16
Annals of West University of Timişoara, ser. Biology, vol. XI, pp 35-50 35 EVALUATION OF THE DEGREE OF POLLUTION WITH HEAVY METALS OF SOILS OF TIMISOARA TOWN Stela URUIOC 2 , Mariana ALBULESCU 1 , Cristian Stanco BADEA 2 , Costina Roxana URUIOC 2 West University of Timisoara, Chemistry, Biology & Geography Faculty, 1 Departament of Chemistry, 2 Departament of Biology ABSTRACT Timisoara town as other urban centres is exposed to some possible dangers that soil and plant contamination with heavy metals can produce. The our studies has been realised on ten soil samples and three plant samples gathered from important areas regarding pollution with heavy metals of Timisoara city. The samples have been analyzed through atomic absorption spectrometry with a device type Varian 2, that has a double beam. The content in cobalt, copper, manganese, zinc, cadmium, nickel, lead, magnesium and iron from soil is changeable under maximum admission. The content in iron, manganese, copper, lead, cadmium from Tilia cordata leaves is situated in normal limits, but higher than in soil. KEY WORDS: heavy metals , pollution, soil, Timişoara, Romania INTRODUCTION Urban environment pollution with heavy metals caught the attention of many researchers because of his complex problems that this phenomen represents (Duris, 1999; Lăcătuşu et al., 2001; Adomaitis et al., 2003; Panaiotu et al., 2005, 2006). Heavy metals are one of the most dangerous pollutants of urban locality (Mîrlean et al., 1993). Development of industry and transports leads to an excessive growth of heavy metals concetrations from big throngs. Large growth of vehicles leads to the evacuation of big cantities of lead. In the big industrial cities, in most of the cases, heavy metals concentrations overpassed the alert limit, reaching to alarming toxicity levels. Heavy metals are pollutants, with low toxic potential even to reduced levels of exposure (Şenilă et al., 2006). Heavy metals represent one of the pollutant category with the most important effects regarding environment quality (Har et al., 2005). Pollution level monitorisation and the impact produced by metallic elements represents an important purpose for environment studies in Timişoara and near it. Thus, Ţărău et al. (2002, 2006, 2007) brings up studies regarding soil pollution by Termoelectrica Timişoara and environment conservation in the periurban area. Borza et al. (2005) emphasis the impact of economic and social activity over soil quality from periurban area Timisoara. Ianoş (2006) realises a study regarding soil vulnerability of heavy metals pollution from Timisoara town. The aim of this paper is to obtain new information regarding evaluation in Timisoara town of some possible dangers that soil and plant contamination with heavy metals can produce and their impact over environment.

EVALUATION OF THE DEGREE OF POLLUTION WITH HEAVY …biologie.uvt.ro/annals/fullaccess/vol_XI_35-50.pdf · 2020. 11. 28. · Annals of West University of Timişoara, ser. Biology,

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Annals of West University of Timişoara, ser. Biology, vol. XI, pp 35-50

    35

    EVALUATION OF THE DEGREE OF POLLUTION WITH HEAVY

    METALS OF SOILS OF TIMISOARA TOWN

    Stela URUIOC

    2, Mariana ALBULESCU

    1, Cristian Stanco BADEA

    2, Costina Roxana

    URUIOC2

    West University of Timisoara, Chemistry, Biology & Geography Faculty, 1Departament of Chemistry,

    2Departament of Biology

    ABSTRACT

    Timisoara town as other urban centres is exposed to some possible dangers that

    soil and plant contamination with heavy metals can produce. The our studies has

    been realised on ten soil samples and three plant samples gathered from

    important areas regarding pollution with heavy metals of Timisoara city. The

    samples have been analyzed through atomic absorption spectrometry with a

    device type Varian 2, that has a double beam. The content in cobalt, copper,

    manganese, zinc, cadmium, nickel, lead, magnesium and iron from soil is

    changeable under maximum admission. The content in iron, manganese, copper,

    lead, cadmium from Tilia cordata leaves is situated in normal limits, but higher

    than in soil.

