33
EURO Super Beam studies (WP2) 15/05/2012 M. Dracos 1 Marcos Dracos IPHC-IN2P3/CNRS, Strasbourg (on behalf of EUROν WP2)

EURO Super Beam studies (WP2)

Embed Size (px)

DESCRIPTION

Marcos Dracos IPHC-IN2P3/CNRS, Strasbourg (on behalf of EURO ν WP2). EURO  Super Beam studies (WP2). Super Beam: conventional MW power neutrino beam. p. SPL (4-5 GeV, 4 MW). Accumulator ring. proton driver. Magnetic horn capture (collector). p (50 Hz). Target. hadrons. n, m. - PowerPoint PPT Presentation

Citation preview

Page 1: EURO   Super Beam studies (WP2)

EURO Super Beam studies

(WP2)

15/05/2012 M. Dracos 1

Marcos DracosIPHC-IN2P3/CNRS, Strasbourg

(on behalf of EUROν WP2)

Page 2: EURO   Super Beam studies (WP2)

Super Beam: conventional Super Beam: conventional MW power neutrino beamMW power neutrino beam

15/05/2012 M. Dracos 2

SPL (4-5 GeV, 4 MW)

Target

~300 MeV beam to far detector

decay tunnel

Accumulatorring

Magnetichorn capture(collector)

proton driver

hadrons

p (50 Hz)SPL Super Beam

p Decay tunnel

proton beam

target

hadrons

hadron collector(focusing)

Detector

physics

Page 3: EURO   Super Beam studies (WP2)

Neutrino Super Beam from HP-SPL

15/05/2012 M. Dracos 3

SPL proton kinetic energy: ~4 GeV

Neutrino energy: ~300 MeV

p(

e

)

distance (km)

~130 km

m2sun=7.7x10-5 eV2

m2atm=2.4x10-3 eV2

23=45°13=10°CP=0

LAGUNA DS

Page 4: EURO   Super Beam studies (WP2)

Combination of Super Beam with Combination of Super Beam with Beta BeamBeta Beam

15/05/2012 M. Dracos 4

2 beams

1 detector

2 beams

1 detector

Super BeamBeta Beam (~100)

combination of CP and T violation tests

Bonus: the unoscillated neutrinos of one facility can be used to well study the efficiencies of the other one

similar spectrum

Page 5: EURO   Super Beam studies (WP2)

WP2 activitiesWP2 activities

15/05/2012 M. Dracos 5

• Beam simulation and optimization, physics sensitivities

• Beam/target interface• Target and target station design• Horn design• Target/horn integration• Cost• Safety

Page 6: EURO   Super Beam studies (WP2)

The WP2 teamThe WP2 team• Cracow University of Technology• STFC RAL• IPHC Strasbourg• Irfu-SPP, CEA Saclay• external partners

E. Baussan, O. Besida, C. Bobeth, O. Caretta, P. Cupial, T. Davenne, C. Densham, M. Dracos, M. Fitton, G. Gaudiot, M. Kozien, B. Lepers, A. Longhin, P. Loveridge, F. Osswald, P. Poussot, M. Rooney, B. Skoczen, G. Vasseur, N. Vassilopoulos, A. Wroblewski, J. Wurtz, V. Zeter, M. Zito

Page 7: EURO   Super Beam studies (WP2)

Technological ChallengeTechnological Challenge

15/05/2012 M. Dracos 7

• Can we conceive a neutrino beam based on a multi-MW proton beam ?

• Can we design a target for a multi-MW proton beam ?• Can we do it with a reliable design without compromising

the physics reach ?• Target

• huge energy deposition (300-1000 J/cm3/pulse)• Severe problems from: sudden heating, stress,

activation• Solid versus liquid targets• cooling

• Horn• cooling• vibrations• pulser (up to 350 kA, 50 Hz)

• Safety• Lifetime (supposed to run for 10 years)

Page 8: EURO   Super Beam studies (WP2)

Evolution of the system

15/05/2012 M. Dracos 8

~300-350 kA

112

cm

230 cm

simpler optimized shape with reduced current!

