52
39 RESULTS AND DISCUSSION Evaluation of traffic and disruption of golf putting green Microrelief measurements. The average depth of depression for the heel of a sneaker, heel of a golf shoe, 2.5-cm wide rigid tire wheelchair, and 3.5-cm wide pneumatic tire wheelchair for all putting greens throughout 1996 is shown in Table 4. The lack of significant differences in measurements of surface hardness, surface strength, and gravimetric moisture content for the 0- to 5-cm depth below the turf surface for each form of traffic indicated that the measurements of depression were collected randomly and not biased by conditions. The heel of a golf shoe and sneaker did not differ in the depth of depression caused after applying 30 seconds of static pressure. As expected, the greatest depth of depression occurred with the 2.5-cm rigid tire wheelchair. The 3.5-cm wide pneumatic tire wheelchair caused less depression than the 2.5- cm rigid tire, however, depressions caused by the 3.5-cm wide pneumatic wheelchair were greater than the heel of either shoe (Table 4). The pneumatic tires of single rider carts were not measured on enough occasions to compare with the other forms of traffic over the entire season. Sufficient data were collected on 11 and 18 September and 2 and 28 October 1996 to evaluate the depth of depression caused by the heel of a sneaker and golf shoe combined and the 16.5- and 15.2-cm wide pneumatic tire of the Golf Express and Lone Rider cart, respectively. The average depth of depression for

Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

39RESULTS AND DISCUSSION

Evaluation of traffic and disruption of golf putting green

Microrelief measurements. The average depth of depression for the heel

of a sneaker, heel of a golf shoe, 2.5-cm wide rigid tire wheelchair, and 3.5-cm

wide pneumatic tire wheelchair for all putting greens throughout 1996 is shown

in Table 4. The lack of significant differences in measurements of surface

hardness, surface strength, and gravimetric moisture content for the 0- to 5-cm

depth below the turf surface for each form of traffic indicated that the

measurements of depression were collected randomly and not biased by

conditions.

The heel of a golf shoe and sneaker did not differ in the depth of

depression caused after applying 30 seconds of static pressure. As expected,

the greatest depth of depression occurred with the 2.5-cm rigid tire wheelchair.

The 3.5-cm wide pneumatic tire wheelchair caused less depression than the 2.5-

cm rigid tire, however, depressions caused by the 3.5-cm wide pneumatic

wheelchair were greater than the heel of either shoe (Table 4).

The pneumatic tires of single rider carts were not measured on enough

occasions to compare with the other forms of traffic over the entire season.

Sufficient data were collected on 11 and 18 September and 2 and 28 October

1996 to evaluate the depth of depression caused by the heel of a sneaker and

golf shoe combined and the 16.5- and 15.2-cm wide pneumatic tire of the Golf

Express and Lone Rider cart, respectively. The average depth of depression for

Page 2: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

Table 4. Depth of depression, percent rebound, surface hardness, surfacestrength, and gravimetric moisture content of the 0- to 5-cm depth zone belowthe turf surface measured for each form of traffic averaged over all puttinggreens measured in 1996.

40

Depth of Surface Surface MoistureForm of Traffic nt Depression Rebound t Hardness ~ Strength 11 Content #

mm 0/0 g kg cm-3 ok

Heel of golf shoe 19 0.4 17 68 15.6 26.6

Heel of sneaker 23 0.5 24 64 14.8 27.8

2.5-cm wide rigid tire 35 1.8 19 66 15.0 27.5wheelchair

3.5-cm wide pneumatic 33 1.2 18 68 15.3 25.5tire wheelchair

LSD (0.05)

CV; 0/00.2 ***

39NS

8NS13

NS16

NS47

*** Significant at the 0.001 probability level.t Number of observations.t Percent rebound of depth of depression after 30 minutes; the number ofobservations for percent rebound data was 18,20,31, and 32 for the heel of asneaker, shoe, 2.5- wide rigid tire, and 3.5-cm wide pneumatic tire wheelchair,respectively.S Surface hardness, maximum deceleration measured in gravities.11 Surface strength measured at the O-to2.5-cm depth zone.# Gravimetric moisture content of the 0- to 5-cm depth zone below the turf surface.

Page 3: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

41the pneumatic tires of the single rider carts was greater than the heel of the

shoes (Table 5).

The amount of rebound of the putting green 30 minutes after traffic was

not statistically different for each of the forms of traffic (Table 4 and 5). Thus,

the depth of depression initially caused by wheeled traffic would remain as

deeper depressions 30 minutes after traffic compared to the depression caused

by foot traffic.