    KEY WORDS: heavy metals , pollution, soil, Timişoara, Romania

    INTRODUCTION Urban environment pollution with heavy metals caught the attention of

    many researchers because of his complex problems that this phenomen represents

    (Duris, 1999; Lăcătuşu et al., 2001; Adomaitis et al., 2003; Panaiotu et al., 2005,

    2006). Heavy metals are one of the most dangerous pollutants of urban locality

    (Mîrlean et al., 1993). Development of industry and transports leads to an

    excessive growth of heavy metals concetrations from big throngs. Large growth of

    vehicles leads to the evacuation of big cantities of lead.

    In the big industrial cities, in most of the cases, heavy metals

    concentrations overpassed the alert limit, reaching to alarming toxicity levels.

    Heavy metals are pollutants, with low toxic potential even to reduced levels of

    exposure (Şenilă et al., 2006). Heavy metals represent one of the pollutant

    category with the most important effects regarding environment quality (Har et al.,

    2005). Pollution level monitorisation and the impact produced by metallic

    elements represents an important purpose for environment studies in Timişoara

    and near it.

    Thus, Ţărău et al. (2002, 2006, 2007) brings up studies regarding soil

    pollution by Termoelectrica Timişoara and environment conservation in the

    periurban area. Borza et al. (2005) emphasis the impact of economic and social

    activity over soil quality from periurban area Timisoara. Ianoş (2006) realises a

    study regarding soil vulnerability of heavy metals pollution from Timisoara town.

    The aim of this paper is to obtain new information regarding evaluation in

    Timisoara town of some possible dangers that soil and plant contamination with

    heavy metals can produce and their impact over environment.

  • URUIOC STELA et al.: Evaluation od the degree of pollution with heavy metals of soils of Timisoara town

    36

    MATERIAL AND METHODS For evaluting the level of soil pollution with heavy metals samples soils

    have been collected from ten points spreaded in characteristic areas of Timisoara

    town (Fig. 1). A soil sample has been constituted of 25 partial samples prelevated

    from 0 - 5 cm depth. Also, samples of Tilia cordata leaves have been collected

    from 3 important areas of the town (Fig. 2).

    Collection points were established in order to avoid the eventual dangers

    that heavy metals contamination can produce rergarding the main pollution

    sources. For placing the collection points for soil and plants samples we used as

    topographic base the map from Timisoara Town Guide. The collected soil and

    plant samples were mineralised and disintegrated in OSPA Timisoara laboratories.

    Figure 1. The prelevation points of the soil samples

    1. I.C. Brătianu Market, crossing wich: Tache Ionescu Boulevard, Popa Şapcă Street,

    Oituz Street, George Coşbuc Street; 2. Mărăşeşti Market, the revolving direction between:

    Alexandru Ioan Cuza Street, Gh. Dima Street, Oituz Street; 3. Crossing: Amurgului Street,

    Calea Sever Bocu, Divizia 9 Cavalerie Street; 4. Consiliului Europei Market, crossing:

    Calea Aradului, Calea Sever Bocu, Calea Circumvalaţiunii, Calea Torontalului; 5.

    Crossing: Republicii Boulevard, Jiu Street; 6. General Dragalina Street between: Regele

    Carol I Boulevard; 16 Decembrie 1989 Boulevard; 7. General Gh. Domăşneanu Market,

    revolving direction: Dr. Iosif Bulboca Boulevard, Calea Stan Vidrighin, Calea Buziaşului,

    Venus Street; 8. Dâmboviţa Boulevard between: Dreptatea Street, Transilvania Street, Ana

    Ipătescu Street; 9. Gh. Dima Street between: Gh. Lazăr Street, 9 Mai Street; 10. Crossing:

    Cetaţii Boulevard, Calea Torontalului, Miresei Street.

