11
Systems and Computers i n Japan, Vol. 21, No. 6, 1990 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. 72-DII, No. 12, 1988, pp. 2683-2691. Estimation for Spread Forms of Spindle Waves in Multichannel EEG Yoshikazu Ueda and Naohiro Ishii, Members Faculty of Engineering, Nagoya Institute of Technology, Nagoya, Japan 466 SUMMARY The spindle wave is one of the most im- portant EEG signals in exploring the mechan- ism of sleep. There have been few reports, however, that examined the spatial proper- ties of the spindle wave. One reason for this may be that the spindle wave is diffi- cult to be handled as a stationary time series since it is a short-term signal. Another reason is that a multidimensional signal processing technique has not been established for the multichannel signal, and an analysis with a tremendous amount of data has not been tried. This paper aims at the analysis of the empirical knowledge of doctors by computer processing, and proposes an algorithm which estimates the spread form of the spindle wave in the multichannel EEG. The method is based on the frequency-wavenumber spectrum, and has features in that the two phasic dominants and the direction of spread are estimated from a smaller number of measure- ments, by utilizing the phase relations on the scope. The usefulness of the proposed algor- ithm was verified by a computer simulation. The proposed estimation method was applied to the actual spindle waves, and the follow- ing result was obtained. The phasic dominant of the spindle exists around the central field for the low-frequency components and around the parietal field for high-frequency components. This is a quantitative result, which agrees with the traditional qualita- tive findings. A new observation was also made where the spindles spread mostly from the parietal field to the frontal field. 1. Introduction The analysis of the spindle wave has a long history. With the recent introduction of computers, high-speed, large-scale analy- sis of biological signals, including EEG analysis, has been realized. Thus, there is produced a remarkable progress of informa- tion processing. However, there still exist a large number of items i n the human EEG for which the physiological knowledge is not satisfactory. Although there is a body of knowledge which was found empirically by medical researchers, it is qualitative and not based on quantitative reasoning. In the field of EEG during sleep, vari- ous studies have been made. There are stud- ies from a macroscopic viewpoint, such as the automatic decision-making of the sleep stage and the identification of the sleep model. There are also studies from a micro- scopic viewpoint, such as the comparative study of the effects of the sleep depriva- tion, daytime sleep, mental load and exer- cise on the signals, as well as the studies that follow the particular features of sleep EEG. Although those studies are performed independently at present, they are essentially correlated. The EEG signals considered in those studies are the spindle wave and slow wave [l, 21. The reason for those waves being considered as a common item is that they can easily be identified by observation and are used as the decision criterion for the sleep staging [3]. We have investigated the spin- dle wave [7 - 91. Many other researchers investigated the spindle wave. However, few researchers investigated the spatial features. The reason for this seems to be that the spindle wave is a short-term signal and is difficult to handle as the stationary time-series. Another reason is that the multidimensional signal processing technique has mostly been developed for the image 10 1SSN0882-1666/90/0006-0010$7.50/0 @ 1990 Scripta Technica, Inc.

Estimation for Spread Forms of Spindle Waves in Multichannel EEG

Embed Size (px)

Citation preview

Page 1: Estimation for Spread Forms of Spindle Waves in Multichannel EEG

Systems and Computers i n Japan, Vol. 21, No. 6 , 1990 Trans la ted from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. 72-DII, No. 12, 1988, pp. 2683-2691.

Estimation for Spread Forms of Spindle Waves in Multichannel EEG

Yoshikazu Ueda and Naohiro I s h i i , Members

Facul ty of Engineering, Nagoya I n s t i t u t e of Technology, Nagoya, Japan 466

SUMMARY

The s p i n d l e wave i s one of t he most i m - p o r t a n t EEG s i g n a l s i n exp lo r ing t h e mechan- i s m of s l e e p . There have been few r e p o r t s , however, t h a t examined t h e s p a t i a l proper- t ies o f t h e s p i n d l e wave. One reason f o r t h i s may be t h a t t h e s p i n d l e wave i s d i f f i - c u l t t o be handled as a s t a t i o n a r y t i m e series s i n c e i t i s a short- term s i g n a l . Another reason i s t h a t a mult idimensional s i g n a l p rocess ing technique h a s no t been e s t a b l i s h e d f o r t h e mult ichannel s i g n a l , and an a n a l y s i s w i t h a tremendous amount of d a t a h a s n o t been t r i e d .

This paper a i m s a t t h e a n a l y s i s of t h e empi r i ca l knowledge of d o c t o r s by computer processing, and proposes a n a lgo r i thm which estimates t h e spread form of t h e s p i n d l e wave i n t h e mult ichannel EEG. The method i s based on t h e frequency-wavenumber spectrum, and has f e a t u r e s i n t h a t t h e two phas i c dominants and t h e d i r e c t i o n of spread are est imated from a smaller number of measure- ments, by u t i l i z i n g t h e phase r e l a t i o n s on t h e scope.

The u s e f u l n e s s of t h e proposed a lgo r - ithm w a s v e r i f i e d by a computer s imulat ion. The proposed e s t i m a t i o n method was app l i ed t o t h e a c t u a l s p i n d l e waves, and t h e follow- ing r e s u l t w a s obtained. The p h a s i c dominant of t h e s p i n d l e e x i s t s around t h e c e n t r a l f i e l d f o r t h e low-frequency components and around t h e p a r i e t a l f i e l d f o r high-frequency components. This i s a q u a n t i t a t i v e r e s u l t , which a g r e e s wi th t h e t r a d i t i o n a l q u a l i t a - t i v e f ind ings . A new obse rva t ion w a s a l s o made where t h e s p i n d l e s spread mostly from t h e p a r i e t a l f i e l d t o t h e f r o n t a l f i e l d .

1. In t roduc t ion

The a n a l y s i s of t h e s p i n d l e wave h a s a long h i s t o r y . With t h e r e c e n t i n t r o d u c t i o n

of computers, high-speed, l a rge - sca l e analy- sis of b i o l o g i c a l s i g n a l s , i nc lud ing EEG a n a l y s i s , has been r e a l i z e d . Thus, t h e r e i s produced a remarkable p rogres s of informa- t i o n processing. However, t h e r e s t i l l e x i s t a l a r g e number of i t e m s i n t h e human EEG f o r which t h e phys io log ica l knowledge is not s a t i s f a c t o r y . Although t h e r e i s a body of knowledge which w a s found empi r i ca l ly by medical r e s e a r c h e r s , i t i s q u a l i t a t i v e and not based on q u a n t i t a t i v e reasoning.

