentales.

Así pues, ya tenemos una explicación de los espectros atómicos con el modelo de Bohr. Cuando un átomo es excitado por alguna energía exterior, algún electrón absorbe dicha energía pasando de un nivel energético fundamental a niveles de energía superior. Como, según

Page 3: Espectros ópticos

Planck, la absorción de energía está cuantizada, la diferencia de energía entre ambos niveles será hv. El electrón absorbe solo una radiación de frecuencia v determinada mayor cuanto mayor sea el "salto" del electrón.

Así, en el espectro de absorción aparecerá una banda continua con algunas rayas negras que corresponderán a aquellas frecuencias determinadas que los electrones han captado para pasar de un nivel a otro más energético.

Como el átomo excitado es inestable, en un tiempo brevísimo el electrón desplazado volverá al nivel energético fundamental, emitiendo una energía de la misma frecuencia hv que absorbió anteriormente.

Así, el espectro de emisión del elemento estará formado por líneas definidas, situadas en la misma longitud de onda que el espectro de emisión, separadas por zonas oscuras.

Ello explica por que los espectros de los vapores o gases (en los que nos encontramos los átomos o moléculas aislados sin interaccionar entre sí) son discontinuos.

Es un hecho experimental que cada elemento químico tiene su espectro atómico característico.

Fue a partir de las series del hidrógeno, de las frecuencias de las distintas radiaciones emitidas, de donde Neils Bohr dedujo los niveles de energía correspondientes a las órbitas permitidas. Sin embargo, al aplicar esta distribución de los niveles energéticos a otros elementos no se correspondían esos cálculos teóricos con los resultados experimentales de los espectros, que eran muchos más complejos. Incluso el mismo átomo de Hidrógeno con espectroscopios más precisos producía líneas que con el modelo de Bohr no se podía explicar.

Corrección de Sommerfeld

Al perfeccionarse los espectroscopios (aparatos que muestran los espectros) se observó que las líneas del espectro del hidrógeno eran en realidad varias líneas muy juntas. Y lo que Neils Bohr creyó que eran estados únicos de energía eran varios estados muy próximos entre sí.

Arnold Sommerfeld lo interpretó diciendo que las órbitas podían ser elípticas. Para ello introdujo un nuevo número cuántico l, también llamado número azimutal, que puede valer:

L = 0,1,...,(n-1)

Este número nombra a cada uno de los niveles de energía posibles para cada valor de n. Con Sommerfeld, para determinar la posición del electrón en el átomo de hidrógeno hay que dar 2 números cuánticos l y m.

Efecto Zeeman

Cuando se obtiene el espectro del átomo de hidrógeno mientras el gas está dentro de un campo magnético se observa un desdoblamiento de las líneas que analizó Sommerfeld. Cada una de estas líneas se desdoblaba en varias. Este fenómeno desaparecía al desaparecer el campo magnético por lo que no se debe a que existan nuevos estados distintos de energía del electrón, sino que está provocado por la interacción del campo magnético externo y el campo magnético que crea el electrón al girar en su órbita.

Este problema se solucionó pensando que para algunas de las órbitas de Sommerfeld existen varias orientaciones posibles en el espacio que interaccionan de forma distinta con el campo magnético externo. Para ello se creo un nuevo número cuántico magnético, que vale para cada valor de l:

M = -l,...,-1,0,1,...,+l

Para determinar pues la posición del electrón en el átomo de hidrógeno hay que dar 3 números cuánticos: n,l, m.

Efecto Zeeman anómalo

Al perfeccionar los espectroscopios y analizar los espectros obtenidos por el efecto Zeeman, se comprobó que cada línea era en realidad dos líneas muy juntas. Esto se llamó efecto Zeeman anómalo, y si desaparecía el campo magnético externo también desaparecía este efecto.

Se explicó admitiendo que el electrón puede girar sobre sí mismo y hay dos posibles giros, que interaccionaban de forma distinta con el campo magnético externo y que por eso cada línea se desdoblaba en 2. Se creó un nuevo número cuántico s, o número de spin (giro), al que se le dio 2 valores, uno para cada sentido:

S = +1/2,-1/2

Para describir la posición de un electrón se necesitan 4 números cuánticos: (n,l,m,s).