  • Annals of West University of Timişoara, ser. Biology, vol. XI, pp 35-50

    37

    The prepared samples were dried at 110◦C then roasted in oven at 500

    ◦C

    and finally at 600◦C. The dross from the crucible has been treated with regal water

    (HCl:HNO3 in pertained to 3:1) and held 30 minutes 70◦C on water bathroom, and

    then diluted, filtered on paper with filter that has medium porosity and brought to

    sign in a flask of 20 ml containing hydrochloric acid 1 N. The content in Co, Cu,

    Mn, Zn, Cd, Ni, Pb, Mg, Fe from soil and also the content of Fe, Mn, Cu, Pb, Cd

    from plants has been determined through spectrometry of atomic absorption with a

    device Varian 2, with double beam. Before this, were assigned the standard curves

    for the analyzed metals.

    Soil and plant samples were processed and analyzed after national

    standards and norms that were consented by the Standardization Association from

    Romania (A.S.R.O).Data interpretation and processing, and also the naturalistic

    characterisation of the researched area have been done according to Elaboration

    Methodology of Pedologic Studies (MESP) that has been elaborated by ICPA

    Bucharest 1987, and being completed with elements from The Romanian System

    of Soil Taxonomy (SRTS, 2003).

    Figure 2. The prelevation points of plant samples

    1. Civic park, 2. Calea Aradului, 3.Calea Sagului

  • URUIOC STELA et al.: Evaluation od the degree of pollution with heavy metals of soils of Timisoara town

    38

    RESULTS AND DISCUSSIONS 1. Chemicals characteristics of soils

    1.1.Soil reaction (pH)

    Soil reactions expresses the way in which the main biochemical processees

    take place from soil.

    Evolution in time of pedogenetic conditions from Timisoara town shows

    up that the reaction presents some characteristics that indicates inadequate

    anthropic interventions.

    The majority of the analyzed samples presents values (7,4-8,2) that

    indicate a weak alcalin reaction (Fig 3).

    Knowing the reaction of soil is important because it prevents the specialist

    towards the measures that he has to undertake, in order to bring up the soil in best

    condition of reaction (5,8 – 6,8) for plant growth.

    Soil reaction also influences indirect the nutrition conditions of plants

    through pH values influence over the main nutrition elements mobility or some

    pollutants.

    7.85

    7.47

    7.938

    7.85

    7.727.69

    8.05

    8.2

    7.81

    7

    7.2

    7.4

    7.6

    7.8

    8

    8.2

    pH

    Piaţa I.C.Brătianu

    Piaţa Mărăşti

    Intersecţia Str.Amurgului cu CaleaSever Bocu

    Piaţa Consiliului Europei

    Intersecţia B-dul Republicii cu Str.Jiu

    Str. General Dragalina

    Piaţa General Gh. Domăşneanu

    B-dul Dâmboviţa

    Str. Gh. Dima

    Intersecţia Str.Cetăţii cu CaleaTorontalului

    Figure 3. The pH value in the prelevated soil samples

    1. 2. The heavy metals content from soil

    From the ten soil samples prelevated from the green areas from Timisoara

    town were determined the following heavy metals: cobalt, copper, manganese,

    zinc, cadmium, nickel, lead, magnesium and iron.

    Now we are going to make an analysis of the concetration of each metal

    showing up the negative effects that higher concentration in heavy metals have on

    plants and life generally.

    Cobalt is an essential element for bacteries that fix natrium. These use

    cobalt for fixing the atmsopheric natrium. The soil content in cobalt is tight

  • Annals of West University of Timişoara, ser. Biology, vol. XI, pp 35-50

    39

    bounded by the condition of soil formation, by the nature of the parent materials

    and by the anthopic interventions.