In t h e f i e l d of EEG du r ing s l e e p , v a r i - ous s t u d i e s have been made. There are stud- ies from a macroscopic viewpoint, such as the automatic decision-making of t he s l eep s t a g e and t h e i d e n t i f i c a t i o n of t h e s l e e p model. There are a l s o s t u d i e s from a micro- scopic viewpoint, such as t h e comparative s tudy of t h e e f f e c t s of t h e s l e e p depriva- t i o n , daytime s l e e p , mental load and exer- c i s e on t h e s i g n a l s , as w e l l as the s t u d i e s t h a t fol low t h e p a r t i c u l a r f e a t u r e s of s l e e p EEG. Although those s t u d i e s are performed independently a t p re sen t , they are e s s e n t i a l l y c o r r e l a t e d .

The EEG s i g n a l s considered i n those s t u d i e s are t h e s p i n d l e wave and slow wave [ l , 21. The reason f o r those waves being considered as a common i t e m i s t h a t they can e a s i l y be i d e n t i f i e d by observat ion and are used as t h e d e c i s i o n c r i t e r i o n f o r t h e s l eep s t ag ing [ 3 ] . We have i n v e s t i g a t e d the spin- d l e wave [ 7 - 91. Many o t h e r r e sea rche r s i n v e s t i g a t e d t h e s p i n d l e wave. However, few r e s e a r c h e r s i n v e s t i g a t e d t h e s p a t i a l f e a t u r e s .

The reason f o r t h i s seems t o be t h a t t h e s p i n d l e wave is a short-term s i g n a l and i s d i f f i c u l t t o handle as t h e s t a t i o n a r y time-series. Another reason is t h a t t h e multidimensional s i g n a l processing technique has mostly been developed f o r t h e image

10 1SSN0882-1666/90/0006-0010$7.50/0 @ 1990 S c r i p t a Technica, Inc.

Page 2: Estimation for Spread Forms of Spindle Waves in Multichannel EEG

Fig. 1. Assumption f o r spread of spin- d l e waves: ( a ) p a r a l l e l type, (b)

r a d i a l t ype , ( c ) complex r a d i a l type.

2. Est imat ion Algorithm f o r Spread Form of Spindle Wave

2 . 1 Assumptions f o r spread form of s p i n d l e wave

W e have obtained a r e s u l t i n which t h e r e seem t o exist two k inds of s p i n d l e waves. One is dominant i n t h e f r o n t a l f i e l d and has a lower frequency component. The o t h e r i s dominant i n t h e p a r i e t a l f i e l d and h a s h ighe r frequency component [9]. This paper examines t h e foregoing f i n d i n g by ob- se rv ing t h e types of i n d i v i d u a l s p i n d l e waves .

The spread forms of t h e s p i n d l e waves can roughly be divided as fol lows.

0 The s p i n d l e wave is dominant i n the o c c i p i t a l f i e l d o r o r i g i n a t e d from the per- iphery of t h e deep b r a i n , and spreads on the scope s u r f a c e [F ig . l ( a ) ] .

processing, and t h e technique h a s n o t been e s t a b l i s h e d f o r t h e mult ichannel s i g n a l . @ The s p i n d l e wave is dominant i n the

f r o n t a l f i e l d o r p a r i e t a l f i e l d , and o r ig in - a t e d from t h e deep b r a i n , spreading uniform- l y from t h e deep r eg ion t o t h e s u r f a c e [Fig. l ( b ) l *

The s p i n d l e wave o f t e n appears i n t h e sleep s t a g e c a l l e d s t a g e 2 . It i s known t h a t t h e frequency of t h e s p i n d l e wave changes with time from the e a r l y s t a g e of s l e e p t o t h e l a t e r s t a g e . Thus, it is recognized t h a t t h e s p i n d l e wave is r e l a t e d c l o s e l y t o t h e s l e e p mechanism. From such a viewpoint , it i s necessary t o exp lo re where and how t h e s p i n d l e wave i s r e l a t e d t o t h e s l e e p mechan- i s m . Th i s paper examines t h e appearance of t h e s p i n d l e wave i n t h e mult ichannel EEG i n t e r m s of t h e s p a t i a l phas i c r e l a t i o n s .

F i r s t , s e v e r a l assumptions are made con- cerning t h e spread form of t h e s p i n d l e wave. A mult ichannel p rocess ing i s proposed as an e s t i m a t i o n of t h e spread form of t h e s p i n d l e wave, based on frequency-wavenumber s p e c t r a l a n a l y s i s [ 4 - 61. The a lgo r i thm f o r t h i s method is p resen ted .

The wavenumber v e c t o r , which i s t h e im- p o r t a n t d a t a i n t h e wavenumber spectrum, i s handled i n gene ra l as a s t a t i o n a r y parameter over t h e e n t i r e space. I n EEG a n a l y s i s , how- ever , t h e s t a t i o n a r y p rope r ty does n o t e x i s t over t h i s space. Consequently, t h e proposed method determines t h e p a r t i a l wavenumber vec to r f o r t h e subspace, and performs t h e e s t ima t ion by a geometr ical method. The accuracy and t h e u s e f u l n e s s of t h e proposed e s t i m a t i o n method i s v e r i f i e d by a computer s imula t ion . F i n a l l y , t h e proposed estima- t i o n method is app l i ed t o t h e s p i n d l e wave. The r e s u l t i s p resen ted and a d i s c u s s i o n i s made.

@ The s p i n d l e wave with two o r more sources i n t h e deep b r a i n i s r e l a t e d t o t h e dominancy i n t h e f r o n t a l o r o c c i p i t a l f i e l d , which e x h i b i t s a behavior as i f exc i t ed by two o r more sources [Fig. l ( c ) ] .

When t h e s i g n a l with such spread forms are observed on t h e scope, they can be iden- t i f i e d as t h e advance o r r e t a r d of t h e phase, u n l e s s t h e frequency of t h e s i g n a l from t h e source undergoes t h e nonuniform modulation on i t s path. I n t h i s paper, those spread forms are denoted as 0 p a r a l l e l type [Fig. l ( a ) ] , @ r a d i a l type [Fig. l ( b ) ] , and @ complex r a d i a l type [F ig . l ( c ) ] . Those t h r e e types of spread forms are assumed.

I n t h e r a d i a l type, t he p o i n t with the most advanced phase i s c a l l e d t h e phas i c dominant. By our assumption, t h e phas i c dominant i s t h e p o i n t on t h e s k u l l c l o s e s t t o t h e source i n t h e deep b r a i n . Since two k inds of s p i n d l e waves are assumed t o e x i s t i n t h e complex r a d i a l type, t h e phas i c domi- n a n t s are l i m i t e d t o two.