Sin embargo, todo lo anterior sólo era útil para el átomo de hidrógeno, pues su aplicación en la descripción de otros átomos fracasó.

Page 4: Espectros ópticos

Hace algo más de un siglo, en 1895, Wilhelm Conrad Röntgen (1845-1923), científico alemán de la Universidad de Würzburg, descubrió una radiación (entonces desconocida y de ahí su nombre de rayos X) que tenía la propiedad de penetrar los cuerpos opacos.

Wilhelm Conrad Röntgen (1845-1923), alrededor de 1895 y la radiografía de la mano de su esposa mostrando el anillo de boda. Por su descubrimiento obtuvo el Premio Nobel de Física de 1901.

Instalación típica de radiología X  hospitalaria

Los rayos X son invisibles a nuestros ojos, pero producen imágenes visibles cuando usamos placas fotográficas o detectores especiales para ello... 

Imagen radiográfica de una mano Imagen radiográfica de un mono

Imagen radiográfica de una soldadura bien hecha Soldadura mal hecha por falta de penetración (línea negra)

Page 5: Espectros ópticos

Fotografía de una pintura y su radiografía mostrando dos pinturas superpuestas en el mismo lienzo

De casi todos son conocidas las aplicaciones de los rayos X en el campo de la Medicina para realizar radiografías, angiografías (estudio de los vasos sanguíneos) o las llamadas tomografías computarizadas. Y el uso de los rayos X se ha extendido también a la detección de fallos en metales o análisis de pinturas.

Históricamente hablando, pasaron muchos años desde el descubrimiento de los rayos X en 1895, hasta que el descubrimiento de esta radiación revolucionó los campos de la Física, la Química y la Biología. La potencialidad de su aplicación en estos campos vino indirectamente de la mano de Max von Laue (1879-1960), profesor sucesivamente en las Universidades Munich, Zurich, Frankfurt, Würzburg y Berlín, quien pretendiendo demostrar la naturaleza ondulatoria de esta nueva radiación usó un cristal de blenda frente a los rayos X, obteniendo la confirmación de su hipótesis y demostrando al mismo tiempo la naturaleza periódica de los cristales. Laue recibió por ello el Premio Nobel de Física de 1914.

Max von Laue(1879-1960)

Pero quienes realmente sacaron provecho del descubrimiento de los alemanes fueron los británicos Bragg (padre e hijo), William H. Bragg (1862-1942) y William L. Bragg (1890-1971), quienes en 1915 recibieron el Premio Nobel de Física al demostrar la utilidad del fenómeno que había descubierto von Laue para obtener la estructura interna de los cristales. Pero todo esto será objeto de apartados posteriores.

William H. Bragg

(1862-1942)

William L. Bragg (1890-1971)

Los rayos X son radiaciones electromagnéticas, como lo es la luz visible, o las radiaciones ultravioleta e infrarroja, y lo único que los distingue de las demás radiaciones electromagnéticas es su llamada longitud de onda, que es del orden de 10-10 m (equivalente a la unidad de longitud que conocemos como Angstrom).

Una excelente información divulgativa sobre el espectro electromagnético se puede encontrar en alguna de las páginas de la NASA, y en general sobre los rayos X y sus aplicaciones en el Medical Radiography Home Page  y en las páginas del llamado The X-Ray Century.

Page 6: Espectros ópticos

Representación de una onda electromagnética, con los campos eléctrico (E) y magnético (H) asociados, avanzando a la velocidad de la luz.