    In the case of the analyzed area, the biggest concentration of Co is found

    in I. C. Brătianu Market (sample 1= 0.76 ppm) while in General Gh. Domăşneanu

    Market we found the lowest concentration (sample 7 = 0.413 ppm). The values

    from the other points of collection are relatively similar, being situated between

    0.541 ppm and 0.646 ppm. These values situates the analyzed sites in soils with

    normal content of Co (Fig. 4).

    0.76

    0.541

    0.618

    0.743

    0.604

    0.646

    0.413

    0.5840.619

    0.571

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    ppm

    1 2 3 4 5 6 7 8 9 10

    sample number

    Figure 4. Variation of cobalt concentrations from soil samples

    4.635

    5.1755.639

    4.127

    4.75 4.952

    2.785

    4.399

    2.224

    4.598

    0

    1

    2

    3

    4

    5

    6

    ppm

    1 2 3 4 5 6 7 8 9 10

    sample number

    Figure 5. Variation of copper concentrations from soil samples

  • URUIOC STELA et al.: Evaluation od the degree of pollution with heavy metals of soils of Timisoara town

    40

    Copper is present in soil in lower cantities than 20 ppm.Cantities that are

    close to this value sau higher lead to the diminution of biological activity from

    soil. Reaching to plants, in higher concentrations than 20 ppm, copper can become

    toxic for the animals than consumes those plants (Uruioc, 2000).

    Concerning copper concetrations from the studied soils these are included

    between 2.224-5.639 ppm, the highest value being at the croosing between

    Amurgului and Sever Bocu Street (sample 3) and the lowest value on Gheorghe

    Dima Street (sample 9). Regarding these values, the analyzed soils are among the

    soils that have normal concentration of copper (Fig. 5).

    Manganese is found in soil, in the crystalline structure of clayey minerals,

    at the surface of colloids organico-minerals (exchangeable manganese), in the soil

    solution and under the form of activ manganese that is accessible to plants.

    In the ten analyzed soil samples the concentration of manganese overpass

    little the value 9 ppm. The only value under 9 ppm has been registered in

    Gheorghe Dosmaneanu Market (sample 7 = 8.64 ppm) (Fig. 6).

    The results of the analysis show up that these soils have a normal content

    of manganese.

    Zinc is found in soil, in clayey minerals, oxydes, hydrates and in organic

    material. There is a closed bound between the content of soil in humus and the

    content in zinc.

    The content in zinc of the sites from the analyzed area oscillates between

    2.774 ppm and 2.918 pmm. These values situates the analyzed soils to the inferior

    limit of the normal concentrations (Fig. 7).

    The lowest values were registered in General Gheorghe Domăşneanu

    Market (sample 7) and Gheorghe Dima Street (sample 9).

    Cadmium is a chemical element that is related to zinc, it is less abundant

    than zinc and is known because of his toxic effect on plants and animals.

    In most of the gathered samples from the investigated area the content of

    cadmium is under the limit of detection of the device. Values over 0 have been

    identified in I. C. Bratianu Market (sample 1 = 0.064 ppm), Marasesti Market

    (sample 2 = 0.013 ppm), the crossing between Republicii Boulevard and Jiu Street

    (sample 5 = 0.014 ppm) and the crossing between Cetatii Boulevard and Torontal

    Street (1 ppm) In all the cases cadmium content is under the normal limit (1 ppm)

    (Fig. 8).

    Nickel is a stainless metal, pollutant for the natural environment and for

    soils, being related from the geochemical point of view with cobalt.

    Resulted in the weak of alteration processes of the primary rocks, in big

    part nickel remains in solid products of physical-mechanic disintegration, then

    being transported and stored in the parent material of soils.

    What regards the nickel content of soils from the analyzed area this

    presents low values and also contents that are between 1.947 ppm (sample 7) and

    3.230 ppm (sample 1) (Fig. 9).

