21
Assessment of the reliability of climate predictions based on comparisons with historical time series D. Koutsoyiannis, N. Mamassis, A. Christofides, A. Efstratiadis, S.M. Papalexiou Department of Water Resources and Environmental Engineering National Technical University of Athens (www.itia.ntua.gr) European Geosciences Union General Assembly 2008 Vienna, Austria, 1318 April 2008 Session IS23: Climatic and hydrological perspectives on longterm changes

European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

Assessment of the reliability of climate predictions based on comparisons with historical time series

D. Koutsoyiannis, N. Mamassis, A. Christofides, A. Efstratiadis, S.M. PapalexiouDepartment of Water Resources and Environmental Engineering National Technical University of Athens  (www.itia.ntua.gr)

European Geosciences Union General Assembly 2008Vienna, Austria, 13‐18 April 2008 Session IS23: Climatic and hydrological perspectives on long‐term changes

Page 2: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

1. AbstractAs falsifiability is an essential element of science (Karl Popper), many have disputed the scientific basis of climatic predictions on the grounds that they are not falsifiable or verifiable at present. This critique arises from the argument that we need to wait several decades before we may know how reliable the predictions will be. However, elements of falsifiability already exist, given that many of the climatic model outputs contain time series for past periods. In particular, the models of the IPCC Third Assessment Report have projected future climate starting from 1990; thus, there is an 18‐year period for which comparison of model outputs and reality is possible. In practice, the climatic model outputs are downscaled to finer spatial scales, and conclusions are drawn for the evolution of regional climates and hydrological regimes; thus, it is essential to make such comparisons on regional scales and point basis rather than on global or hemispheric scales. In this study, we have retrieved temperature and precipitation records, at least 100‐year long, from a number of stations worldwide. We have also retrieved a number of climatic model outputs, extracted the time series for the grid points closest to each examined station, and produced a time series for the station location based on best linear estimation. Finally, to assess the reliability of model predictions, we have compared the historical with the model time series using several statistical indicators including long‐term variability, from monthly to overyear (climatic) time scales. Based on these analyses, we discuss the usefulness of climatic model future projections (with emphasis on precipitation) from a hydrological perspective, in relationship to a long‐term uncertainty framework.

Page 3: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

2. Rationale• Falsifiability is an essential element of science (Karl Popper).• The hypothesis that climate is deterministically predictable and its 

implementation through the General Circulation Models (GCMs) are central on current scientific scene.

• However, as climatic predictions are cast for horizons of several decades (most typically on a hundred years) they may be not falsifiable or verifiable at present. 

• Therefore elements of falsifiability for the present are urgently needed.• These can be sought on existing long time series of the past and testing of 

GCM performance in reproducing past climatic behaviours.• In particular, the models of the IPCC Third Assessment Report (TAR) have 

projected future climate starting from 1990; thus, there is an 18‐year period for which comparison of model outputs and reality is possible. 

• Besides several TAR model runs include longer past periods with historical inputs (the situation is more complicated with the IPCC Fourth Assessment Report (AR4)).

• In this study we present such comparisons for eight locations belonging to different climates worldwide that have temperature and rainfall records of 100 years or more.

Page 4: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

3. Possible objections

Temperature change

Precipitation change

Runoff change

• According to IPCC AR4 (Randall et al., 2007) GCMs have better predictive capacity for temperature than for other climatic variables (e.g. precipitation) and their quantitative estimates of future climate are particularly credible at continental scales and above. 

• However this did not prevent IPCC to give regional projections, not only of temperature but also of rainfall and even of runoff (Displayed: parts of Figs. 10.8 and 10.12 of Christensen et al., 2007; projected changes for 2080‐99 relative to 1980‐99 for SRES scenario A1B).

Page 5: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

4. Methodology1. Collection of monthly temperature and precipitation records (preferably 100‐year 

long or more and as complete  as possible) from a number of representative stations worldwide (available on the Internet), with different climatic characteristics.

