24
Euler-Euler anisotropic Gaussian mesoscale direct numerical simulation of homogeneous cluster-induce gas-particle turbulence Bo Kong 1 , Heng Feng 2 , Jesse Capecelatro 3 , Olivier Desjardins 4 and Rodney O. Fox 1 1 Department of Chemical and Biological Engineering & Ames Laboratory Iowa State University, Ames, IA, USA 2 2Department of Thermal Engineering, Tsinghua University, Beijing, PRC 3 3 Center for Exascale Simulation of Plasma-coupled Combustion, University of Illinois at Urbana-Champaign, Urbana, IL, USA 4 4Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA 2015 NETL Workshop on Multiphase Flow Science Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 1 / 24

Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

Euler-Euler anisotropic Gaussian mesoscale directnumerical simulation of homogeneous cluster-induce

gas-particle turbulence

Bo Kong1, Heng Feng2, Jesse Capecelatro3, Olivier Desjardins4 andRodney O. Fox1

1Department of Chemical and Biological Engineering & Ames LaboratoryIowa State University, Ames, IA, USA

22Department of Thermal Engineering, Tsinghua University, Beijing, PRC

33 Center for Exascale Simulation of Plasma-coupled Combustion, University of Illinois atUrbana-Champaign, Urbana, IL, USA

44Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA

2015 NETL Workshop on Multiphase Flow Science

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 1 / 24

Page 2: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

Completed Tasks in FY15

MFIX-QBMM

Created collection of gas-particle solvers using quadrature-based moment methods

Migrated from MFIX-2013 to current MFIX git development repository

Developed comprehensive post-processing capabilities using Python andVTK package

Enabled code to run in both DMP and SMP mode

Developed capability of handling non-uniform grid

Provided users with a full range of drag models

Developed realistic wall boundary condition

Validated code against Euler-Lagrangian simulations

Developed generalized code structure for multiple MFIX-QBMM solvers

Developed algorithm to extend QBMM to dense regime

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 2 / 24

Page 3: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

Outline

1 Motivation

2 EE-AG MethodsGoverning Equations and Moments MethodAnisotropic Particle Velocity DistributionKinetic flux, Forces and Collision Model

3 Homogeneous Gravity-Driven Flow : A Domain Size Study

4 Summery and Future Work

5 Acknowledgements

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 3 / 24

Page 4: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

Euler-Euler Anisotropic Gaussian (EE-AG) Mesoscale DNS

MotivationMFIX-QBMM

Validate anisotropic Gaussian particle velocity assumption in EQMOMpolydisperse solver in MFIX-QBMM

Gas-particle turbulence model

Disadvantages of Euler-Lagrangian DNS for multiphase turbulence modeling1 Sophasicated filter techniques has to be used to extract Eulerian particle

phase information2 Computationally expensive when mass loading is high

A novel approach to traditional TFM-KT

The isotropic particle velocity assumption is often not valid, specially forgravity-driven flows

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 4 / 24

Page 5: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

EE-AG Methods : Governing Equations

Gas phase: Continuity and momentum transport equations

∂tρgεg +∇ · ρgεgUg = 0

∂tρgεgUg +∇ · ρgεgUg ⊗ Ug = ∇ · εgτ g −∇p + ρgεgg + Mlb

Particle phase: Kinetic equation for velocity NDF f (v)

∂f (v)

∂t+ v · ∂f (v)

∂x+

∂v· f (v) A = S

where A represents acceleration due to forces acting on each particle, Srepresents other possible source terms, e.g. particle collisions

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 5 / 24

Page 6: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

EE-AG Methods : Moments Method

Velocity Moments

mi,j,k =

∫vi

xvjyvk

y f (v) dv

Lower-order moments have particular physical significance:m0 = εp, m1,0,0 = εpUp, m0,1,0 = εpVp, m0,0,1 = εpWp

Moments transport equation:

∂mi,j,k

∂t+∂mi+1,j,k

∂x+∂mi,j+1,k

∂y+∂mi,j,k+1

∂z= Fi,j,k

Fi,j,k =

∫vi

xvjyvk

z[iv−1

x (Ax) + jv−1y (Ay) + kv−1

z (Az)]

f (v) dv

Quadrature-Based Moment Methods (QBMM) are introduced to attainclosure of higher-order moments (spatial fluxes) and Fi,j,k

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 6 / 24

Page 7: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

EE-AG Methods : Anisotropic Particle Velocity Distribution

Distribution function:

g(u− µ,Σ) =1

(2π)3/2√|Σ|

exp

[−(u− µ

)T (u− µ)2Σ

]

where µ is the mean, Σ is the velocity covariance tensor.