  • Annals of West University of Timişoara, ser. Biology, vol. XI, pp 35-50

    41

    9.154

    9.108

    9.079

    9.132

    9.066 9.062

    8.964

    9.06

    9.011 9.015

    8.85

    8.9

    8.95

    9

    9.05

    9.1

    9.15

    9.2

    ppm

    1 2 3 4 5 6 7 8 9 10

    sample number

    Figure 6. Variation of manganese concentration from soil samples

    2.896 2.892

    2.912

    2.867 2.866

    2.897

    2.775

    2.855

    2.774

    2.918

    2.7

    2.75

    2.8

    2.85

    2.9

    2.95

    ppm

    1 2 3 4 5 6 7 8 9 10

    sample number

    Figure 7. Variation of zinc concentrations from soil samples

  • URUIOC STELA et al.: Evaluation od the degree of pollution with heavy metals of soils of Timisoara town

    42

    0.064

    0.013

    0 0

    0.041

    0 0 0 0

    0.053

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    ppm

    1 2 3 4 5 6 7 8 9 10

    sample number

    Figure 8. Variation of the cadmium content from soil samples

    3.23

    2.423

    2.625

    3.013

    2.535 2.557

    1.947

    2.446

    2.689 2.637

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    ppm

    1 2 3 4 5 6 7 8 9 10

    sample number

    Figure 9. Variation of nickel content fom soil samples

  • Annals of West University of Timişoara, ser. Biology, vol. XI, pp 35-50

    43

    Lead is a chemical element, very toxic for live organisms, that it is usually

    found in rocks and soils in medium cantities of 15-16 ppm (Fiedler et al., 1988).

    In West Plain lead content is about 15-25 ppm (Lăcătuşu et al., 1997). The high

    values identified in the Banato-Crisana Plain are derived from mountainous

    massives with metamorphic and acid magmatic rocks (Lăcătuşu et al., 1997).

    Being easily extracted from rocks in alteration processes, the soluble compounds

    of lead are taken over by pluvial waters or by the drainage from slopes, in this way

    enriching the areas descended through subsidence.

    In the Timisoara area high values of lead are due to the natural background

    and to the intense road traffic.

    These values are under normal limits, that it is 1-20 ppm, with low

    tendencies of increase in some areas. The only value over the normal limit was

    identified in I. C. Bratianu Market (sample 1 = 20.379 ppm). In the other tested

    areas lead contents were between 1.882 ppm and 15.522 ppm (Fig. 10).

    Magnesium. In soil magnesium is found under exchangeable form and

    under soluble form that is taken by plants. As concentration in magnesium come

    down from the soil solution takes place the transition from exchangeable form to

    soluble one.

    What regards the content in magnesium of sits from the investigated area

    this oscilliates between 2.532 ppm and 2.903 ppm, values that situates the

    investigated area within the soils with less values of magnesium (Fig. 11).

    Iron. The content in iron of the sites within the analyzed area, these

    oscillate between 17.619 ppm and 18.032 ppm.

    20.379

    12.266

    9.087

    11.38

    15.522

    7.202

    2.903

    8.892

    1.822

    14.34

    0

    5

    10

    15

    20

    25

    ppm

    1 2 3 4 5 6 7 8 9 10

    sample number

    Figure 10. Variation of lead content from sample soils

  • URUIOC STELA et al.: Evaluation od the degree of pollution with heavy metals of soils of Timisoara town

    44

    2.876

    2.532

    2.864

    2.9032.875

    2.856

    2.806

    2.872.896 2.871

    2.3

    2.4

    2.5

    2.6

    2.7

    2.8

    2.9

    3

    ppm

    1 2 3 4 5 6 7 8 9 10

    sample number

    Figure 11. Variation of magnesium concentrations from the soil samples

    17.619

    17.697

    17.753 17.748

    18.032

    17.852 17.863

    17.907

    17.638

    17.672

    17.4

    17.5

    17.6

    17.7

    17.8

    17.9

    18

    18.1

    ppm

    1 2 3 4 5 6 7 8 9 10

    sample number

    Figure 12. Variation of iron content from soil samples

    These values situates the analyzed sits in the soils with low extractable in

    iron content. The biggest value has been registered at the crossroad between

    Republicii Boulevard and Jiu Street (Fig. 12). The gathered samples from the

    central-north part of Timisoara (samples 1, 2, 3, 4, 9, 10) present lower

    concentrations vis a vis of those gathered from the central-south part of Timisoara