2. Filling‐in of few missing values (with average monthly ones).3. Retrieval of a number of climatic model outputs for historical periods (available on 

the Internet ‐ not those merely referring to future periods under diverse hypothetical scenarios).

4. Extraction of the time series for the four grid points closest to each examined station (roughly following a technique by Georgakakos, 2003, for making inferences on small regional scales from coarser climate model scales).

5. Production of time series for the station location based on best linear estimation, i.e. optimizing the weight coefficients λ1, λ2, λ3, λ4 (with λ1 + λ2 + λ3 + λ4 = 1) in a linear relationship

where  x̃ is the best linear estimate of the historical value x, and x1, x2, x3, x4 are the model outputs for the four closest grid points; optimization is done on the basis of the coefficient of efficiency, defined as

6. Graphical comparisons on a climatic (30‐year moving average) time scale.7. Calculation and comparison of historical and model statistical indicators from 

monthly to overyear (climatic) time scales, including long‐term variability.

x̃ = λ1 x1 + λ2 x2 + λ3 x3 + λ4 x4

Eff = 1 – (mean square error in prediction)/(variance of historical series)

Page 6: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

5. Study locations

Temperature scale: 0‐40 oC (red charts)Precipitation scale: 0‐300 mm (blue charts)Data sources: www.knmi.nl; www.ncdc.noaa.gov/oa/climate/Map source: www.lib.utexas.edu/maps/world.html

Albany (USA)

Vancouver (USA) Aliartos

(Greece)

Manaus(Brazil)

Matsumoto (Japan)

Alice Springs (Australia)

Khartoum(Sudan)

Colfax (USA)

0

5

10

15

20

25

30

35

40

JAN FEB MAR APR MAY JUN JUL AUG SEP OKT NOV DEC

TEM

PER

ATU

RE

(oC

)

0

50

100

150

200

250

300

JAN FEB MAR APR MAY JUN JUL AUG SEP OKT NOV DEC

PREC

IPIT

ATI

ON

(mm

)

0

5

10

15

20

25

30

35

40

JAN FEB MAR APR MAY JUN JUL AUG SEP OKT NOV DEC

TEM

PER

ATU

RE

(oC

)

0

50

100

150

200

250

300

JAN FEB MAR APR MAY JUN JUL AUG SEP OKT NOV DEC

PREC

IPIT

ATI

ON

(mm

)

0

5

10

15

20

25

30

35

40

JAN FEB MAR APR MAY JUN JUL AUG SEP OKT NOV DEC

TEM

PER

ATU

RE

(oC

)

0

50

100

150

200

250

300

JAN FEB MAR APR MAY JUN JUL AUG SEP OKT NOV DEC

PREC

IPIT

ATI

ON

(mm

) 0

5

10

15

20

25

30

35

40

JAN FEB MAR APR MAY JUN JUL AUG SEP OKT NOV DEC

TEM

PER

ATU

RE

(oC

)

0

50

100

150

200

250

300

JAN FEB MAR APR MAY JUN JUL AUG SEP OKT NOV DEC

PREC

IPIT

ATI

ON

(mm

)

0

5

10

15

20

25

30

35

40

JAN FEB MAR APR MAY JUN JUL AUG SEP OKT NOV DEC

TEM

PER

ATU

RE

(oC

)

0

50

100

150

200

250

300

JAN FEB MAR APR MAY JUN JUL AUG SEP OKT NOV DEC

PREC

IPIT

ATI

ON

(mm

)

0

5

10

15

20

25

30

35

40

JAN FEB MAR APR MAY JUN JUL AUG SEP OKT NOV DEC

TEM

PER

ATU

RE

(oC

)

0

50

100

150

200

250

300

JAN FEB MAR APR MAY JUN JUL AUG SEP OKT NOV DEC

PREC

IPIT

ATI

ON

(mm

)