Ten velocity moments:

M0, M1 =

[M1,0,0M0,1,0M0,0,1

], M2 =

[M2,0,0 M1,1,0 M1,0,1M1,1,0 M0,2,0 M0,1,1M1,0,1 M0,1,1 M0,0,2

]

Moment inversion:

εp = M0, µ =M1

M0, Σ =

M2

M0− µ⊗ µ, Θ =

13

tr(Σ)

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 7 / 24

Page 8: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

EE-AG Methods : 3-D Gauss-Hermite Quadrature

g(u− µ,Σ) =

Nhq∑i=1

Nhq∑j=1

Nhq∑k=1

ρiρjρkδ(u,A ·

ui

uj

uk

+ µ) =

N3hq∑

α=1

ραδ(u, uα)

A 2-D example : µ = [0; 0] ,Θ = 1.0, Σ = [0.9, 0.6; 0.6, 1.1]

Cholesky : A · AT = Σ Spectral : S · Λ · ST = Σ, A = S ·√

Λ,

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 8 / 24

Page 9: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

EE-AG Methods: Kinetics-Based Moment Fluxes

Spatial moment fluxes are decomposed into two contributions corresponding topositive and negative velocity in each spatial direction:

Fxi,j,k = Qx,+

i,j,k + Qx,−i,j,k

Qx,+i,j,k =

∫ ∞0

ui+1vjwkf (u) du =

N3hq∑

α=1

max(uα, 0)ραuiαvjαwk

α

Qx,−i,j,k =

∫ 0

−∞ui+1vjwkf (u) du =

N3hq∑

α=1

min(uα, 0)ραuiαvjαwk

α

Realizablity condition: ∆t = CFLminα

(∆x|uα|

,∆y|vα|

,∆z|wα|

)

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 9 / 24

Page 10: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

EE-AG Methods: Drag and Gravity

Contributions to evolution of moments due to drag force acting on eachparticle are directly computed, operating on Hermite quadrature velocities u

by solving an ODE:dup

dt= Ad + g = KD

(ug − up

)+ g

u′p = upe−KD∆t +(

1− e−KD∆t)(

ug +g

KD

)= upe−KD∆t + ut

If a constant Stokes drag model is used, which KD is independent of up, then,

µ′ = µpe−KD∆t + ut

Σ′ = Σe−2KD∆t + 2e−KD∆tµp⊗ ut + ut ⊗ ut

And momentum exchange to gas phase can be calculated as following,

FD,pg =ρpπd3

p

6εpµp

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 10 / 24

Page 11: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

EE-AG Methods: Particle Collisions

Collision source term: BGK model

C =1τp

(f ∗ − f )

Σ′ =12g0εp

√Θ√

πdp

(Λ− Σ

),

Λ = ω2ΘpI + (ω2 − 2ω + 1)Σ, ω =1 + e

2

Collisional flux term: collisional pressure tensor

Pcoll

=45ωε2

pg0

(3ΘpI + 2Σ

)dM1

dt= ∇ · P

coll

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24

Page 12: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

Homogeneous Gravity-Driven Flow: A Domain Size Study

Influence of domain size on CIT statistics

In gravity-driven gas solids flows, slip velocity between clusters and gas driveturbulence, referred to as cluster-induced turbulence (CIT)

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 12 / 24

Page 13: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

Euler-Lagrange Mesoscale DNSNGA2

Eulerian fluid solverArbitrarily high-order DNS/LES codeConservation of mass, momentum, kinetic energyLagrangian dynamic LES model of Elie etal.(2005)Effective viscosity of Gibilaro et al.(2007) :ν∗g = νg

[(1− εp)

−2.8 − 1.0]

Lagrangian particle tracking2nd-order Runge-Kutta for particle ODEsSoft-sphere collision modelLinear drag : A =

(ug − up

)/τD

Interphase exchangeFilter based on the convolution of mollificationand diffusionFully conservative, implicit treatment

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 13 / 24

Page 14: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

Simulation Configuration

3D triply-periodic domain

Gas mass flow rate forced :⟨εgug

⟩= 0

Constant Stokes drag model : τD = ρpd2p/(18µg)