Ball roll deflection. Deflection of golf ball roll was evaluated for traffic with

the 2.5-cm wide rigid tire wheelchair in 1996. As evidenced by the data, ball roll

over the path traveled by wheel traffic was altered, however, results were

variable. Results indicated that the lateral position of golf ball roll was

significantly altered 20% of the time when the depth of depression was 1.5 mm

or less after traffic (Table 6). The lateral position of golf ball roll was significantly

altered 60% of the time when the depth of depression was greater than 1.5 mm

after traffic.

The homogeneity of the variances of the forward and lateral positions was

only significant three times during ball roll evaluation in 1996 and did not appear

to be a useful determination of ball roll deflection. The change in lateral position

appears to be the best indicator of ball roll deflection.

The forward position measurement was significantly different after traffic

on seven out of sixteen dates during 1996. The forward position measurement

was not strongly associated with depth of depression caused by wheel traffic.

Page 4: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

42Table 5. Depth of depression, percent rebound, surface hardness, surfacestrength, and gravimetric moisture content of the 0- to 5-cm depth zone belowthe turf surface measured for foot traffic and single rider carts averaged over allputting greens measured on 11 and 18 Sept. and 2 and 28 Oct. 1996.

Form of TrafficDepth of Surface Surface Moisture

nt Depression Rebound; Hardness9 Strength~ Content#

mm 0,10 g kg cm-3 %

Heel of sneaker 6 0.7 27 57 12.8 27.2and golf shoe

16.5 and 15.2 cm wide 8 1.1 26 57 12.4 28.7pneumatic tiresingle rider carts

LSD (0.05) 0.4* NS NS NS NSCV; 0/0 34 57 7 10 53

* Significant at the 0.05 probability level.t Number of observations.t Percent rebound of depth of depression after 30 minutes.9 Surface hardness maximum deceleration measured in gravities.~ Surface strength measured at the 0- to 2.5-cm depth zone.# Gravimetric moisture content of the 0- to 5-cm depth zone below the turfsurface.

Page 5: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

Table 6. The final resting lateral and forward position of eight golf ball rolls across a putting green at four locations 'before and after traffic with a2.5-cm rigid tire wheelchair in 1996. Ball roll intersected traffic at 30° angle and within the last 0.9 m of the final resting spot.

Lateral Position Forward PositionLocation Date Depth t Before After Vaq: T test~ Before After Var T test

mm ---------- cm ---------- ------------- cm ----------Plainfield

10 June 0.8 171:10 23 1:5 NS NS 3941: 12 391 :t 17 NS NS22 July 1.3 26 1:5 31 :t7 NS NS 249 :t 4 256 :t 15 ** NS16 Sept 1.1 pneumatic 1J 16 1:2 17 :t4 NS NS 2641: 5 273 :t 3 NS **

1.9 1 -t7 8 1: 1 *** ** 4421: 26 4791: 25 NS *Tavistock

20 June 0.5 52 1:8 61 :t6 NS * 3361: 8 351 :t 9 NS ***Fiddlers

13 June 1.0 52 1:6 61 1:6 NS * 3521: 9 382 :t 12 NS ***10 July 1.0 28 1:7 25 1:7 NS NS 279 :t 8 280 :t 7 NS NS

Metedeconk6 June 0.8 1 1:4' 2 .1:5 NS NS 313.1: 9 329.1: 7 NS **

0.8 -1 1:7 -2 1: 10 NS NS 3381: 14 359 :t 9 NS **

11 July 1.2 23 1: 1 22 :t3 ** NS 406 :t 14 419 :t 14 NS NS

14 Aug 1.4 9 t5 8 1:6 NS NS 4681: 14 473 :t 26 NS NS2.6 9 1:5 19 :t9 NS ** 468 :t 14 470 :t 27 NS NS3.8 9 :t5 26 t8 NS *** 4681: 14 464 :f: 18 NS NS0.0 (check) 12 :f:9 14 t6 NS NS 396 :t 16 408 :f: 17 NS NS2.2 12 :t9 12 t9 NS NS 3961: 16 391 :f: 12 Ns NS3.4 12 1:9 8 t9 NS NS 396 :t 16 381 :t: 8 NS *

*, **, ***, Significant at the 0.05. 0.01, and 0.001 probability levels, respectively. NS Not significant.t Depth of depression immediately after traffic, 0.0 = no traffic.:I: F test for homogeneity of the variances.~ Probability of a greater t-value.1J Depression made with 3.5 cm wide pneumatic tire wheelchair.

~w

Page 6: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

44When differences were observed, the change in forward position resulted in an

increased length of ball roll eight out of nine times. This increase in ball roll

length could be caused by the repeated ball rolls lying down turfgrass blades

along the path of ball travel.