0

5

10

15

20

25

30

35

40

JAN FEB MAR APR MAY JUN JUL AUG SEP OKT NOV DEC

TEM

PER

ATU

RE

(oC

)

0

50

100

150

200

250

300

JAN FEB MAR APR MAY JUN JUL AUG SEP OKT NOV DEC

PREC

IPIT

ATI

ON

(mm

)

0

5

10

15

20

25

30

35

40

JAN FEB MAR APR MAY JUN JUL AUG SEP OKT NOV DEC

TEM

PER

ATU

RE

(oC

)

0

50

100

150

200

250

300

JAN FEB MAR APR MAY JUN JUL AUG SEP OKT NOV DEC

PREC

IPIT

ATI

ON

(mm

)

Page 7: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

6. Long‐term variability of historical time series

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

30-y

rs m

ovin

g av

erag

e te

mpe

ratu

re -

Depa

rure

from

mea

n (

o C) Vancouver

ColfaxAlbanyManausAliartosMatsumotoKhartoumAlice Springs

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

30-y

rs m

ovin

g av

erag

e pr

ecip

itatio

n -

Rel

ativ

e de

paru

re fr

om m

ean

(%)

VancouverColfaxAlbanyManausAliartosMatsumotoKhartoumAlice Springs

Page 8: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

7. IPCC TAR models and data sets• GCM coupled atmosphere‐ocean global models

– ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology  and Deutsches Klimarechenzentrum in Hamburg, Germany

– CGCM2: developed at the Canadian Centre for Climate Modeling and Analysis– HADCM3: developed at the Hadley Centre for Climate Prediction and Research

• GCM output data sets (from http://ipcc‐ddc.cru.uea.ac.uk/ddc_gcmdata.html)– MP01GG01: output of ECHAM4/OPYC3 with historical inputs for 1860‐1989 and inputs from IS92a beyond 1990

– CCCma_A2: output of CGCM2 with historical inputs for 1900‐1989 and inputs from scenario A2 beyond 1990

– HADCM3_A2: output of CGCM2 with historical inputs for 1950‐1989 and inputs from scenario A2 beyond 1990

• Notes on the selection of IPCC scenarios for “future” (1990‐2007) projections – During the period 1990‐today there is no significant difference between IPCC scenarios for the same model; two such scenarios were selected, namely:

SRES A2 (for models CGCM2 and HADCM3 : high population growth (15.1 billion in 2100), high energy and carbon intensity, and correspondingly high CO2 emissions (concentration 834 cm3/m3 in 2100) ‏IS92a (older, for model ECHAM4/OPYC3): population 11.3 and CO2concentration 708 cm3/m3 in 2100‏

Page 9: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

8. IPCC AR4 models and data sets

• Models– CGCM3: developed at the Canadian Centre for Climate Modeling and 

Analysis; run in two resolutions, T47 and T63 (we used T47).– ECHAM5‐OM: developed at the Max‐Planck‐Institute for Meteorology, 

Germany.– PCM: developed at the National Centre for Atmospheric Research, USA

• GCM output data sets (from http://www.mad.zmaw.de/IPCC_DDC/html/SRES_AR4/index.html) – The output of each of the three above models run on scenario 20C3M

• Notes on the scenario selected– While in TAR all scenarios had been run for past periods with historical 

data, in AR4 only one scenario (20C3M) is supposed to have some connection with historical reality.

– Specifically, scenario 20C3M was generated from the output of late 19thand 20th century simulations from many coupled ocean‐atmosphere models, in order to help assess past climate change (Hegerl et al., 2003).