2 . 2 Frequency-wavenumber spectrum

The frequency-wavenumber spectrum is defined as a Four i e r t ransform of t h e space- time c o r r e l a t i o n func t ion . The space-time c o r r e l a t i o n func t ion

11

Page 3: Estimation for Spread Forms of Spindle Waves in Multichannel EEG

i s the expected c o r r e l a t i o n between t h e vari- a b l e s(x, t) a t t i m e t i n space x and t h e v a r i a b l e s(x + r, t + T) a t t i m e t + T i n space x + r.

When t h e c o r r e l a t i o n f u n c t i o n is con- s i d e r e d , t h e s t a t i o n a r i t y is assumed i n general . Then t h e c o r r e l a t i o n f u n c t i o n can be r ep resen ted i n terms of t h e d i f f e r e n c e of t i m e and space coord ina te s . I n t h i s paper, t h e s t a t i o n a r i t y i s assumed both i n t h e t i m e and space domain. Then t h e c o r r e l a t i o n func- t i o n i s r ep resen ted as a func t ion of t h e t i m e d i f f e r e n c e and t h e s p a t i a l d i s t a n c e :

H ( Y , 5 ) = E " ( z , b 1 t ( z + r , t + r ) l

Four i e r t ransform of t h e forementioned ex- p re s s ion i n t i m e and i n space i s t h e f r e - quency-wavenumber spectrum:

I E x t r a c t c h a r a c t e r i s t i c f r e q . coniponents I __ 4

I Smooth spec t rum i n s p a t i a l domain I

--- - - -- &-% Yes l e s t spread forrii 3 s p a r a l l e l l=---

~~

Approximately e s t i m a t e p h a s i c dominant I I

I P r e c i s e l y es t i i i i a te p h a s i c doiiiinant I

P G h e t i c a l l y j u d i e e s t i m a t e d forms ]

Fig. 2 . Flowchart f o r e s t ima t ing spread forms of s p i n d l e waves.

To d e r i v e t h e spectrum by a computer i n t i m e i s more important i n t h e s p i n d l e wave than t h e s p a t i a l r e s o l u t i o n . From such a viewpoint, t h e smoothing i n t h e s p a t i a l

p rocess ing , t h e fol lowing procedures are ap p 1 ied .

domain is employed i n s t e a d of procedure @ t o r e t a i n t h e frequency information. 0 Four i e r t ransform i n terms of time

(FFT) i s performed, t o determine t h e cross- spectrum .

qhl m ( f 1 = ( 2 K 1 - y H n m ( r 1exp I - j 2 K f r 1 d r

where Hnm(') i s t h e space-time c o r r e l a t i o n

The f requency-wavenumber spectrum i s determined i n t h i s way, but what i s needed i s t h e wavenumber k maximizing the spectrum f o r t h e given frequency. dimensional p l ane i s considered i n t h i s paper , t h e wavenumber is t h e wavenumber vec-

Since a two-

t o r k = (kx, k ). The wavenumber vec to r max-

imizing t h e spectrum i s a f a c t o r r ep resen t - i n g t h e phase d i f f e r e n c e i n t h e measurement space, i n d i c a t i n g t h e d i r e c t i o n i n which

Y f u n c t i o n between channels n and m; @,(f) i s

t h e determined c r o s s spectrum between chan- n e l s n and rn.

@ Expectat ion is derived f o r t h e esti- t h e phase i s t h e most r e t a rded a t a par- mated c r o s s spectrum: t i c u l a r p o s i t i o n .

&*( f ) = E [ h m ( f 11 I f t h e measurement space i s s u f f i c i e n t - ly s m a l l , t h a t s m a l l subspace can be def ined

where ;d (f) is t h e e s t ima ted (smoothed)

c r o s s spectrum between channels n and m. nm as a p a r t i c u l a r p o s i t i o n . I n p r a c t i c e ,

t h e measurement space occupies a c e r t a i n volume. Then t h e c e n t e r of g r a v i t y of t h a t volume i s def ined as a p a r t i c u l a r p o s i t i o n . The a c t u a l u t i l i z a t i o n of t h e wavenumber is discussed i n t h e next s e c t i o n .

@ Four i e r t ransform i n r ega rd t o space (DFS) is performed:

where N i s t h e number of measurement chan- n e l s ; x and xm are s p a t i a l coo rd ina te s of

channels n and m. n

However, by t h i s procedure, t h e informa- t i o n of t h e s p i n d l e wave i n r ega rd t o t h e frequency i s l o s t i n t h e smoothing i n t h e expec ta t ion i n 0. up t o t h e p r e s e n t , t h e frequency r e s o l u t i o n

According t o our s tudy

The e s t ima t ion algori thm f o r t h e spin- d l e wave spread i n t h i s s tudy i s represented by t h e f lowchart of Fig. 2. I n t h e proposed e s t ima t ion , t h e remarkable components i n the frequency band of t h e s p i n d l e wave are se l ec - ted f i r s t . Then i t is examined whether o r no t t h e s p i n d l e wave spread is of p a r a l l e l type i n regard t o t h a t frequency component. I f t h e spread i s decided as p a r a l l e l type,

12

Page 4: Estimation for Spread Forms of Spindle Waves in Multichannel EEG

!Gain

Frequency

Fig. 3. E x t r a c t i o n of c h a r a c t e r i s t i c components on frequency domain.

i t i s r e g i s t e r e d . I f no t , t h e spread i s re- garded as r a d i a l type, and t h e processing i s continued.

As a p rep rocess ing , t h e rough p o s i t i o n of t h e phas i c dominant i s determined. Then t h e two-stage e s t ima t ion f o r t h e a c c u r a t e p o s i t i o n i s made. t he phas i c dominant i s r e g i s t e r e d . A f t e r completing t h e foregoing procedure f o r a l l s i g n i f i c a n t frequency components, a compre- hensive d e c i s i o n i s made f o r t h e r e g i s t e r e d r e s u l t , t o be combined i n t o a n a p p r o p r i a t e r e s u l t . The processing i n each s t a g e i s descr ibed i n t h e fol lowing .

The r e s u l t i n g p o s i t i o n of

2 . 3 . 1 . Ext rac t ion of f e a t u r e frequency component

To extract t h e f e a t u r e components from t h e frequency components of t h e o b j e c t of a n a l y s i s , t h e mean spectrum i s c a l c u l a t e d f o r a l l measured p o i n t s . The components w i th l a r g e r ga in are e x t r a c t e d . The thresh- o ld i s determined from t h e maximum g a i n , and t h e components above t h e th re sho ld are ex- t r a c t e d as t h e f e a t u r e f r equenc ie s (Fig. 3).