Ball roll deflection was evaluated in 1997 for the heel of a golf shoe, 2.5-

cm wide rigid tire wheelchair, and 3.5-cm wide pneumatic tire wheelchair (Tables

7, 8, and 9). No traffic (0.0 mm of depression) altered lateral position of ball roll

only once (11 % of the time) in 1997. The heel of the golf shoe altered the lateral

position of the golf ball roll 50%) of the time (Table 7). The depth of depression

caused by the heel of a golf shoe ranged from 0.4 to 0.9 mm.

Depressions from wheeled traffic in 1997 produced similar results as in

1996. The 2.5- and 3.5-cm wide wheeled traffic altered ball roll 22% of the time

when depth of depression was 2.0 mm or less (Table 8 and 9). When the depth

of depression caused by wheeled traffic was greater than 2.0 mm, the lateral'

position of ball roll was altered 33% of the time.

Relationship of gravimetric moisture content with depth of depression,

surface hardness, and surface strength

The depth of depression caused by the heel of a golf shoe and sneaker

changed very little over the range of gravimetric moisture content for the 0- to 5-

cm depth below the turf surface on high sand greens and topdressed modified

native soil greens (Figure 3). Conversely, the depth of depression for the 2.5-cm

wide rigid tire wheelchair and 3.5-cm wide pneumatic tire wheelchair increased

Page 7: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

Table 7. The final resting lateral and forward position of six golf ball rolls across a putting green before and after traffic with theheel of a golf shoe on the Metedeconk National Golf Club nursery green during 1997. Ball roll intersected traffic at 30° angle andwithin the last 0.9 m of the final resting spot.

Lateral Position Forward PositionDate Depth t Before After Var + T test 9 Before After Var T test

mm --------- cm -------- --------- cm ----------21 May

0.0 261:6 24:t 4 NS NS 228 :t 8 227 :t6 NS NS0.4 17:t2 15:t1 NS * 232:t 11 225 :t8 NS NS0.9 13:t2 14 :t 3 NS NS 227 :t 8 231 :t7 NS NS

28 May0.0 18:t2 12 :t 4 NS ** 236:t 10 236 :t7 NS NS0.8 291:3 23:t 3 NS ** 198:t 12 191 :t8 NS NS0.9 23:t 2 21 :t 3 NS NS 215 :t8 214 :t 8 NS NS0.9 17:t 1 9:f::6 ** ** 255 :t 5 248:t 10 NS NS

4 June0.0 1712 17:t1 NS NS 248:t 12 254 :t 4 * NS0.4 24:t 2 25:t 3 NS NS 248 :f::7 255 :t 6 NS NS0.6 22:t 4 19:t 2 * NS 266:f::22 274:t 21 NS NS0.8 1915 14:t 2 NS * 274:t 15 284:t 10 NS NS

*, **, ***, Significant at the 0.05, 0.01, and 0.001 probability levels, respectively.NS Not significant.t Depth of depression immediately after traffic, 0.0 = no traffic.* F test for homogeneity of the variances.~ Probability of a greater t-value.

Page 8: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

Table 8. The final resting lateral and forward position of six golf ball rolls across putting green before and after traffic with a 2.5-cmwide rigid tire wheelchair on the Metedeconk National Golf Club nursery green during 1997. Ball roll intersects traffic at 300 angleand within the last 0.9 m of final resting spot.

------------ Lateral Position ------------ ------------ Forward Position ------------Date Depth t Before After Var t T test ~ Before After Var T test

mm --------- cm -------- --------- cm ----------21 May

0.0 17:t4 15:t4 NS NS 226:t 13 230:t 10 NS NS1.7 24:t 2 21 :t 2 NS * 263:t 11 263:t 13 NS NS1.8 181-3 19:t3 NS NS 271 !9 275! 11 NS NS3.2 14:t 5 8:t3 NS * 268 19 264 19 NS NS

28 May0.0 12:t1 12:t1 NS NS 272:t 14 285:1: 10 NS *

2.0 8t6 413 NS NS 2721 14 265:1: 11 NS NS2.6 12 :t 4 9:t2 NS NS 253 16 248 ::1:9 NS NS4.5 35:t 7 22 t. 4 NS ** 252 17 2451 10 NS NS

4 June0.0 11:t5 9:t5 NS NS 256:t 14 255:1: 14 NS NS2.4 22:t 3 23::1:2 NS NS 222:t 15 229:1: 11 NS NS2.5 24:t 2 23:t 3 NS NS 297:t 13 290 ::I: 7 NS NS2.8 18:t2 16:t 5 * NS 282:t 27 284:1:23 NS NS

*, **, ***, Significant at the 0.05, 0.01, and 0.001 probability levels, respectively.NS Not significant.t Depth of depression immediately after traffic, 0.0 = no traffic.t F test for homogeneity of the variances.~ Probability of a greater i-value.