Page 10: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

9. Vancouver (Washington, USA; mild climate)

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

Ann

ual p

reci

pita

tion

(mm

)

Observed CGCM3-A2PCM-20C3M ECHAM5-20C3M

7.58.08.59.09.5

10.010.511.011.512.012.513.013.514.014.5

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

Ave

rage

ann

ual t

empe

ratu

re (o

C)

Observed CGCM3-A2PCM-20C3M ECHAM5-20C3M

7.58.08.59.09.5

10.010.511.011.512.012.513.013.514.014.5

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

Ave

rage

ann

ual t

empe

ratu

re (o

C)

Observed CGCM2-A2HADCM3-A2 ECHAM4-GG

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

Ann

ual p

reci

pita

tion

(mm

)

Observed CGCM2-A2HADCM3-A2 ECHAM4-GG

max DT

DT

Page 11: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

10. Colfax (California, USA; mountainous climate)

9.5

10.5

11.5

12.5

13.5

14.5

15.5

16.5

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

Ave

rage

ann

ual t

empe

ratu

re (o

C)

Observed CGCM3-A2PCM-20C3M ECHAM5-20C3M

9.5

10.5

11.5

12.5

13.5

14.5

15.5

16.5

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

Ave

rage

ann

ual t

empe

ratu

re (o

C)

Observed CGCM2-A2

HADCM3-A2 ECHAM4-GG

250

450

650

850

1050

1250

1450

1650

1850

2050

2250

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

Ann

ual p

reci

pita

tion

(mm

)

Observed CGCM3-A2PCM-20C3M ECHAM5-20C3M

250

450

650

850

1050

1250

1450

1650

1850

2050

2250

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

Ann

ual p

reci

pita

tion

(mm

)

Observed CGCM2-A2

HADCM3-A2 ECHAM4-GG

Page 12: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

11. Albany (Florida, USA; sub‐tropical climate)

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

21.0

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

Ave

rage

ann

ual t

empe

ratu

re (o

C)

Observed CGCM3-A2PCM-20C3M ECHAM5-20C3M

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

21.0

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

Ave

rage

ann

ual t

empe

ratu

re (o

C)

Observed CGCM2-A2HADCM3-A2 ECHAM4-GG

550

700

850

1000

1150

1300

1450

1600

1750

1895

1905

1915

1925

1935

1945

1955

1965

1975

1985

1995

2005

Ann

ual p

reci

pita

tion

(mm

)

Observed CGCM3-A2PCM-20C3M ECHAM5-20C3M

550

700

850

1000

1150

1300

1450

1600

1750

1895

1905

1915

1925

1935

1945

1955

1965

1975

1985

1995

2005

Ann

ual p

reci

pita

tion

(mm

)

Observed CGCM2-A2HADCM3-A2 ECHAM4-GG

Page 13: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

12. Manaus (Brazil; tropical climate)

23.524.024.525.025.526.026.527.027.528.028.529.029.530.030.531.0

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

Ave

rage

ann

ual t

empe

ratu

re (o

C)

Observed CGCM3-A2

PCM-20C3M ECHAM5-20C3M

23.524.024.525.025.526.026.527.027.528.028.529.029.530.030.531.0

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

Ave

rage

ann

ual t

empe

ratu

re (o

C)

Observed CGCM2-A2

HADCM3-A2 ECHAM4-GG

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

Ann

ual p

reci

pita

tion

(mm

)

Observed CGCM3-A2

PCM-20C3M ECHAM5-20C3M

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

Ann

ual p

reci

pita

tion

(mm

)

Observed CGCM2-A2

HADCM3-A2 ECHAM4-GG

Page 14: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

13. Aliartos (Greece; Mediterranean climate)

13.0

13.5

14.0

14.5

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

1905

1915

1925

1935

1945

1955

1965

1975

1985

1995

2005

Ave

rage

ann

ual t

empe

ratu

re (o

C)

Observed CGCM3-A2PCM-20C3M ECHAM5-20C3M

13.0

13.5

14.0

14.5

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

1905

1915

1925

1935

1945

1955

1965

1975

1985

1995

2005

Ave

rage

ann

ual t

empe

ratu

re (o

C)

Observed CGCM2-A2HADCM3-A2 ECHAM4-GG

200

300

400

500

600

700

800

900

1000

1100

1905

1915

1925

1935

1945

1955

1965

1975

1985

1995

2005

Ann

ual p

reci

pita

tion

(mm

)