I n t h i s s tudy , t h e mean of t h e maximum g a i n and t h e mean g a i n i s used as t h e th re sho ld :

where N is t h e t o t a l number of measured chan- n e l s ; Gn(kAf) i s t h e ga in of channel n f o r

frequency kAf; 5 ( k A f ) i s t h e maximum gain maX

Fig. 4 . P a r t i a l f i e l d s f o r t e s t i n g spread form as p a r a l l e l .

among z(kAf); L i s t h e number of frequency components.

When two ad jacen t f e a t u r e f r equenc ie s exist , it is impossible t o dec ide whether it i s due t o a s i n g l e frequency component o r a c t u a l l y two frequency components. This dec i s ion i s made by e s t ima t ing t h e spread of t h e frequency component, and i n t h e follow- ing, they are considered as s e p a r a t e compon- e n t s .

2 .3 .2 . Smoothing i n s p a t i a l domain

It h a s a l r eady been descr ibed t h a t the expec ta t ion p rocess ing i s requ i r ed i n de t e r - mining t h e frequency-wavenumber spectrum. Usually, t h e expec ta t ion i s c a l c u l a t e d by t h e ensemble averaging o r by smoothing. How- ever , s i n c e t h e r e do n o t e x i s t a l a r g e num- be r of s p i n d l e wave d a t a , t h e ensemble aver- age is d i f f i c u l t due t o i t s short-term property. Consequently, smoothing i s t h e only p o s s i b i l i t y .

It i s no t d e s i r a b l e t o degrade t h e r e s o l u t i o n i n t h e frequency domain i n t h e a n a l y s i s of t h e s p i n d l e wave. Consequently, t h e smoothing i n t h e s p a t i a l domain i s used in s t ead . The smoothing is made by t h e aver- aging based on eight-neighbor d a t a , as i n t h e usual image processing.

where Si is t h e spectrum of channel i; xi

and xn are t h e s p a t i a l coo rd ina te s normal-

i zed by t h e d i s t a n c e between measurement p o i n t s of-channels i and n. spectrum Sn(kAf 1 f o r channel n i s given by t h e foregoing expression.

The smoothed

13

Page 5: Estimation for Spread Forms of Spindle Waves in Multichannel EEG

Fig , 5. Approximate e s t i m a t i o n of pha- s i c dominants.

2 . 3 . 3 . P a r a l l e l i s m check f o r spread

I n t h e fo l lowing , i t i s determined whether t h e s i g n a l spread i s r a d i a l o r pa ra l - l e l type , i n r ega rd t o t h e p a r t i c u l a r f r e - quency component. By t h e assumption i n t h i s paper , t h e phas i c dominant exists i n t h e measurement r e g i o n i f t h e spread i s r a d i a l . Consequently, t h e wavenumber v e c t o r s should have d i f f e r e n t d i r e c t i o n s i n t h e f o u r sub- r eg ions shown by t h e dashed l i n e i n F ig . 4 .

I n o t h e r words, t h e spread is dec ided as of p a r a l l e l t ype , i f a l l wavenumber vec- t o r s i n t h e f o u r r e g i o n s are i n almost t h e same d i r e c t i o n . The co inc idence of t h e wavenumber v e c t o r d i r e c t i o n s i s dec ided as fo l lows . When t h e minimum c o s i n e va lue be- tween v e c t o r s

exceeds t h e t h r e s h o l d (cos IT/^) ) , t h e d i r ec - t i o n s a r e dec ided as t h e same. When t h e spread i s d e c i d e d a s p a r a l l e l b y t h i s procedure, t h e wavenumber v e c t o r s are r e g i s t e r e d with- o u t t h e e s t i m a t i o n procedure f o r t h e phas i c dominant .

2 . 3 . 4 . C a l c u l a t i o n of p a r t i a l wave- number v e c t o r

A s a p rep rocess ing f o r t h e e s t i m a t i o n of t h e p h a s i c dominant, t h e wavenumber vec- t o r i s c a l c u l a t e d f o r t h e subregion . The wavenumber v e c t o r i s determined a c c u r a t e l y i f t h e r e are a l a r g e number of measurement p o i n t s . On t h e o t h e r hand, t h e computational complexity i n c r e a s e s r a p i d l y wi th t h e number of measurement p o i n t s , s i n c e i t is propor- t i o n a l t o t h e number of combinations of t h e measurement p o i n t s . Consequently, it is d e s i r e d t h a t t h e wavenumber v e c t o r should b e

............. A ..... ........................... B : b . . . i :. .:

:. b . .: . j . .: . + t + +

X : x j

........ ................................ . . . . . . . . + +

b b . . . . C D . .........,.

0 .

+ ............. . :. .j 0 0 ;+ x + j . + j x ; + ;.t + ; . :. . j . . i+ + +': . ........... .............

+ 0 . 0 .

Fig . 6 . F i e l d s f o r p r e c i s e e s t ima t ion of phas i c dominants.

determined from t h e least number of measure- ment p o i n t s .

I n t h i s s tudy , t h e wavenumber v e c t o r i s determined more e a s i l y by e s t ima t ing t h e phas i c dominant by two s t a g e s . I n p r a c t i c e , t h e wavenumber i s determined f i r s t us ing n i n e channels , which are composed of t h e p a r t i c u l a r measurement p o i n t and i t s e igh t - ne ighbors , as t h e subregion . The r e s u l t is def ined as t h e p a r t i a l wavenumber v e c t o r a t t h a t p o i n t . The p a r t i a l wavenumber v e c t o r s are determined f o r a l l of t h e measurement p o i n t s .

2 . 3 . 5 . Rough e s t i m a t i o n of phas i c dominant

I n t h e fo l lowing , t h e p h a s i c dominant is e s t ima ted roughly us ing t h e p a r t i a l wave- number v e c t o r a t each measurement p o i n t . S ince t h e wavenumber v e c t o r i n d i c a t e s t h e d i r e c t i o n of t h e most r e t a r d e d phase, t h e v e c t o r ob ta ined by r e v e r s i n g t h e s i g n ind i - cates t h e d i r e c t i o n of t h e most advanced phase. The p a r t i a l wavenumber v e c t o r , how- eve r , c o n t a i n s an error. Consequently, an allowance should be de f ined f o r t h e d i r ec - t i o n , as i n F ig . 5. The v a l u e , which i s pro- p o r t i o n a l t o t h e ga in of t h e measurement p o i n t a t t h e start of t h e v e c t o r , and in- v e r s e l y p r o p o r t i o n a l t o t h e d i s t a n c e from t h e s tar t p o i n t , i s g iven t o t h e subregion w i t h i n t h e allowance. The same procedure i s app l i ed t o a l l of t h e p a r t i a l wavenumber v e c t o r s , r e s u l t i n g i n t h e two-dimensional d i s t r i b u t i o n f o r each reg ion . The peak i n t h i s d i s t r i b u t i o n i n d i c a t e s t h e rough pos i - t i o n of t h e phas i c dominant. I n t h i s s tudy , 220 deg a long the d i r e c t i o n of t h e v e c t o r i s de f ined as t h e a l lowable range .