Espectro contínuo de la luz visible (desde el rojo al violeta disminuye la longitud de onda)

ν(Hz) λ(m) = 3 108m Hz E(J) = h(J/Hz) ν(Hz) = k(J/Hz molécula) T(K)

h = 6.6 10-34 (J/Hz); k = 1.4 10-23 (J/K molécula); 1 eV = 1.6 10-19 (J) Figura adaptada según aparece en las páginas del Berkeley Lab

Los rayos X que más interesan en el campo de la Cristalografía de rayos X son aquellos que disponen de una longitud de onda próxima a 1 Angstrom (fundamentalmente los denominados rayos X "duros" en el esquema superior) y corresponden a una frecuencia de aproximadamente 3 millones de THz (tera-herzios) y a una energía de 12.4 keV (kilo-electrón-voltios), que a su vez equivaldría a una temperatura de unos 144 millones de grados. Estos rayos X se producen en los laboratorios de Cristalografía o en las llamadas grandes instalaciones de sincrotrón (como el ESRF: European Synchrotron Radiation Facility).

Page 7: Espectros ópticos

Generación de rayos X en  un laboratorio de Cristalografía

Imagen aérea de las instalaciones del  sincrotrón del ESRF en Grenoble (Francia). Obsérvese su geometría circular.

Los equipos que se utilizan en los laboratorios de Cristalografía para producir estos rayos X son relativamente sencillos. Disponen de un generador de alta tensión (unos 50.000 voltios), que se suministra al llamado tubo de rayos X, que es realmente donde se produce la radiación.

Tubos convencionales de rayos X que se utilizan en los laboratorios de Cristalografía

Esquema de un tubo convencional de rayos X

Esos 50 kV se suministran como diferencia de potencial (alto voltaje) entre un filamento incandescente (por el que se hace pasar una corriente i de bajo voltaje, unos 5 A a unos 12 V)  y un metal puro (normalmente cobre o molibdeno), estableciéndose entre ambos una corriente de unos 30 mA de electrones libres. Desde el filamento incandescente (cargado negativamente) saltan electrones hacia el ánodo (cargado positivamente) provocando, en los átomos de este último, una reorganización electrónica en sus niveles de energía.

Este es un proceso en el que se genera mucho calor, por lo que los tubos de rayos X deben estar muy refrigerados. Una alternativa a los tubos convencionales son los llamados generadores de ánodo rotatorio, en los cuales el ánodo, en forma de cilindro, se mantiene con un giro continuo, consiguiendo con ello que la incidencia de los electrones se reparta por la superficie del cilindro y así se puedan obtener potencias mayores de rayos X.

Page 8: Espectros ópticos

Generador de rayos X con ánodo rotatorio (imagen tomada de Bruker-AXS)

Anodo rotatorio de cobre pulido (imagen tomada de Bruker-AXS)

Estado energético de los electrones en un átomo del ánodo que va a ser alcanzado

por un electrón del filamento

Estado energético de los electrones  en un átomo del ánodo después del impacto con

un electrón del filamento

Electrones que vuelven a su estado inicial, emitiendo esta energía en forma de rayos

X   llamados característicos

Esquema animado sobre la producción de la denominada "brehmstrahlung" (radiación de frenado). Cuando un electrón de alta energía pasa cerca del núcleo se desvia debido a la interacción electromagnética. Como consecuencia de este proceso de desvío, el electrón pierde energía en forma de un fotón X, cuya energía (longitud de onda) puede tomar cualquier valor (hasta el  valor que llevaba el electrón incidente). Animación tomada de Nobelprize.org

Esquema animado sobre la producción de rayos X característicos de un metal.  Un electrón de alta energía puede producir la salida de un electrón cercano al núcleo. La vacante así producida se rellena por el salto de otro electrón de una capa superior, con mayor energía. Esa  diferencia de energía entre niveles (característica del átomo) se transforma en radiación X característica, con una longitud de onda (energía) determinada. Animación tomada de Nobelprize.org

El restablecimiento energético del electrón anódico que se excitó, se lleva a cabo con emisión de rayos X con una frecuencia que corresponde exactamente al salto de energía concreto (cuántico) que necesita ese electrón para volver a su estado inicial. Estos rayos X tienen por tanto una longitud de onda concreta y se conocen con el nombre de radiación caracterísitica. Las radiaciones características más importantes en Cristalografía de rayos X son las llamadas líneas

Page 9: Espectros ópticos

K-alpha (Kα), donde los electrones caen a la capa más interior del átomo (mayor energía de ligadura). Sin embargo, además de estas longitudes de onda concretas, se produce también todo un espectro de longitudes de onda, muy próximas entre sí, y que se denomina radiación contínua, debido al frenado por el material de los electrones incidentes.