Observed CGCM3-A2PCM-20C3M ECHAM5-20C3M

200

300

400

500

600

700

800

900

1000

1100

1905

1915

1925

1935

1945

1955

1965

1975

1985

1995

2005

Ann

ual p

reci

pita

tion

(mm

)

Observed CGCM2-A2HADCM3-A2 ECHAM4-GG

Page 15: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

14. Matsumoto (Japan; marine climate)

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

15.0

1895

1905

1915

1925

1935

1945

1955

1965

1975

1985

1995

2005

Ave

rage

ann

ual t

empe

ratu

re (o

C)

Observed CGCM3-A2PCM-20C3M ECHAM5-20C3M

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

15.0

1895

1905

1915

1925

1935

1945

1955

1965

1975

1985

1995

2005

Ave

rage

ann

ual t

empe

ratu

re (o

C)

Observed CGCM2-A2HADCM3-A2 ECHAM4-GG

500

700

900

1100

1300

1500

1700

1900

2100

2300

2500

1895

1905

1915

1925

1935

1945

1955

1965

1975

1985

1995

2005

Ann

ual p

reci

pita

tion

(mm

)

Observed CGCM3-A2PCM-20C3M ECHAM5-20C3M

500

700

900

1100

1300

1500

1700

1900

2100

2300

2500

1895

1905

1915

1925

1935

1945

1955

1965

1975

1985

1995

2005

Ann

ual p

reci

pita

tion

(mm

)

Observed CGCM2-A2HADCM3-A2 ECHAM4-GG

Page 16: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

15. Khartoum (Sudan; arid climate)

22.0

23.0

24.0

25.0

26.0

27.0

28.0

29.0

30.0

31.0

32.0

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

Ave

rage

ann

ual t

empe

ratu

re (o

C)

Observed CGCM3-A2

PCM-20C3M ECHAM5-20C3M

22.0

23.0

24.0

25.0

26.0

27.0

28.0

29.0

30.0

31.0

32.0

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

Ave

rage

ann

ual t

empe

ratu

re (o

C)

Observed CGCM2-A2

HADCM3-A2 ECHAM4-GG

0

100

200

300

400

500

600

700

800

900

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

Ann

ual p

reci

pita

tion

(mm

)

Observed CGCM3-A2PCM-20C3M ECHAM5-20C3M

0

100

200

300

400

500

600

700

800

900

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

Ann

ual p

reci

pita

tion

(mm

)

Observed CGCM2-A2HADCM3-A2 ECHAM4-GG

Page 17: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

19.019.520.020.521.021.522.022.523.023.524.024.525.025.526.0

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

Ave

rage

ann

ual t

empe

ratu

re (o

C)

Observed CGCM3-A2PCM-20C3M ECHAM5-20C3M

16. Alice Springs (Australia; semi‐arid climate)

19.019.520.020.521.021.522.022.523.023.524.024.525.025.526.0

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

Ave

rage

ann

ual t

empe

ratu

re (o

C)

Observed CGCM2-A2

HADCM3-A2 ECHAM4-GG

50

150

250

350

450

550

650

750

850

1940

1950

1960

1970

1980

1990

2000

2010

Ann

ual p

reci

pita

tion

(mm

)

Observed CGCM3-A2PCM-20C3M ECHAM5-20C3M

50

150

250

350

450

550

650

750

850

1940

1950

1960

1970

1980

1990

2000

2010

Ann

ual p

reci

pita

tion

(mm

)

Observed CGCM2-A2HADCM3-A2 ECHAM4-GG

Page 18: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

17. Detailed statistics of observed and model seriesMonthly data Period Average St. dev Corellation EfficiencyObserved 1899-2007 11.36 5.55CGCM3-A2 1899-2000 10.35 6.19 0.916 0.757PCM-20C3M 1899-1999 9.40 6.06 0.882 0.610ECHAM5-20C3M 1899-2007 8.93 5.00 0.906 0.633CGCM2-A2 1900-2007 9.67 4.15 0.881 0.670HADCM3-A2 1950-2007 9.67 6.12 0.925 0.748ECHAM4-GG 1899-2007 11.74 5.94 0.916 0.813