14

Page 6: Estimation for Spread Forms of Spindle Waves in Multichannel EEG

2 . 3 . 6 . Accurate e s t i m a t i o n of phas i c dominant

I n t h e fo l lowing , t h e phas i c dominant is est imated a c c u r a t e l y , using t h e d a t a a t t h e measurement p o i n t con ta in ing t h e p h a s i c dominant ob ta ined by t h e rough e s t ima t ion , t oge the r w i t h t h e d a t a a t i t s per iphery. Four methods are considered i n t h i s s tudy.

Method A (Fig. 6-A) u t i l i z e s 16 measure- ment p o i n t s i n fou r r e g i o n s , each con ta in ing e i g h t p o i n t s . Method B (Fig. 6-B) u t i l i z e s 1 2 measurement p o i n t s i n fou r r eg ions , each con ta in ing f o u r p o i n t s . Method C (Fig. 6-C) u t i l i z e s 1 2 measurement p o i n t s i n t h r e e r eg ions , each con ta in ing fou r p o i n t s , and t h e e s t i m a t i o n is made us ing t h e c e n t r a l r eg ion and t h e p e r i p h e r a l r e g i o n s f o r which the computation i s impossible . Method D (Fig. 6-D) u t i l i z e s 1 2 measurement p o i n t s i n two r eg ions , each con ta in ing s i x p o i n t s , and the e s t i m a t i o n i s made from t h e p a r t i a l wave- number v e c t o r s a t fou r measurement p o i n t s i n t h e r eg ions f o r which t h e computation i s pos- s i b l e and i n t h e considered r eg ion .

The phas i c dominant es t imated by e i t h e r method i s r e g i s t e r e d f o r t h e f i n a l dec i s ion . The fou r methods are desc r ibed i n t h e f o l - lowing.

Method A. The wavenumber v e c t o r s are determined from measurement d a t a a t e i g h t p o i n t s i n f o u r r eg ions . The phas i c dominant is determined as t h e geometr ical i n t e r s e c - t i o n , as t h e v e c t o r a t t h e c e n t e r of g r a v i t y i n each r eg ion . It i s n o t always t r u e that four v e c t o r s i n t e r s e c t a t a p o i n t ; and, con- sequent ly , t h e mean p o s i t i o n is employed. When t h e roughly est imated p o s i t i o n i s i n the outermost r eg ion , t h i s method cannot be app l i ed . t i o n is s h i f t e d t o t h e a d j a c e n t i n t e r n a l r eg ion , and t h e method i s app l i ed .

Then t h e roughly e s t ima ted posi-

Method B. Th i s method u t i l i z e s measure- ment d a t a a t f o u r p o i n t s i n each of fou r r eg ions . The method i s e s s e n t i a l l y t h e same as method A. t h e number of d a t a is reduced t o reduce t h e computation t i m e .

The on ly d i f f e r e n c e i s t h a t

Method C. I n t h e two forementioned methods, an excep t iona l procedure i s re- quired when t h e roughly e s t ima ted p o s i t i o n is i n rhe outermost region. In t h i s method, t h e roughly e s t ima ted p o s i t i o n i s always set as t h e c e n t r a l r eg ion , and t h e phas i c domi- nan t is determined from t h e wavenumber vec- t o r s a t t h e c e n t r a l r eg ion and t h e a d j a c e n t r eg ions f o r which t h e computation is poss ib l e .

Method D. This method i s a modifica- t i o n of method C where t h e r e are fewer d a t a

of wavenumber vec to r s . i s determined from t h e wavenumber v e c t o r s obtained from t h e measurement d a t a a t s i x p o i n t s i n f o u r r e g i o n s and t h e p a r t i a l wave- number v e c t o r s a t f o u r measurement p o i n t s .

The phas i c dominant

2 . 3 . 7 . F i n a l d e c i s i o n of es t imated r e s u l t

For t h e phas i c dominant o r t h e wavenum- ber v e c t o r i n p a r a l l e l spread f o r each fea- t u r e frequency component r e g i s t e r e d by t h e forementioned procedure, t h e d e c i s i o n i s made as t o whether o r no t they can be com- bined, based on t h e frequency d i f f e r e n c e o r t h e s p a t i a l d i s t a n c e . I n t h i s s tudy , t h e frequency r e s o l u t i o n is used as t h e u n i t . When t h e frequency d i f f e r e n c e i s 1 o r less, t h e wavenumber v e c t o r s are defined as t h e same frequency. When t h e d i f f e r e n c e i s 1 o r 2 , they are def ined as c l o s e f r equenc ie s . ‘hen t h e d i f f e r e n c e i s above 2, they are def ined as remote f r equenc ie s . Using t h e d i s t a n c e between t h e measurement p o i n t s as t h e u n i t , t h e d i s t a n c e less than 2 i s decid- ed as c l o s e , and t h e d i s t a n c e above 2 i s decided as remote.

When two est imated p o i n t s o r v e c t o r s s a t i s f y t h e fol lowing cond i t ion , they are merged i n t o one.

The frequency components of two phasic dominants are t h e same o r c l o s e frequencies , and t h e d i s t a n c e between measurement p o i n t s i s c l o s e .

The frequency components of two wave- number v e c t o r s are t h e same o r c l o s e f r e - quencies , and t h e ang le between v e c t o r s i s less than t h e threshold ( ~ r / 6 ) .

In e i t h e r case, when t h e merge t akes p l ace , t h e mean of t h e corresponding d a t a i s adopted as t h e r e s u l t of re-est imat ion.