  • Annals of West University of Timişoara, ser. Biology, vol. XI, pp 35-50

    45

    (samples 5, 6, 7, 8), where there are the main sources of pollution (CET Tmişoara)

    (Fig . 1).

    2. The heavy metals content from plants

    From the obtained results there can be noticed that in plants are registered

    higher contents in some heavy metals than in soil. This proves the role that

    vegetation has (through retention from the atmosphere of different dusts and a

    significant quantity of pollutants), especially in soil protection and generally in

    environment.

    Iron. In the three areas of prelevation of Tilia cordata leaves samples, iron

    concentrations have been varied: in Civic Park 9400 ppm, in Calea Aradului 8000

    ppm and in Calea Sagului the lowest concentration of 6400 ppm (Fig.13).

    Manganese. The highest concentration of manganese has been registered

    in the leaves of Tilia cordata from the Civic Park (62 ppm). The values from Calea

    Aradului and from Calea Sagului have been similar, that is 28 ppm and 23 ppm

    (Fig. 14).

    9400

    8000

    6400

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    ppm

    Parcul Civic

    Calea Aradului

    Calea Sagului

    Figure 13. Variation of iron concentrations from the samples of Tilia cordata leaves

  • URUIOC STELA et al.: Evaluation od the degree of pollution with heavy metals of soils of Timisoara town

    46

    62

    28

    23

    0

    10

    20

    30

    40

    50

    60

    70

    ppm

    Parcul Civic

    Calea Aradului

    Calea Sagului

    Figure 14. Variations of manganese concentrations from the samples of Tilia cordata

    leaves

    Copper. In the gathered samples of Tilia cordata leaves from the Civic

    Park and from Calea Sagului have been registered values of copper of 1.9 ppm. In

    Calea Aradului copper concentrations are reduced to half from the values of

    others (1 ppm) (Fig. 15).

    Lead. The highest concentration of lead (0.7 ppm) has been registered in

    the samples of leaves from Civic Park from the central area of Timisoara. In Calea

    Aradului lead value of 0.5 ppm and in Calea Sagului the cantity of lead was the

    lowest, 0.3 ppm (Fig. 16).

    Cadmium. In the prelevated samples from Calea Sagului cadmium has

    been under the limit of detection of the device. From the analysis done on Tilia

    cordata leaves from Calea Aradului resulted 0.2 ppm cadmium. The biggest

    concentration (0.5 ppm) has been identified in the plants from Civic Park, more

    than double vis a vis Calea Aradului (Fig. 17).

    In order to establish some correlations between the heavy metals content

    from soil and plant, we consider that it is necessary thicken the points of

    observation from the areas where these substances had higher concentrations.

  • Annals of West University of Timişoara, ser. Biology, vol. XI, pp 35-50

    47

    1.9

    1

    1.9

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    ppm

    Parcul Civic

    Calea Aradului

    Calea Sagului

    Figure 15. Variations of copper concentrations from the samples of Tilia cordata

    leaves

    0.7

    0.5

    0.3

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    ppm

    Parcul Civic

    Calea Aradului

    Calea Sagului

    Figure 16. Variations of lead concentrations from the samples of Tilia cordata leaves

  • URUIOC STELA et al.: Evaluation od the degree of pollution with heavy metals of soils of Timisoara town

    48

    0.5

    0.2

    0

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    ppm

    Parcul Civic

    Calea Aradului

    Calea Sagului

    Figure 17. Variations of cadmium concetrations from the samples of Tilia cordata

    leaves

    3. Determined factors in heavy metals accumulation in Timisoara town

    In the urban area of Timisoara, soil means the crossing of a significant

    number of pollutants: thrown or deposited solid residuals, residual waters used for

    the irrigations of some areas, negative dusts thrown up by industrial factors, toxic

    gases dissolved in rain water and then reached in soil.