Annual data Period Average St. dev Aurocorrel. Corellation Efficiency Hurst coeff.Observed 1899-2007 11.36 0.77 0.522 0.908CGCM3-A2 1899-2000 10.34 0.70 0.474 -0.265 -2.894 0.881PCM-20C3M 1899-1999 9.40 0.71 0.206 0.031 -6.861 0.629ECHAM5-20C3M 1899-2007 8.94 0.65 0.168 0.019 -10.611 0.609CGCM2-A2 1900-2007 9.67 0.48 0.416 -0.108 -5.356 0.828CGCM2-A2 1900-1989 9.57 0.41 0.290 -0.194 -5.166CGCM2-A2 1989-2007 10.17 0.43 -0.069 0.243 -9.386HADCM3-A2 1950-2007 9.67 0.59 0.333 0.087 -3.836 0.706HADCM3-A2 1950-1989 9.49 0.54 0.200 0.086 -3.481HADCM3-A2 1989-2007 10.02 0.56 0.114 0.197 -11.522ECHAM4-GG 1899-2007 11.74 0.70 0.373 0.166 -1.241 0.730ECHAM4-GG 1899-1989 11.58 0.59 0.171 -0.137 -0.798ECHAM4-GG 1989-2007 12.50 0.69 0.136 -0.162 -10.180

30yr moving avg. Period St. dev Corellation Efficiency DT (common period) DT (all period) max DTObserved 1899-2007 0.46 -0.60 -0.27 -1.30CGCM3-A2 1899-2000 0.32 -0.836 -7.710 1.10 1.10 1.14PCM-20C3M 1899-1999 0.14 -0.486 -20.406 0.48 0.48 0.56ECHAM5-20C3M 1899-2007 0.06 -0.178 -28.464 0.20 0.27 0.27CGCM2-A2 1900-2007 0.20 -0.766 -15.537 0.65 0.74 0.74HADCM3-A2 1950-2007 0.12 0.297 -88.820 0.30 0.40ECHAM4-GG 1899-2007 0.19 -0.722 -1.130 0.41 0.74 0.83

An example for the temperature of Vancouver

Page 19: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

18. Synoptic statistical comparison of climatic model outputs and observationsMonthly time scale

Mean correlation/efficiency 0.849/‐0.114 for temperature and 0.336/0.276 for precipitation.Satisfactory (>0.50) efficiency values in 77% of cases for temperature but in none for precipitation.

Annual time scaleMean correlation/efficiency 0.147/‐8.649 for temperature and ‐0.010/‐2.279 for precipitation.Underestimation of the observed Hurst coefficient (see figs.) in 73% of cases for temperature and 83% for precipitation.

Climatic (30 year) time scaleMean correlation/efficiency 0.233/‐101.1 for temperature and 0.010/‐45.8 for precipitation.Climatic models generally fail to reproduce the long‐term changes on temperature and precipitation.

0.50

0.60

0.70

0.80

0.90

1.00

0.50 0.60 0.70 0.80 0.90 1.00

Hurst coef. of observed temperature series

Hurs

t coe

f. of

mod

elle

d se

ries

CGCM3-A2PCM-20C3MECHAM5-20C3MCGCM2-A2

HADCM3-A2ECHAM4-GG

0.40

0.50

0.60

0.70

0.80

0.90

0.40 0.50 0.60 0.70 0.80 0.90

Hurst coef. of observed precipitation series

Hurs

t coe

f. of

mod

elle

d se

ries

CGCM3-A2 PCM-20C3MECHAM5-20C3M CGCM2-A2HADCM3-A2 ECHAM4-GG

Page 20: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

CO

LFA

X

VA

NC

UV

ER

ALB

AN

Y

MA

NA

US

ALI

AR

TOS

KH

AR

TUM

MA

TSU

MO

TO

ALI

CE

SP

RIN

GS

Max

. flu

ctua

tion

of 3

0-yr

s m

ovin

gav

erag

e te

mpe

ratu

re (

o C)