Distribución de longitudes de onda de los rayos X que se producen en  tubos convencionales de rayos X en donde el material anódico es cobre (Cu), molibdeno (Mo), cromo (Cr) ó wolframio (W) . Sobre el llamado espectro contínuo aparecen las llamadas líneas

características K-alpha (Kα) y K-beta (Kβ). El comienzo de los espectros contínuos aparece a una longitud de onda que es aproximadamente 12.4/V, en donde V representa la diferencia de potencial (en kV) entre filamento y ánodo. Para una misma tensión entre ánodo y filamento, sólo se excitan las radiaciones características del molibdeno (figura de la izquierda). 

En las grandes instalaciones de sincrotrón, la generación de los rayos X es distinta. Una instalación sincrotrónica contiene un anillo muy grande (del orden de kilómetros) por el que se hacen circular electrones a altísima velocidad en el interior de canales rectilíneos que de vez en cuando se quiebran para adaptarse a la curvatura del anillo. A estos electrones se les hace cambiar de dirección para pasar de un canal a otro usando campos magnéticos de gran energía. Y es en ese momento, en el cambio de dirección, cuando los electrones emiten una radiación muy energética denominada radiación sincrotrónica. Esa radiación está compuesta por un contínuo de longitudes de onda que abarcan desde las microondas hasta los llamados rayos X duros.

El lector puede acceder a una animación sobre el funcionamiento del anillo de un sincrotrón a través de este enlace.

Esquema del punto de giro entre dos segmentos rectilíneos

Detalle de cómo se producen los rayos X en las curvaturas de la trayectoria de los electrones en un sincrotrón.  Imagen adaptada según aparece en el ESRF

Page 10: Espectros ópticos

en un sincrotrón. Imagen adaptada según aparece en el ESRF

 

Los rayos X que se obtienen en las instalaciones de sincrotrón tienen dos grandes ventajas para la Cristalografía de rayos X: 1) la longitud de onda se puede modular a voluntad, y 2) su brillo es un billón de veces (1012) superior a la de los rayos X convencionales.

En todos estos equipos, la radiación que se utiliza para la Cristalografía suele ser monocromática (o casi), es decir, que es una radiación X que contiene exclusivamente (o casi) una única longitud de onda, y para ello se suelen utilizar los llamados monocromadores, que consisten de un sistema de cristales que, basándose en la ley de Bragg (que se verá en otro apartado posterior) son capaces de "filtrar" (por el propio proceso de interacción de los rayos X con los cristales) una radiación policromática y "dejar pasar" sólo una de las longitudes de onda (color), tal como se muestra en la figura de abajo:

Esquema de un monocromador. Una radiación policromática (blanca) que llega por la izquierda (abajo) se "refleja" de acuerdo con la ley de Bragg, en distintas orientaciones del cristal, para dar lugar a una radiación monocromática que se vuelve a reflejar ("filtrar") en el segundo cristal. La mencionada ley de Bragg se verá en un apartado posterior. De momento basta con que el lector tenga en cuenta que dicha ley nos permite entender, de forma geométrica, cómo los rayos X se "reflejan" en los cristales como si éstos fueran espejos muy especiales.  

Imagen tomada del ESRF.

Los rayos X interaccionan con la materia a través de los electrones que la forman. Un haz monocromático (es decir de una única longitud de onda) sufre una atenuación de caracter excepcional, proporcional al espesor que atraviesa. La atenuación procede de varios factores: a) el cuerpo se calienta, b) se produce radiación fluorescente de longitud de onda distinta y acompañada de fotoelectrones, ambos característicos del material (esto da lugar a las espectroscopías de foto-electrones, PES y Auger), y c) rayos X dispersados de igual (coherente y Bragg) o ligeramente superior (Compton) longitudes de onda, más los correspondientes electrones dispersados. De todos los efectos, el fundamental es la fluorescencia, en la que la absorción aumenta con la longitud de onda incidente, pero presenta discontinuidades (dispersión anómala) para aquellas energías que corresponden a transiciones electrónicas entre los niveles del material (esto da lugar a las espectroscopías EXAFS).