Hg target solid target

horn+reflector

initial design

final design

solid target

Page 9: EURO   Super Beam studies (WP2)

How to mitigate the power effect

15/05/2012 M. Dracos 9

4 target/horn system (4x4 m2) with single decay tunnel (~25 m)

solid targets able to afford up to ~1.5 MW proton beam

•send 4 MW/system every 50/4 Hz• in case of failure of one horn/target,

continue with the 3 remaining ones sharing the 4 MW power

more expensive but more reliable system

we get rid of Hg, but what about particle production?

p

Page 10: EURO   Super Beam studies (WP2)

Comparison Mercury/Carbon

• neutrino intensity is higher with graphite• neutrino contamination is lower• high energy tail for graphite is more important

15/05/2012 10M. Dracos

neutrino productiongraphite target must be longer (76 cm,2 interaction lengths)

Page 11: EURO   Super Beam studies (WP2)

neutron flux dramatically reduced wrt Hg! (~ x15)

Released power:•Hg: ~ 1 - 0.6 MW•C : ~ 0.8 - 0.1 MW•lower for graphite !

Graphite Mercury

The Bonus…

15/05/2012 11M. Dracos

carbonmercury

neutron production

Page 12: EURO   Super Beam studies (WP2)

From Liquid to Solid From Liquid to Solid TargetsTargets

15/05/2012 M. Dracos 12

Protons

Current of 300 kA

To decay channel

Hg Target B1/R

B = 0

cooling system

Free mercury jet

Packed bed canister in symmetrical transverse flow configuration, titanium alloy spheres

0 (MPa) 220 (MPa)

Beryllium or Graphitecylinder

pencil like Beryllium target

Page 13: EURO   Super Beam studies (WP2)

Solid TargetSolid Target

15/05/2012 M. Dracos 13

Packed bed canister in symmetrical transverse flow configuration (titanium alloy spheres)

Helium Flow

Helium VelocityMaximum flow velocity =

202m/sMaximum Mach Number < 0.2

Helium Gas TemperatureTotal helium mass flow = 93

gr/sMaximum Helium temperature

= 584°CHelium average outlet

Temperature = 109°C

First tests with beam in the new HiRadMat@SPS facility at CERN in 2014

Page 14: EURO   Super Beam studies (WP2)

Studies on hornStudies on horn

15/05/2012 M. Dracos 14Eigen frequency studies

Horn displacement (max. 1.2 mm)

strip lines

cooling tubes

Page 15: EURO   Super Beam studies (WP2)

4-Horn system4-Horn system

15/05/2012 M. Dracos 15Displacement studies

supporting structure

Page 16: EURO   Super Beam studies (WP2)

Layout

15/05/2012 16M. Dracos

dec

ay t

un

nel

(25

m)

spare area

beam

target/horn station

shielding

horn power supply and electronics

gallery

hot cell

Control Room

Office Space

Delivery Access

Hot cell operator

room

Power supply room

Horns and collimator

s

Truck unloading area

Beam Direction

Hot cell

Morgue

Pump Hous

e

Main Hall

Ground Level

Ground Level

Crane

Beam dump

building here

T2K like installation

Page 17: EURO   Super Beam studies (WP2)

Layout

15/05/2012 17M. Dracos

Control Room

Office SpaceDelivery Access

Hot cell operator room

Power supply room

Horns and collimators

Truck unloading area

Beam Direction

Hot cell

Morgue

Pump House

Main Hall

Ground Level

Ground Level

Crane

Beam dump building here

Page 18: EURO   Super Beam studies (WP2)

Radiation Studies

15/05/2012 18M. Dracos

Ptot=3.4 MWvertical view

Helium Vessel + Iron Plates

Upstream Iron Shield

Graphite Beam Dump

4m x 4m x 3.2m

Outer Iron Shield

beam dump 780 kW

Graphite blocks, helium conduction across 2 mm gaps, Tmax = 575 °C, tensile stress < 1.56 MPa