Page 9: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

Table 9. The final resting lateral and forward position of six golf ball rolls across putting green before and after traffic with a 3.5-cmwide pneumatic tire wheelchair on the Metedeconk National Golf Club nursery green during 1997. Ball roll intersects traffic at 30°angle and within the last 0.9 m of final resting spot.

------------ Lateral Position ------------ ------------ Forward Position ------------Date Depth t Before After Var:f: T test 9 Before After Var T test

mm --------- cm -------- --------- cm ----------21 May

0.0 15:t5 19:t6 NS NS 233 :t9 237:t 14 NS NS1.0 11:t1 15:t4 * * 233 14 232:t 10 NS NS1.5 15:t3 131:2 NS NS 237 :t 9 236:1: 11 NS NS2.5 2312 21 :t 1 NS * 244:t 10 246:t 11 NS NS

28 May0.0 16 :t 2 15:t1 NS NS 217 :t 7 213 :t 7 NS NS1.6 13:t2 11:tS NS NS 2011:10 188 :t 9 NS *

2.S 1S:t8 1S:t3 NS NS 220 1:S 2231: 17 * NS2.6 121:2 101:3 NS NS 2241: 11 2251: 10 NS NS

4 June0.0 121:5 91:1 ** NS 277:t 17 287 1:9 NS NS0.6 101:2 11 i 3 NS NS 2631: 11 2661: 15 NS NS1.0 33:t S 351: S NS NS 250 :t 8 255 1:7 NS NS1.6 181:5 1S:t5 NS NS 2791: 26 2841: 26 NS NS

*, **, ***, Significant at the 0.05, 0.01, and 0.001 probability levels, respectively.NS Not significant.t Depth of depression immediately after traffic, 0.0 = no traffic.t F test for homogeneity of the variances.~ Probability of a greater t-value.

Page 10: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

4.0. n e---- High sand greens

...-e--- Topdressed modified native soil greens

5040

Y2=0.4 + 0.001x •r = 0.01 NS

•.•~-eI--&--!_"•••

302010

Y2=0.29 + 0.016xr = 0.09 NS

3.0

2.0

1.0

,0.0o

c:o--InInCDl-e..CDC't-oJ:~e..CDC

Gravimetric Soil Moisture (Ok)

Figure 3. Relationship between gravimetric moisture content of the 0- to 5-cm depth zonebelow the turf surface and depth of depression for the heel of a golf shoe after 30 secondsof static pressure on rootzones of high sand and topdressed modified native soil.NS = Not significant.

Page 11: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

49as the gravimetric moisture content for the 0- to 5-cm depth below the turf

surface increased on high sand greens (Figures 4 and 5). The depth of

depression caused by the tire of wheelchairs on topdressed ,modified native soil

greens did not exhibit a clear relationship with the gravimetric moisture content

- 6f the 0- to 5-cm depth below the turf surface (Figures 4 and 5).

Surface hardness measurements increased as the gravimetric moisture

content for the 0- to 5-cm depth below the turf surface decreased (Figure 6). It

was also apparent that two distinct groupings existed within the data which

described the relationship between gravimetric moisture content of the 0- to 5-

cm layer below the turf surface and surface hardness. The two groups were also

described well by the organic matter content at the O-to 5-cm soil depth below

the upper mat layer. One group of data had gravimetric moisture contents below

27%>and organic matter contents below' 2.0% and will be referred to as high

sand greens (Table 1). The other group typically had moisture contents greater

than 27%>and organic matter contents above 2.0%>and will be referred to as

topdressed modified native soil greens.

The relationship between gravimetric moisture content for the O-to 5-cm

depth and surface strength is shown in Figure 7. Surface strength did not exhibit

a significant relationship with gravimetric moisture content of the 0- to 5-cm

depth.