Page 11: Espectros ópticos

Espectro emitido por un ánodo metálico mostrando las longitudes de onda características. Sobre el mismo gráfico, aunque referido a un eje de ordenadas de absorbancia (no dibujado) se muestra la variación creciente y discontínua de la absorción (línea de trazos) de un determinado material, lo cual da idea de su uso como filtro para obtener radiación monocromática, separando el doblete Kα1 Kα2 del resto del espectro.

Esta metodología, de usar materiales concretos con capacidad específica de absorción, es la que se ha estado usando en los laboratorios de Cristalografía hasta principios de la década de 1970, para obtener radiación monocromática.

Los rayos X, como toda luz "iluminan" y "dejan ver", sólo que de forma distinta a como se ve con los ojos. Al lector interesado en averiguar cómo los rayos X nos permiten ver en el interior de los cristales (para "ver" los átomos y las moléculas), le animamos a que siga consultando los restantes apartados de esta presentación !

La radiación del cuerpo negro

Mecánica Cuántica

Experiencias relevantesParámetro de impacto yángulo de dispersiónDispersión de partículas (I)La estructura atómicaDispersión de partículas (II)

El espectroelectromagnético

El cuerpo negro (I)El cuerpo negro (II)Ley de Stefan-Boltzmann

El efecto fotoeléctricoEl efecto

Propiedades de la superficie de un cuerpo

El cuerpo negro

La radiación del cuerpo negro

La ley del desplazamiento de Wien

La ley de Stefan-Boltzmann

El término radiación se refiere a la emisión continua de energía desde la superficie de cualquier cuerpo, esta energía se denomina radiante y es transportada por las ondas electromagnéticas que viajan en el vacío a la velocidad de 3·108 m/s . Las ondas de radio, las radiaciones infrarrojas, la luz visible, la luz ultravioleta, los rayos X y los rayos gamma, constituyen las distintas regiones del espectro electromagnético.

 

Propiedades de la superficie de un cuerpo

Sobre la superficie de un cuerpo incide constantemente energía radiante, tanto desde el interior como desde el exterior, la que incide desde el exterior procede de los objetos que rodean al cuerpo. Cuando la energía radiante incide sobre la superficie una parte se refleja y la otra parte se transmite.

Page 12: Espectros ópticos

ComptonLa cuantización de la energíaEl espín del electrónDifracción de micro-partículas

Consideremos la energía radiante que incide desde el exterior sobre la superficie del cuerpo. Si la superficie es lisa y pulimentada, como la de un espejo, la mayor parte de la energía incidente se refleja, el resto atraviesa la superficie del cuerpo y es absorbido por sus átomos o moléculas.

Si r es la proporción de energía radiante que se refleja, y a la proporción que se absorbe, se debe de cumplir que r+a=1.

La misma proporción r de la energía radiante que incide desde el interior se refleja hacia dentro, y se transmite la proporción a=1-r que se propaga hacia afuera y se denomina por tanto, energía radiante emitida por la superficie.

En la figura, se muestra el comportamiento de la superficie de un cuerpo que refleja una pequeña parte de la energía incidente. Las anchuras de las distintas bandas corresponden a cantidades relativas de energía radiante incidente, reflejada y transmitida a través de la superficie.

 

Comparando ambas figuras, vemos que un buen absorbedor de radiación es un buen emisor, y un mal absorbedor es un mal emisor. También podemos decir, que un buen reflector es un mal emisor, y un mal reflector es un buen emisor.

Una aplicación práctica está en los termos utilizados para mantener la temperatura de los líquidos como el café. Un termo tiene dobles paredes de vidrio, habiéndose vaciado de aire el espacio entre dichas paredes para evitar las pérdidas por conducción y convección. Para reducir las pérdidas por radiación, se cubren las paredes con una lámina de plata que es altamente reflectante y por tanto, mal emisor y mal absorbedor de radiación.