    The main factors that had an important role in heavy metals accumulation

    in the soils from Timsoara are: means of transport, industrial agents, the physique

    condition of soil and the climate.

    The means of transport. At least once a day, the atmosphere of Timisoara

    knows high concentration of gaseous pollutants and sedimentable dusts resulted

    from the means of transport (Ianoş, 2006).

    These are relocated on a area that is conditioned by the environmental

    factors (relief aspect, wind, turbidity), or urbanistic (assembly of high block of

    flats, green areas), loading the soil with some toxic elements and pollutants.

    The industrial agents. The steriles come from the sterile spoil bank of

    CET Timisoara is deposited in humid wethers, in the south part of Utvin. As these

    spoil bank spread up, the impact will be over the phreatic, through pollution of

    water adduction that dews up the sterile, being charged up with heavy metals

    (cadmium, lead). After the wethers are dried, the wind spreads on the area dusts

    loaded with chemical elements that are toxic for the vegetal and animal organisms,

    producing air and soil pollution.

    The climate. The main condition of dispersal of the pollutants is the

    climate condition, factor that leads and catalyses all the transformation reactions

    of the pollutants.

  • Annals of West University of Timişoara, ser. Biology, vol. XI, pp 35-50

    49

    The moderate continental-temperate climate with oceanic and

    mediterranean influences in which Timisoara is, had and has consequences over

    the pollutant accumulation through debased reactions acceleration as well as

    through soluble toxic substances pursuant to of an increased pluviometric regime.

    CONCLUSIONS

    After the analysation of the ten taken soil samples from the characteristic

    areas of Timisoara town and three leaves of Tilia cordata samples from important

    areas from the point of view of pollution with heavy metals we can conclude the

    following:

    The majority of analyzed soils samples present values that indicate o weak

    alcalin reaction.

    The content in cobalt, copper, manganese, zinc, cadmium, nickel, lead,

    magnesium and iron from soils is variable even under the maximum limit

    admitted.

    The highest concentrations in toxic heavy metals have been identified in I.

    C. Bratianu Market; in this point of soil samples prelevation, lead overpasses the

    normal limit; also, we meet the highest value of cadmium but this doesn’t reach

    the alert stage.

    The lowest concentrations of lead have been identified in General Gh.

    Domasneanu Market and Gh. Dima Street, in these 2 points cadmium value has

    been under the detection limit of the device.

    The content in iron, manganese, copper, lead, cadmium from Tilia cordata

    leaves are situated in normal limits.

    In Tilia cordata leaves are higher contents in iron, manganese, copper and

    cadmium but smaller in lead.

    The factors determined in the heavy metals accumulation in Timisoara

    town are: the means of transport, the industrial agents (CET Timisoara), the

    climate.

    In order to reach to the alert stage through the growth of the pollution

    stage we recommend: the endowment of the industrial agents pollutant with the

    adequate filter, reduction of the vehicle traffic, usage of some unpolluting in the

    case of the means of transport.

    We also recommend thicken of the points of observation in order to

    prepare a plantation programme of some species resistant to pollution: Acer

    campestre, Alnus sp, Carpinus betulus, Fagus sylvatica, Juglans sp, Platanus

    hybrida, Robinia pseudacacia, Abies sp, Pinus nigra.

    According to MAPM 756/1997 order regarding the normal limits of heavy

    metals from soil and relatively with other towns from the country, Timisoara can’t

    be considered a polluted town.