Hg

Page 19: EURO   Super Beam studies (WP2)

Safety and Activation studies

15/05/2012 19M. Dracos

after 1 day after 1 week

after 1 month after 6 months

around the target station after 200 running days (1 year)

Page 20: EURO   Super Beam studies (WP2)

15/05/2012 M. Dracos 20

Power Supply for horn pulsingPower Supply for horn pulsing(another challenge)(another challenge)

8

MODULES

► For each HORN : current of 350kA max at 12.5HZ

► each MODULE delivers a current of 44kA max at F=50HZ

•energy recuperation (>90%) and reinjection•lifetime > 13 Bcycles (10 years, 200 days/year)

Page 21: EURO   Super Beam studies (WP2)

4-proton lines

15/05/2012 21M. Dracosp

K1K2

D1

T1

T3

T2

T4

D3D4

D2

Energy 4-5 GeV

Beam Power 4 MW

Proton per pulse 1.1 x 10+14

Rep. rate 50 Hz

Pulse duration 3.2 μs

Beam shape Gaussian

Emittances rms 3π mm mrad**

4 mmSigma

3.2 μsPulse duration

12.5 HzRep. rate

GaussianBeam shape

1.5 cmTarget radius

78 cmTarget length

4 mmSigma

3.2 μsPulse duration

12.5 HzRep. rate

GaussianBeam shape

1.5 cmTarget radius

78 cmTarget length

Beam rigidity:16.16 T.m (4 GeV)17.85 T.m (4.5 GeV)

Zmin= 0.00 m Zmax= 40.00 m Xmax= 40.0 cm Ymax= 40.0 cm Ap * 1.00 Fri Mar 09 10:59:03 2012

K1

D1

QUAD

QUAD

QUAD

D DDD

Elian Kickers

Zmin= 0.00 m Zmax= 40.00 m Xmax= 40.0 cm Ymax= 40.0 cm Ap * 1.00 Fri Mar 09 10:59:03 2012

K1

D1

QUAD

QUAD

QUAD

D DDD

Elian Kickers

Kicker Dipole

z (m)20

QP1 QP2 QP3

x (cm)

y (cm)

32

16

24

08

0

16

24

32

08

Configuration 3: K-D-Q-Q-Q-T

Page 22: EURO   Super Beam studies (WP2)

15/05/2012 M. Dracos 22

Neutrino Spectra

horn on/off

neutrinos anti-neutrinos

Page 23: EURO   Super Beam studies (WP2)

15/05/2012 M. Dracos 23

Physics Performance

better results with the new horn geometry and target

➟very promising (baseline)

final design

Page 24: EURO   Super Beam studies (WP2)

15/05/2012 M. Dracos 24

Physics Performance

sin22θ13 = 0.1arXiv:1203.5651v1

Page 25: EURO   Super Beam studies (WP2)

15/05/2012 M. Dracos 25

Physics Performance

arXiv:1110.4583

• SPL-1: CERN to Fréjus (130 km)• SPL-2: CERN to Canfranc (650 km)

1 Mton WC detector (440 kton fiducial), 5% syst.

sgn Δm2

Page 26: EURO   Super Beam studies (WP2)

15/05/2012 M. Dracos 26

Mass HierarchyMass HierarchyarXiv:hep-ph/0603172v3

• solid line: LBL+atm.• dashed line: LBL

For sin22θ13 = 0.1, it is quite likely that with ~Mt yr atm neutrinodata from a WC detector we will determine the hierarchy (T. Schwetz)

Page 27: EURO   Super Beam studies (WP2)

HP-SPL Super Beam at CERNHP-SPL Super Beam at CERN

15/05/2012 M. Dracos 27

near detector

Page 28: EURO   Super Beam studies (WP2)

After EUROAfter EURO

15/05/2012 M. Dracos 28

• R&D is needed for:– target

– horn

– horn pulsing system

• When?– next relevant EU call (Horizon2020)?