 

El cuerpo negro

Page 13: Espectros ópticos

La superficie de un cuerpo negro es un caso límite, en el que toda la energía incidente desde el exterior es absorbida, y toda la energía incidente desde el interior es emitida.

 

No existe en la naturaleza un cuerpo negro, incluso el negro de humo refleja el 1% de la energía incidente.

Sin embargo, un cuerpo negro se puede sustituir con gran aproximación por una cavidad con una pequeña abertura. La energía radiante incidente a través de la abertura, es absorbida por las paredes en múltiples reflexiones y solamente una mínima proporción escapa (se refleja) a través de la abertura. Podemos por tanto decir, que toda la energía incidente es absorbida.

 

La radiación del cuerpo negro

Consideremos una cavidad cuyas paredes están a una cierta temperatura. Los átomos que componen las paredes están emitiendo radiación electromagnética y al mismo tiempo absorben la radiación emitida por otros átomos de las paredes. Cuando la radiación encerrada dentro de la cavidad alcanza el equilibrio con los átomos de las paredes, la cantidad de energía que emiten los átomos en la unidad de tiempo es igual a la que absorben. En consecuencia, la densidad de energía del campo electromagnético existente en la cavidad es constante.

A cada frecuencia corresponde una densidad de energía que depende solamente de la temperatura de las paredes y es independiente del material del que están hechas.

Si se abre un pequeño agujero en el recipiente, parte de la radiación se escapa y se puede analizar. El agujero se ve muy brillante cuando el cuerpo está a alta temperatura, y se ve completamente negro a bajas temperaturas.

Históricamente, el nacimiento de la Mecánica Cuántica, se sitúa en el momento en el que Max Panck explica el mecanismo que hace que los átomos radiantes produzcan la distribución de energía observada. Max Planck sugirió en 1900 que

1. La radiación dentro de la cavidad está en equilibrio con los átomos de las paredes que se comportan como osciladores armónicos de frecuencia dada f .

2. Cada oscilador puede absorber o emitir energía de la radiación en una cantidad

Page 14: Espectros ópticos

proporcional a f. Cuando un oscilador absorbe o emite radiación electromagnética, su energía aumenta o disminuye en una cantidad hf .

La segunda hipótesis de Planck, establece que la energía de los osciladores está cuantizada. La energía de un oscilador de frecuencia f sólo puede tener ciertos valores que son 0, hf , 2hf ,3hf ....nhf .

La distribución espectral de radiación es continua y tiene un máximo dependiente de la temperatura. La distribución espectral se puede expresar en términos de la longitud de onda o de la frecuencia de la radiación.

dEf /df es la densidad de energía por unidad de frecuencia para la frecuencia f de la radiación contenida en una cavidad a la temperatura absoluta T. Su unidad es (J·m-3)·s.

donde k es la constante de Boltzmann cuyo valor es k=1.3805·10-23 J/K.

dE /d es la densidad de energía por unidad de longitud de onda para la longitud de onda de la radiación contenida en una cavidad a la temperatura absoluta T. Su unidad es (J·m-3)·m-1.

 

La ley del desplazamiento de Wien

La posición del máximo en el espectro de la radiación del cuerpo negro depende de la temperatura del cuerpo negro y está dado por la ley de desplazamiento de Wien. Calculando la derivada primera de la función de la distribución de Planck expresada en términos de la longitud de onda o de la frecuencia

Obtenemos la ecuación trascendente

Este resultado constituye la ley de desplazamiento de Wien, que establece que el máximo de la densidad de energía dE /d por unidad de longitud de onda a distintas temperaturas T1, T2, T3, .., se produce a las longitudes de onda 1, 2, 3...tales que

De modo similar en el dominio de las frecuencias

Obtenemos la ecuación trascendente

A medida que la temperatura T se incrementa el máximo se desplaza hacia longitudes de onda menores (mayores frecuencias).