3 . Computer Simulation

3 . 1 . Condition f o r s imula t ion

I n t h e fol lowing, t h e a b i l i t y of the proposed a lgo r i thm i n e s t ima t ing t h e phasic dominants a t two o r fewer p o i n t s as w e l l as t h e v e c t o r d i r e c t i o n i n t h e p a r a l l e l - t y p e spread, i s examined. When t h e r e e x i s t s only one phas i c dominant, t h e r e is no problem i n whatever way t h e frequency o r s p a t i a l posi- t i o n is defined. On t h e o t h e r hand, when t h e r e exist two o r more phas i c dominants, t h e frequency d i f f e r e n c e and t h e s p a t i a l d i s - tance w i l l a f f e c t t h e r e s u l t . When t h e r e e x i s t two p a r a l l e l - t y p e spreads, t h e f r e - quency d i f f e r e n c e and t h e d i r e c t i o n s w i l l a f f e c t t h e r e s u l t f o r t h e d i r e c t i o n .

15

Page 7: Estimation for Spread Forms of Spindle Waves in Multichannel EEG

l""t-1 ....

Fig. 7. Example of s imula t ion t o estimate phas i c dominant by n o i s e l e v e l . ( ' * I denotes set phas i c dominant, '+' de- n o t e s measurement p o i n t , I - ' denotes es t imated phas i c domi-

nant . )

The s imula t ion is made by d i v i d i n g t h e cases . The phas i c dominant i s c l a s s i f i e d as w a s descr ibed ear l ier . The frequency rela- t i o n s a r e divided i n t o t h e cases w i t h t h e same, c l o s e and remote f r equenc ie s . The s p a t i a l d i s t a n c e i s d iv ided i n t o c l o s e and remote d i s t a n c e s . Consequently, t h e r e is a s i n g l e way of s imula t ion f o r one phas i c dominant, and s i x ways of s imula t ions f o r two phas i c dominants. For t h e p a r a l l e l - t y p e spread, t h e r e i s a s i n g l e way of s imula t ion f o r one phas i c dominant, and s i x ways of s imula t ions f o r two phas i c dominants. The number of measurement p o i n t s i s set as 5 x 5 i n accordance wi th t h e a c t u a l EEG r eco rd ing cond i t ion.

The s i g n a l s used i n t h e s imula t ions are as fol lows. I n t h e case of t h e r ad ia l - type spread, a s i n u s o i d a l wave is given a t each phas i c dominant, with amplitude decaying exponen t i a l ly w i t h t h e d i s t a n c e from t h e measurement p o i n t t o t h e phas i c dominant and with t h e phase delay p r o p o r t i o n a l t o t h e d i s t a n c e . With t h e s i g n a l a t t h e phas i c dominant as t h e r e f e r e n c e , a pseudo-Gaussian n o i s e i s added w i t h SN r a t i o of 0, 5, 10, 15, and 20 dB. When t h e r e e x i s t two phas i c dominants, t h e s i g n a l s are superposed.

I n t h e case of p a r a l l e l spread, a sinu- s o i d a l wave is given t o each measurement p o i n t , w i t h t h e same ampli tude and t h e phase delay along t h e propagat ion d i r e c t i o n . With t h e s i g n a l amplitude as t h e r e fe rence , a pseudo-Gaussian n o i s e is added w i t h SN r a t i o of 0, 5, 10, 15 and 20 dB. When t h e r e exist two v e c t o r s , the s i g n a l s are superposed.

3.2. Resu l t of s imula t ion and discus- s i o n s

The r e s u l t of s imula t ion f o r t he r a d i a l - type spread is discussed i n t h e following. Figure 7 shows a s imula t ion example of t h e e s t ima t ion f o r t h e phas i c dominant. The phas i c dominant i s set a t the p o i n t indi- cated by t h e a s t e r i s k . For t h e s i g n a l s w i th n o i s e w i t h v a r i o u s SN r a t i o s , t h e phas i c dominant i s est imated by the proposed algor- ithm, and t h e resu l t i s ind ica t ed by d o t s . The p l u s s i g n i n the f i g u r e i n d i c a t e s t h e d a t a measurement p o i n t . Twenty t i m e s siniu- l a t i o n were performed f o r each s e t of parame- ters.

It i s seen from t h e f i g u r e t h a t under t h e worst cond i t ion of SN r a t i o of 0 dB, the est imated p o i n t s scatter around t h e set p o i n t , b u t they concen t r a t e w i th the improve- ment of SN r a t i o . Even f o r t h e most s ca t - t e r ed case, t h e r e is l i t t l e s c a t t e r i n g com- pared wi th t h e d i s t a n c e between t h e measure- ment p o i n t s .

The s ta t i s t ica l e v a l u a t i o n of t h e re- s u l t of s imula t ion i s shown i n t h e following. Figure 8 compares t h e four methods i n terms of t h e accuracy of t h e e s t ima t ion of t he phasic dominant. F igu re 9 shows t h e e f f e c t of t h e n o i s e l e v e l . The upper f i g u r e s are t h e r a t i o of c o r r e c t e s t i m a t i o n ( i -e . , num- be r of c o r r e c t estimation/number of phasic dominants), and t h e lower f i g u r e s are t h e mean e r r o r of d i s t a n c e with t h e measurement d i s t a n c e as t h e u n i t . The number of simula- t i o n s i s 80 f o r t h e former and 100 f o r t h e l a t te r .

16

Page 8: Estimation for Spread Forms of Spindle Waves in Multichannel EEG

I---. A B C D

T

' a r : .6 I L-+-- -, I - -

0 5 10 15 2 O d B r

S/N r a t i o E s t i m a t i o n method

Fig. 8 Fig. 9

Fig. 8. Estimation of phasic dominants by p r e c i s e es t imat ion methods. Upper f i g u r e shows t h e r a t i o of c o r r e c t es t imat ion. Lower f i g u r e shows t h e est imat ion e r r o r of d i s tance . Simulation d a t a : (a ) one phasic dominant; (b) two phasic dominants with i d e n t i c a l frequency and near d i s tance ; (c) two phasic dominants with near frequency and near d i s tance ; (d) two phasic dominants with f a r frequency and near d i s tance ; (e ) two phas ic dominants with i d e n t i c a l frequency and f a r d i s tance ; ( f ) two phasic dominants with near frequency and f a r d i s tance ; and (g) two phas ic dominants with

f a r frequency and f a r d i s tance .

Fig. 9 . Estimation of phas ic dominants by noise level. Upper f i g u r e shows the r a t i o of c o r r e c t es t imat ion. Lower f i g u r e shows the est imat ion e r r o r of d i s tance .

Simulation d a t a are t h e same a s i n Fig. 8.