    REFERENCES

    • Borza I., Ţărău D., Jarabă, R., Ţărău, I. - The impact of economical and social activities on soil quality and use of agricultural lands in the peri-urban area

  • URUIOC STELA et al.: Evaluation od the degree of pollution with heavy metals of soils of Timisoara town

    50

    Timisoara, Lcr. Şt. USAMVB Timişoara, vol. XXXVII, Ed. Agroprint Timişoara,

    ISSN 1221-5279, 258-263, 2005.

    • Fiedler, H., G., Rosler, H., J., - Spurenelemente in der Umwelt, Ferdinand Enke Verlang, Stuttgar, 1988.

    • Har, N., Benea, M., Rusu, A-M., Williamson, B., - Studiul geochimic comparativ al solurilor şi lichenilor din zona poluată Zlatna (Romania), Environment & Progress

    nr.5, Cluj-Napoca, 203-210, 2005.

    • Ianoş, Gh., - Riscuri naturale şi tehnogene pe terenurile agricole ale Banatului, Ed. Universităţii de Vest, Timişoara, 230, 2006.

    • Lăcătuşu R., Răuţă, C., Răşnoveanu I., Lungu M., Kovacsovics, B., Ianoş Gh., Ţărău D., - Hărţi pedogeochimice ale Campiei Banato-Crişene, Ştiinţa solului, vol.

    XXXI/1, Bucureşti, 71- 86, 1997.

    • Mirlean, N.F., Nastas, Gh. I., - Evaluarea eco-geochimică a poluării solurilor din oraşul Chişinău cu pulberi sedimentabile şi metale grele, Mediul înconjurător, vol. IV,

    nr.1, 55-58, 1993.

    • Panaiotu, C.G., Necula, C., Panaiotu C.E., Axente, V. – A magnetic investigation of heavy metals pollution in Bucharest. Sustainability for humanity and environment in

    the extended connection filed science-economy-policy, Scientific reunion of the special

    program of Alexander von Humbold Foundation concerning the reconstruction of the

    South Eastern Europe, Editura Politehnica, Timisoara, 83-86, 2005.

    • Panaiotu, C.G., Dumitrescu, L., Bilal, L. – Magnetic and geochemical measurements on top soil and street dust in Baia Mare town (Romania), Geophysical Research

    Abstracts, Vol. 8., 09281, 2006.

    • Şenilă, M., Miclean, M., Tănăselia, C., Kondradi, E., A., Incze, A -M., Cadar, O., Cordoş, E., David, L., - Determinarea conţinutului de metale grele în Bazinul

    hidrografic Someş, Environment & Progress nr.8, Cluj-Napoca, 417-422, 2006.

    • Ţărău D., Rogobete Gh., Borza I., Florea M., - Aspecte ale poluării solului de către Termoelectrica Timişoara şi Arad, soluţii de limitare a acesteia. Simp. Internaţional

    Târgu-Jiu, 95-102, 2002

    • Ţărău D., Ţărău, I., Borza I., Ciupa V., Jarabă Ramona, - The request for a long-term materia land antrophic resources administration from Timişoara urban, Lcr. şt.

    USAMVB Timişoara, vol. XXXVIII, Ed. Agroprint Timişoara, , ISSN 1221-5297,

    203-208, 2006.

    • Ţărău D., Borza I., Ţărău, I., Băghină N., Ciupa V., - Probleme ale conservării mediului în zona periurbană Timişoara, Ştiinţa Solului vol. XLI, nr. 1, Ed. Solnes,

    ISSN 0585-3052, 69-87, 2007.

    • Uruioc Stela, - Poluarea solurilor cu metale grele şi elemente radioactive, Armonii naturale vol. III, Publ. ale Secţiei de St. ale Naturii, Complexul muzeal Arad, 298-306,

    2000.

    • ***Ghidul municipiului Timişoara

    • *** Ord. MAPM 756/1997

    • *** Metodologia Elaborării Studiilor Pedologice (1987)

    • ***Sistemul Român de Taxonomie a Solurilor (SRTS, 2003).