Como podemos comprobar el producto

no nos da la velocidad de la luz c como se podría esperar a primera vista, ya que estamos tratando con el máximo de una distribución que nos da la intensidad por unidad de longitud de onda o por unidad de frecuencia.

La luminosidad de un cuerpo caliente no se puede explicar, como se indica en algunos textos, a partir de la ley del desplazamiento de Wien, sino a partir de la intensidad de la radiación emitida en la región visible del espectro, tal como veremos más abajo. Así, a temperaturas tan elevadas como 6000 K el máximo medido en el eje de frecuencias de la distribución espectral se sitúa en la región del infrarrojo cercano. Sin embargo, a esta temperatura una proporción importante de la intensidad emitida se sitúa en la región visible del espectro.

Page 15: Espectros ópticos

 

La ley de Stefan-Boltzmann

La intensidad (energía por unidad de área y unidad de tiempo) por unidad de longitud de onda para la longitud de onda , de un cuerpo negro a la temperatura absoluta T, viene dada por la expresión.

Su unidad es (W·m-2)·m-1.

La intensidad (energía por unidad de área y unidad de tiempo) por unidad de frecuencia para la frecuencia f , de un cuerpo negro a la temperatura absoluta T, viene dada por la expresión.

Su unidad es (W·m-2)·s.

El applet realiza una representación gráfica de esta función en escala doblemente logarítmica. La intensidad por unidad de frecuencia en el eje vertical, y la frecuencia en el eje horizontal, para las temperaturas que se indican en la parte izquierda del applet.

Se muestra la parte visible del espectro en el centro, a la izquierda la región infrarroja y a la derecha la región ultravioleta del espectro. Se han señalado los máximos de las curvas y se ha trazado la recta que pasa por dichos puntos.

 

La intensidad total en W·m-2, de la radiación emitida por un cuerpo negro, se obtiene integrando la expresión anterior para todas las longitudes de onda (o frecuencias).

o bien

W= ·T4, con =5.670·10-8 (Wm-2K-4)

Esta expresión se conoce como ley de Stefan-Boltzmann. La energía emitida por un cuerpo negro por unidad de área y unidad de tiempo es proporcional a la cuarta potencia de la temperatura absoluta T.

Del mismo modo, integrando dEf/df para todas las frecuencias, podemos comprobar que la densidad de energía de la radiación contenida en una cavidad es proporcional a la cuarta potencia de la temperatura absoluta T de sus paredes. La constante de proporcionalidad vale ’=4 /c.

 

Intensidad de la radiación emitida en una región del espectroVamos a calcular, la intensidad emitida por un cuerpo negro en una región del espectro comprendida entre las frecuencias f1 y f2, o entre las longitudes de onda 1=c/f1 y 2=c/f2

La fracción de la intensidad emitida en una región del espectro es el cociente entre la intensidad emitida en dicha región dividido por la intensidad total (ley de Stefan).

Esta fracción no depende de o de T sino del producto T. Esto quiere decir que por ejemplo la fracción de la intensidad emitida por un cuerpo negro en la región del espectro comprendida entre 0 y 10 m a 1000º K es la misma que la fracción de la intensidad emitida en la región comprendida entre 0 y 5 m a 2000º K.

Para calcular la integral definida se ha de emplear un procedimiento numérico, por ejemplo el método de Simpson, o bien la aproximación que se explica a continuación.

Se define la función F(x) a

Page 16: Espectros ópticos

El término 1-e-x en el denominador se puede expresar como suma de potencias de e-x desarrollando el binomio (1-z)-

1=1+z+z2+z3+z4+…

Integrando por partes obtenemos la siguiente expresión para F(x)

Un pequeño programa de ordenador, nos permite calcular el valor de F(x1) y de F(x2) y a partir de la diferencia el valor de fracción de la intensidad emitida por el cuerpo negro en una región dada del espectro comprendida entre dos longitudes de onda o entre dos frecuencias.

La intensidad total emitida en la región del espectro delimitada por las longitudes de onda 1 y 2 se obtiene

donde ·T4 como se ha explicado, es la intensidad de la radiación emitida en todas las regiones del especto.