Comparing t h e r a t i o of c o r r e c t estima- t i o n , i t i s seen t h a t t h e r a t i o decreases with the degradat ion of t h e s imulat ion con- d i t i o n , independently of t h e method. I n methods A and B, t h e r a t i o of c o r r e c t esti- mation is low when t h e s p a t i a l d i s t a n c e is remote. This seems due t o t h e f a c t t h a t t h e est imat ion i s u n s a t i s f a c t o r y when t h e phasic dominant is c l o s e to t h e per iphery. Compar- ing the methods i n terms of t h e mean e r r o r of d i s t a n c e , method A is t h e b e s t , followed by method C , al though t h e r e is a d i f f e r e n c e depending on t h e condi t ions.

Comparing t h e e f f e c t of n o i s e i n terms of t h e r a t i o of c o r r e c t es t imat ion , t h e r e is l i t t l e d i f f e r e n c e due t o t h e noise l e v e l , al though t h e r e is a d i f f e r e n c e due t o t h e simulation condi t ion. Comparing t h e methods i n terms of t h e mean e r r o r of d i s tance , t h e e r r o r decreases with t h e increase of SN r a t i o . Viewed as a whole, method A seems t o be t h e b e s t f o r accura te es t imat ion of the phasic dominant.

The r e s u l t of s imulat ion of p a r a l l e l spread is discussed i n t h e following. Figure 10 shows the e f f e c t of no ise l e v e l . The upper f i g u r e is t h e r a t i o of cor rec t es t imat ion and t h e lower f i g u r e i s the mean e r r o r of angle , where t h e e r r o r i s defined a s t h e angle between the t h e o r e t i c a l and t h e estimated d i r e c t i o n s . The number of simula- t i o n s f o r each measurement d a t a i s 400.

Comparing t h e e f f e c t of the noise l e v e l i n t e r m s of t h e r a t i o of cor rec t es t imat ion, it is seen t h a t t h e c o r r e c t es t imat ion de- c reases with t h e degradation of t h e simula- t i o n condi t ion. The r a t i o increases with t h e increase of SN r a t i o and decrease of the noise l e v e l . Comparing i n terms of the mean e r r o r of angle , t h e e r r o r is l a r g e when two v e c t o r s a t t h e same frequency are d i r e c t e d t o completely d i f f e r e n t d i r e c t i o n s , s ince only one vec tor can be estimated. The e r r o r is s u f f i c i e n t l y small f o r o t h e r condi t ions.

17

Page 9: Estimation for Spread Forms of Spindle Waves in Multichannel EEG

c 0

w m E

C' vi

a w

v - u o a

O L '7 c c 1 u

m

.C

.r

m

c 0

w U a L

7LI

4 0 L 0 I L W

.r

.r "1 201

IUt - i----

0 5 10 15 20dB S / N r a t i o

F ig . 10. Es t ima t ion of spread d i r e c - t i o n s by n o i s e l e v e l . Upper f i g u r e de- n o t e s t h e r a t i o of c o r r e c t e s t ima t ion . Lower f i g u r e deno tes t h e e s t i m a t i o n e r r o r of a n g l e between set d i r e c t i o n and e s t ima ted one. S imula t ion d a t a : (h) one spread; ( i ) two sp reads w i t h iden- t i c a l frequency and nea r d i r e c t i o n ; ( j ) two sp reads w i t h n e a r frequency and n e a r d i r e c t i o n ; ( j ) two sp reads w i t h nea r frequency and nea r d i r e c t i o n ; (k) two sp reads w i t h f a r frequency and n e a r d i - r e c t i o n ; (1) two sp reads w i t h i d e n t i c a l frequency and f a r d i r e c t i o n ; (m) two sp reads w i t h nea r frequency and f a r d i s - t ance ; and (n) two sp reads w i t h f a r f r e -

quency and f a r d i s t a n c e .

Viewed as a whole, t h e r e s u l t of esti- mation i s degraded w i t h t h e deg rada t ion of t h e s imula t ion c o n d i t i o n . A s t o t h e a c t u a l spread of t h e s p i n d l e wave, one can ha rd ly expec t t h a t t h e c o n d i t i o n i s degraded both i n t e r m s of frequency and t i m e domains. Con- sequen t ly , t h e proposed a lgo r i thm w i l l g i v e a f a i r l y s a t i s f a c t o r y r e s u l t of e s t ima t ion .

4. Es t ima t ion of Spindle Wave Spread

4.1. Data f o r s p i n d l e wave

The s p i n d l e waves cons idered i n t h i s s tudy a r e those which appeared simultaneous- l y i n mul t i channe l s , i n t h e improved wave- form r e c o g n i t i o n method [ 7 ] w e proposed. The measurement p o i n t s i n t h e s l e e p EEG

c-

. .

0

Fig . 11. EEG measure ( l e f t ) and square measure ( r i g h t ) .

r eco rd ing were set a t 19 channels s p e c i f i e d by t h e i n t e r n a t i o n a l 10 - 20 method, a s i s shown i n F ig . 11 ( l e f t ) . To s impl i fy t h e a n a l y s i s , t h e measurement p o i n t s are ad jus t - ed t o 5 x 5 squa re g r i d measurement p o i n t s shown i n F ig . 11 ( r i g h t ) . The va lue a t t h e measurement p o i n t wi thout d a t a i s comple- mented by t h e neighborhood d a t a . I n o t h e r words, t h e a n a l y s i s is made assuming t h a t t h e t o t a l number of channels i s N = 25. The frequency components are assumed as 10 - 16 Hz, con ta in ing t h e band of t h e s p i n d l e wave.

4.2. Resu l t and d i s c u s s i o n s

This s tudy i s concerned wi th t h e e x i s t - ence of two k inds of s p i n d l e waves as w e l l as t h e i r d i s t r i b u t i o n s on t h e scope. The waves are d iv ided i n t o those wi th frequency components below 12.5 Hz and those wi th fre- quency component above 12.5 Hz. F igu re 12 shows t h e phas i c dominant of t h e s p i n d l e wave es t imated by t h e a c c u r a t e e s t i m a t i o n o f method A .

Figure 13 shows t h e r e s u l t where t h e mean p o s i t i o n due t o t h e frequency d i f f e r - ence on t h e scope i s c a l c u l a t e d from t h e d i s t r i b u t i o n of t h e phas i c dominant ob ta ined by t h e a c c u r a t e e s t ima t ion .

I n e i t h e r case , t h e mean p o s i t i o n of t h e p h a s i c dominant w i t h frequency component below 12.5 Hz d e v i a t e s t o t h e f r o n t a l d i r e c - t i o n , compared w i t h t h a t w i t h frequency com- ponent above 12.5 Hz. t h e s i s i s app l i ed t o t h e d i f f e r e n c e of those s p a t i a l p o s i t i o n s , and a r e s u l t was obta ined by t h e T - t e s t t h a t t h e r e is a s i g n i f i c a n t d i f f e r e n c e wi th t h e r e j e c t i o n r a t i o of 1 pe rcen t .