Re =ρgτDgdp

µg= 0.5, φ =

ρpεp

ρgεg= 10.1, e = 0.9

V = τpg = 0.1m/s, L = τ 2p g = 2.5mm

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 14 / 24

Page 15: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

Instantaneous particle volume fraction field

Case2 Case 4 Case 6

EL EE-AG EL EE-AG EL EE-AG

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 15 / 24

Page 16: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

Comparison between EL and EE-AG simulation results

Particle phase-averaged settlingvelocity,

⟨up,1⟩

p /V, V = τDg

Deviation of volume fractionfluctuations

D =

(⟨α

′2p

⟩1/2− σp

)/ 〈αp〉

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 16 / 24

Page 17: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

Comparison between EL and EE-AG simulation resultsTotal fluctuation energy

κp/V2, κp =⟨

u′′p · u′′p

⟩p

+ 3/2Θp

kg/V2, kg =⟨

u′′′g · u′′′g

⟩g

Granular energy contribution tototal particle fluctuating energy

3Θp

2κp

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 17 / 24

Page 18: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

Paricle Volume Fraction Distribution

Case 4 Case 5 Case 6

Case 6 ⟨α′2p⟩/ 〈αp〉2

⟨α′3p⟩/⟨α′2p⟩3/2 ⟨

α′4p⟩/⟨α′2p⟩2

EL 0.8373 2.3672 12.1904EE-AG 0.7438 2.0864 9.9130

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 18 / 24

Page 19: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

Radial Distribution Function : Case 5, 6

g0 (r) =〈αp (x, t)αp (x + r, t)〉〈αp (x, t)〉 〈αp (x + r, t)〉

Streamwise direction Spanwise direction

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 19 / 24

Page 20: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

Particle Phase Velocity Cross-correlations : Case 5, 6

Rpi,j (r) =

〈αp (x, t)αp (x + r, t)〉 u′′p,i (x, t) u′′p,j (x + r, t)

〈αp (x, t)αp (x + r, t)〉Streamwise direction Spanwise direction

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 20 / 24

Page 21: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

Particle Velocity Anisotropy : Case 6

⟨u′′2p,1

⟩p

(2kp)

⟨u′′2p,2

⟩p

(2kp)

⟨u′′2p,1

⟩p⟨

u′′2p,2

⟩p

EL 0.7878 0.1061 7.4251EE-AG 0.8453 0.07735 10.9282

〈Σ11〉p(3 〈Θp〉)

〈Σ22〉p(3 〈Θp〉)

〈Σ11〉p〈Σ22〉p

EL 0.5284 0.2358 2.2409EE-AG 0.6095 0.1952 3.1224

Particle velocity distribution in XYplane

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 21 / 24

Page 22: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

Particle Compressive Heating

EL

EE-AG : αp, Θp

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 22 / 24

Page 23: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

Summary and Future Work

ConclusionsNovel approach to model gas-particle flows with quadrature-basedmoment methods using Anisotropic Gaussian particle velocityassumptionComparison between EL and EE-AG methods has demonstratedassumption for particle velocity is valid and this novel method can beused to perform mesoscale DNS for gas-particle flows

Plans for future work

Extend QBMM models to dense regimePerform mesoscale DNS of wall-bounded channel flow to studygas-particle turbulence, such as effect of size distribution on cluster sizeDetailed validation of EQMOM based polydisperse solver with ELsimulation data for polydisperse gas-particle flows, to study particle sizeeffect on clusteringImplement a new multiphase turbulence model, and validate against ELsimulations

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 23 / 24

Page 24: Euler-Euler anisotropic Gaussian mesoscale direct ... · Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 11 / 24 Homogeneous Gravity-Driven Flow: A Domain Size

Acknowledgment

Financial support from DOE - National Energy Technology Laboratory(Contract Number: DE-AC02-07CH11358)

Tasks completed in FY15

Migrated from MFIX-2013 to current MFIX git development repository

Developed comprehensive post-processing capabilities using Python andVTK

Prepared documentation and tutorials for code

Enabled code to run in both DMP and SMP mode

Developed capability of handling non-uniform grid

Provided users with a full range of drag models

Developed realistic wall boundary condition

Validated code against Euler-Lagrangian simulations

Kong and Fox (AL-14-330-058) EE-AG Mesoscale DNS August 12-13, 2015 24 / 24