Climatic models

Observations

19. Reproduction of observed long‐term fluctuations

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0C

OLF

AX

VA

NC

UV

ER

ALB

AN

Y

MA

NA

US

ALI

AR

TOS

KH

AR

TUM

MA

TSU

MO

TO

ALI

CE

SP

RIN

GS

Cha

nge

of 3

0-yr

s m

ovin

g av

erag

ete

mpe

ratu

re (

o C) -

Per

iod

1900

-200

0

Climatic models

Observations

-300

-200

-100

0

100

200

300

400

500

CO

LFA

X

VA

NC

UV

ER

ALB

AN

Y

MA

NA

US

ALI

AR

TOS

KH

AR

TUM

MA

TSU

MO

TO

ALI

CE

SP

RIN

GS

Chan

ge o

f 30-

yrs

mov

ing

aver

age

prec

ipita

tion

(mm

) - P

erio

d 19

00-2

000

Climatic models

Observations

-300

-200

-100

0

100

200

300

400

500

CO

LFA

X

VA

NC

UV

ER

ALB

AN

Y

MA

NA

US

ALI

AR

TOS

KH

AR

TUM

MA

TSU

MO

TO

ALI

CE

SP

RIN

GS

Max

. flu

ctua

tion

of 3

0-yr

s m

ovin

gav

erag

e pr

ecip

itatio

n (m

m)

Climatic models

Observations

Page 21: European Geosciences Union General Assembly April and ... · – ECHAM4/OPYC3: developed in co‐operation between the Max‐Planck‐Institute for Meteorology and Deutsches Klimarechenzentrum

ReferencesChristensen, J.H., B. Hewitson, A. Busuioc, et al., 2007. Regional Climate Projections. In: Climate Change 2007: The Physical Science Basis, Contribution of WGI to IPCC AR4 (ed. by Solomon, S., et al.), Cambridge University Press, Cambridge, United Kingdom andNew York, NY, USA.Georgakakos, K. P., 2003. Probabilistic climate‐model diagnostics for hydrologic and water resources impact studies. J. Hydrometeor., 4, 92–105.Hegerl, G., G. Meehl, C. Covey, M. Latif, B. McAvaney, and R. Stouffer, 2003. 20C3M: CMIP collecting data from 20th century coupled model simulations, Exchanges, 26, 8(1), Int. CLIVAR Project Office (www.clivar.org/publications/exchanges/exchanges.php).Randall, D.A., R.A. Wood, et al., 2007. Climate Models and Their Evaluation. In: Climate Change 2007: The Physical Science Basis, Contribution of WGI to IPCC AR4 (ed. by Solomon, S., et al.), Cambridge University Press, Cambridge, UK & New York, NY, USA,.

• All examined long records demonstrate large overyear variability (long‐term fluctuations) with no systematic signatures across the different locations/climates.

• GCMs generally reproduce the broad climatic behaviours at different geographical locations and the sequence of wet/dry or warm/cold periods on a mean monthly scale. 

• However, model outputs at annual and climatic (30‐year) scales are irrelevant with reality; also, they do not reproduce the natural overyear fluctuation and, generally, underestimate the variance and the Hurst coefficient of the observed series; none of the models proves to be systematically better than the others.

• The huge negative values of coefficients of efficiency at those scales show that model predictions are much poorer that an elementary prediction based on the time average.

• This makes future climate projections not credible.• The GCM outputs of AR4, as compared to those of TAR, are a regression in terms of 

the elements of falsifiability they provide, because most of the AR4 scenarios refer only to the future, whereas TAR scenarios also included historical periods. 

20. Conclusions