En la siguiente tabla, se proporcionan los datos acerca del tanto por ciento de la contribución de la radiación infrarroja, visible y ultravioleta a la radiación de un cuerpo negro a las temperaturas que se indican.

Temperatura (K) % infrarrojo %visible %ultravioleta

1000 99.999 7.367·10-4 3.258·10-11

2000 98.593 1.406 7.400·10-4

3000 88.393 11.476 0.131

4000 71.776 26.817 1.407

5000 55.705 39.166 5.129

6000 42.661 45.732 11.607

7000 32.852 47.506 19.641

8000 25.565 46.210 28.224

9000 20.154 43.247 36.599

10000 16.091 39.567 44.342

Fuente: Jain P. IR, visible and UV components in the spectral distribution of blackbody radiation. Phys. Educ. 31 pp. 149-155 (1996).

A baja temperatura prácticamente toda la radiación es infrarroja. A muy alta temperatura la contribución de la radiación ultravioleta es cada vez mayor y la visible

e infrarroja se hacen cada vez menores.

Page 17: Espectros ópticos

La contribución de la radiación visible alcanza un máximo aproximadamente a 7100º K.

Veamos ahora, la explicación del color aparente de un cuerpo caliente. Por ejemplo, a temperatura de 2000 K un cuerpo emite luz visible pero la intensidad en el extremo rojo (baja frecuencia, alta longitud de onda) del espectro visible es mucho mayor que la azul (alta frecuencia, baja longitud de onda) y el cuerpo aparece rojo brillante. A 3000 K, la temperatura aproximada de un filamento de una lámpara incandescente, la cantidad relativa de luz azul ha aumentado, pero predomina aún la componente roja. A 6000 K, que es aproximadamente la temperatura del Sol, la distribución es casi uniforme entre todas las componentes de la luz visible y el cuerpo aparece blanco brillante. Por encima de 10000 K se emite luz azul con mayor intensidad que roja y un cuerpo (estrella caliente) a esta temperatura se ve azul.

 

ActividadesObtener la intensidad de la radiación emitida por un cuerpo negro a una temperatura dada en distintos intervalos de longitudes de onda. En la tabla se recogen los datos de las distintas regiones del espectro, la longitud de onda se da en m (10-6 m).

Región del espectro Intervalo (m)

(1) Infrarrojo lejano 1000-30

(2) Infrarrojo medio 30-3

(3) Infrarrojo cercano 3-0.78

(4) Visible 0.78-0.38

(5) Ultravioleta 0.38-0006

Visible Intervalo (m)

Rojo 0.78-0.622

naranja 0.622-0.597

amarillo 0.597-0.577

verde 0.577-0.492

azul 0.492-0.455

violeta 0.455-0.38

Fuente: Alonso M, Finn E. Campos y Ondas. Fondo Educativo Interamericano (1970), págs 791-792

Se completará una tabla semejante a la siguiente. Anotando la intensidad (o la proporción) de la radiación emitida por un cuerpo negro en las distintas regiones del espectro y en todo el espectro a las siguientes temperaturas.

(1) (2) (3) (4) (5) Todo

850 ºK

1000 ºK

1200 ºK

Se introduce

la temperatura (K), en el control de edición titulado Temperatura Se selecciona una región concreta del espectro o todo el espectro en el control de selección

titulado Región del espectro. Cuando se selecciona una región del espectro, por ejemplo, infrarrojo, se puede cambiar las

Page 18: Espectros ópticos

longitudes de onda en m (10-6 m), en los controles de edición titulados longitudes de onda desde ... a ... para calcular la intensidad de la radiación electromagnética en la región del espectro en la que estamos interesados.

Se pulsa el botón titulado Calcular.

Se puede cambiar la escala vertical en el control de selección para que las curvas sean visibles en el área de trabajo del applet.

En la parte superior derecha del applet, se muestra el valor calculado de la intensidad en W/m2 y muestra la fracción F(x1)-F(x2) (tanto por ciento) de la intensidad de la radiación emitida en la región del espectro seleccionada.