Page 29: EURO   Super Beam studies (WP2)

ConclusionsConclusions

15/05/2012 M. Dracos 29

• The SPL to Fréjus Super Beam project is under study in FP7 EUROnu WP2:– Conventional technology– Many synergies with other projects– Very competitive CP sensitivity

• Work in EURO:– physics performance has been improved.

– the proposed system is now feasible and reliable

• We have started freezing all elements of this facility.

• Cost estimation very soon.

• The physics potential of this project is very high (also for astrophysics) especially in case of SB/BB combination.

• R&D is needed.

Page 30: EURO   Super Beam studies (WP2)

EndEnd

15/05/2012 M. Dracos 30

Page 31: EURO   Super Beam studies (WP2)

HP-SPL for Neutrino BeamsHP-SPL for Neutrino Beams

15/05/2012 M. Dracos 31

HH- - sourcesource RFQRFQ chopperchopper DTLDTL CCDTLCCDTL PIMSPIMS

3 MeV 50 MeV 102 MeV

352.2 MHz

β=0.65β=0.65 β=1.0β=1.0

643 MeV 5 GeV

704.4 MHz

160 MeVLinac4 (160 MeV) SC-linac (4 MW, 5 GeV)

SPS

PS2

SPL

Linac 4

PS

ISOLDE

T= 2.2 GeVIDC = 13 mA (during the pulse)IBunch= 22 mA3.85 108 protons/bunchlb(total) = 44 ps*H,V=0.6 m r.m.s

(140 + 6 empty)per turn

845 turns( 5 140 845 bunches per pulse)

no beam

2.8 ms

20 ms

140 bunches

20 ms

3.2 s

Charge exchangeinjection

845 turns

PROTON ACCUMULATORTREV = 3.316 s

(1168 periods @ 352.2 MHz)

1 ns rms(on target)

22.7 ns

TARGET

H+140 bunches1.62 1012 protons/bunchlb(rms) = 1 ns (on target)

Fast ejection

KICKER20 ms

3.3 slb(total) = 0.5 ns

DRIFT SPACE+

DEBUNCHER

H-

11.4 ns

22.7 ns

5bunches

Fast injection(1 turn)

BUNCH COMPRESSORTREV = 3.316 s

(1168 periods @ 352.2 MHz)

BUNCHROTATIONRF (h=146)

Fast ejection

RF (h=146)

3 emptybuckets

17.2 ms

+ accumulator (and compressor for NF)under construction(high power already foreseen)

• CDR for 2.2 and 3.5 GeV HP-SPL already published (CERN 2000-012, CERN 2006-006)

Page 32: EURO   Super Beam studies (WP2)

15/05/2012 M. Dracos 32

The MEMPHYS ProjectThe MEMPHYS Project(within FP7 LAGUNA DS)(within FP7 LAGUNA DS)

Mainly to study:

•Proton Decay (GUT)

• up to ~1035 years lifetime

•Neutrino properties and Astrophysics

• Supernovae (burst + "relics")

• Solar neutrinos

• Atmospheric neutrinos

• Geoneutrinos

• neutrinos from accelerators (Super Beam, Beta Beam)

Water Cerenkov Detector with total fiducial mass: 440 kt:•3 Cylindrical modules 65x65 m•Readout: 3x81k 12” PMTs, 30% geom. cover.(#PEs =40% cov. with 20” PMTs).

Water Cerenkov Detector with total fiducial mass: 440 kt:•3 Cylindrical modules 65x65 m•Readout: 3x81k 12” PMTs, 30% geom. cover.(#PEs =40% cov. with 20” PMTs).

(arXiv: hep-ex/0607026)

Page 33: EURO   Super Beam studies (WP2)

15/05/2012 M. Dracos 33

Physics Performance

P. Huber

Enrique Fernandez-Martinez

sin22θ13 = 0.1