The t e s t i n g of hypo-

The r e s u l t sugges t s t h a t t h e s p i n d l e wave w i t h h ighe r frequency component appears t o t h e o c c i p i t a l s i d e on t h e scope compared wi th t h e one wi th lower frequency component. This ag rees wi th our p rev ious observation'.

18

Page 10: Estimation for Spread Forms of Spindle Waves in Multichannel EEG

* \ . . * :*: . *. " :.

\ . . .I. .& .

Fig. 12. S p a t i a l d i s t r i b u t i o n of phas i c dominants.

front under 12.5Hz

-.2

A B C D

Fig. 13. S p a t i a l p o s i t i o n of phas i c dominants by frequency components.

Fig. 14. Spread d i r e c t i o n of sp ind le waves.

F igu re 14 shows t h e spread of t h e pa ra l - l e l - type s p i n d l e wave. I n t h e f i g u r e , t h e wavenumber v e c t o r i s shown with t h e c e n t e r of t h e c i r c l e as t h e start. It is obvious t h a t t h e r e e x i s t s a l a r g e number of v e c t o r s d i r e c t e d t o t h e f r o n t a l f i e l d , and t h e r a t i o of t h e v e c t o r s i n t h e range of k 4 5 deg from t h e f r o n t a l d i r e c t i o n i s 77.4 percen t . Con- s i d e r i n g t h a t t h e wavenumber v e c t o r repre- s e n t s t h e spread of t h e s i g n a l i n d i c a t e s an i n t e r e s t i n g f a c t t h a t t h e r e ex i s t s a l a r g e number of s p i n d l e waves spreading from t h e o c c i p i t a l t o t h e f r o n t a l f i e l d .

5. Conclusions

This paper proposed a n e s t i m a t i o n algor- ithm t o i n d i c a t e t h e spread o f t h e s l e e p s p i n d l e wave. consider ing t h e work and f u n c t i o n assignment of t h e mul t i channe l s i g n a l p rocess ing in t h e frequency and s p a t i a l domains. Another

The algori thm is ob ta ined by

f e a t u r e is t h a t t h e phase information i s ex- t r a c t e d using t h e frequency-wavenumber spec- trum, and t h e phas i c dominant t o two p o i n t s as w e l l as t h e spread d i r e c t i o n are est imated based on a small number of measurement p o i n t s .

It w a s seen as a r e s u l t of a p p l i c a t i o n t o t h e s l e e p s p i n d l e wave t h a t most of t h e p a r a l l e l - t y p e s p i n d l e waves spread from t h e p a r i e t a l t o t h e f r o n t a l f i e l d . This i s an i n t e r e s t i n g p rope r ty and needs f u r t h e r in- v e s t i g a t i o n . When the r a d i a l spread i s c l a s s i f i e d according t o t h e frequency com- ponents, they concen t r a t e t o t h e c e n t r a l f i e l d f o r low f r equenc ie s and t o p a r i e t a l f i e l d f o r h igh frequencies . This ag rees with our p rev ious r e p o r t s and t h e t r a d i t i o n a l f i nd ings .

19

Page 11: Estimation for Spread Forms of Spindle Waves in Multichannel EEG

Problems l e f t f o r f u r t h e r s tudy are t h e r e l a t i o n between t h e work and f u n c t i o n as- signments of t h e mult ichannel s i g n a l process- i ng t o t h e frequency and s p a t i a l domains. The a lgo r i thm should be improved so t h a t as much information as p o s s i b l e i s r e t a i n e d . The spread types of t h e s p i n d l e waves should be

1.

2.

3.

i n v e s t i g a t e d f u r t h e r .

REFERENCES

Azumi and Shirakawa. Usefulness of s p i n d l e wave as t h e i n d i c a t i o n of s l e e p . Psych. Med., 25, pp. 169-176 (1983). Kobayashi, Endo, T s u j i , and Takahashi. A mathematical model of s l e e p . Tech. Rep. , I. E. C. I . E. , Japan, MBE86-4 (1986). A. Rechtschaffen and A. Kales (Tr. Seino). At las of Sleep EEG. Ishiyaku Publ. Co. (1965).

4.

5.

6.

7.

8.

9.

M. Hino. S p e c t r a l Analysis . Asakura Publ. Co. (1977). P. L . Nunez. E lec t r ic F i e l d s of t h e Brain. Oxford Univ. Press (1981). L. J . Piason and D . G. Chi lders . Fre- quency-Wavenumber Spectrum Analysis of EEG Mul t i e l ec t rode Array Data. IEEE Trans. Biomed. Eng., BME, 2, 3, pp.

I s h i i , Ueda, I s h i i and Terajima. A study of waveform recogn i t ion i n EEG a n a l y s i s . Jour . MEBE, 24, 7, pp. 524- 529 (1986). Ohta, Terashima, I s h i i , Ueda, I s h i i , Iwata, and Okada. Fea tu re e x t r a c t i o n of s l e e p s p i n d l e wave i n a l l - n i g h t s l eep EEG. C l in . EEG, 28, 8, pp. 527-533 (1986). Ueda, I s h i i and I s h i i . A study of m e a - surement method i n frequency a n a l y s i s of s l e e p s p i n d l e wave. Trans. (D), I . E . C . I . E . , Japan, J70-D, 10, pp. 19W- 1991 (Oct. 1987).

192-206 (1974).

AUTHORS (from l e f t t o r i g h t )

Yoshikazu Ueda graduated i n 1984 from t h e Dept. I n f . Eng., Fac. Eng., Nagoya I n s t i t u t e of Technology, and obtained a Master's degree i n I n f . Eng. from t h e r e i n 1986. P r e s e n t l y , he i s i n t h e d o c t o r a l program a t Nagoya I n s t i t u t e of Technology. H e is engaged i n r e sea rch on bio- l o g i c a l s i g n a l p rocess ing , e s p e c i a l l y t h e time-series of mult ichannel s l e e p EEG.

Naohiro I s h i i graduated i n 1963 from t h e Dept. Electrical Eng., Fac. Eng., Tohoku Uni- v e r s i t y , and obtained a D r . of Eng. degree from t h e r e i n 1968. H e w a s an A s s i s t a n t , Fac. of Med., Assoc. P ro f . i n 1975, and p r e s e n t l y i s a P ro f . of Elect. Comp. Eng., Fac. Eng., Nagoya I n s t i t u t e of Technology. H e i s engaged i n r e sea rch on threshold l o g i c , medical information processing and non l inea r processing.

20