The most obvious deviation from these two groupings was the 12th green

at Pine Valley Golf Club. Although the organic matter level for the 0- to 5-cm

Page 12: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

Y2=0.50 +0.031x

r = 0.09 NS

•.-

--e-.. High sand greens

--e-. Topdressed modified native soil greens

•~--••

• -' ..~•o

ooo 0

°,0_/~

000O~

Y2=0.75 ~ 0.082xr = 0.21

4.0...........EE~c: 3.00.-tntnCI)... 2.0c.CI)C....0.t: 1.0...,c.CDC

0.0o 10 20 30 40 50

Gravimetric Soil Moisture (Ok)

Figure 4. Relationship between gravimetric moisture content of the 0- to 5-cm depth zonebelow the turf surface and depth of depression for 2.5-cm wide rigid tire wheelchair after 30seconds of static pressure on rootzones of high sand and topdressed modified native soil.NS = Not significant. + Significant at the 0.07 probability level.

()'1o

Page 13: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

4.0

o

504030

••••........ _ n .. ~ .•

•. - H _

• ••Y2= 1.26 - O.OOlx •r = 0.02 NS

2010

o

---8-- High sand greens

-e-- Topdressed modified native soil greens

ooo ~O00

6 gcP 0Y2= 0.05 + 0.089xr = 0.29 •

o

1.0

2.0

3.0

0.0

r::o.-tntnCDl-e.CDC~o.J:.....e.CDC

Gravimetric Soil Moisture (Ok)

Figure 5. Relationship between gravimetric moisture content of the 0- to 5-cm depth zonebelow the turf surface and depth of depression for 3.5-cm wide pnuematic tire wheelchair after30 seconds of static pressure on rootzones of high sand and topdressed modified native soil.NS = Not significant. * Significant at the 0.05 probability level.

Page 14: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

100.,.-... 90C)

~U) 80U)(1) 70c:-c"- 60nsJ:(1) 50(.)

~ 40:::::sen 30

200

--+=-}---- High sand greens

Y2=98.8 - 0.94xr = 0.40 •••

10 20 30 40 50 60Gravimetric Moisture (0/0)

Figure 6. Relationship between gravimetric moisture content of the 0- to 5-cm depth zonebelow the turf surface and surface hardness (maximum deceleration measured in gravities)for rootzones of high sand and topdressed modified native soil.*** Significant at the 0.001 probability level. .

Page 15: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

Topdressed modified native soil greens

Y2=20.6 .. 0.11xr = 0.05 NS

•...( ).. ,....

n, • ~_~ •• _ •••

)...•.~-:-I •••

( )

Pine Valley Golf Club

High sand greens

-----e--•

8

24

28

16

20

12---oen4

o 10 20 30 40 50Gravimetric Moisture (0/0)

60

Figure 7. Relationship between gravimetric moisture content of the 0- to 5-cm depthzone below the turf surface and surface strength measured for the 0- to 2.5-cm depthzone for rootzones of high sand and topdressed modified native soil.NS = Not significant. 01

W

Page 16: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

54depth below the upper mat layer at Pine Valley was above 2.0%, its values for

gravimetric moisture content of the 0- to 5-cm layer below the turf surface are

similar to high sand greens. The 0- to 5-cm depth below the upper mat layer at

Pine Valley was high in sand content and low in organic matter content

compared to the other topdressed modified native soil greens (Table 2) and may

be responsible for moisture values being similar to greens built using high sand

root zone mixes.

Test methods for determining bearing strength of golf greens

Surface hardness and surface strength measurements were compared to

depth of depression measurements to evaluate if these quantitative tests could

describe the bearing strength of golf greens. The organic matter content at the

0- to 5-cm soil depth below the upper mat layer was strongly correlated with

surface hardness, surface strength, and depth of depression data. Therefore,

surface hardness and strength measurements were regressed separately with

depth of depression measurements on high sand and topdressed modified

native soi I greens.

Surface hardness and strength were more strongly correlated to depth of

depression on high sand greens than topdressed modified native soil greens

over all forms of traffic (Table 10 and 11). The depth .of depression caused by

the heel of the golf shoe and sneaker changed very little over the range of

surface hardness and strength measurements on high sand greens (Figures 8

and 9). However, the depth of depression created by the tires of the wheelchairs

Page 17: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

55Table 10. Coefficient of determination (r2)J model significance (P > F), andnumber of observations (n) for simple linear regression of the depth ofdepression of the forms of traffic with surface hardness and ,strength values onhigh sand greens.

Form of Traffic Variable t n P>F

Heel of golf shoe Hardness L 21 0.39 0.003and sneaker HardnessQ 0.50 0.002

Strength L 19 0.21 0.05Strength Q 0.29 0.06

2.5 cm wide rigid Hardness L 16 0.44 0.005tire wheelchair HardnessQ 0.46 0.02

Strength L 14 0.43 0.01Strength Q 0.46 0.03

3.5 cm wide pneumatic Hardness L 17 0.40 0.006tire wheelchair Hardness Q 0.67 0.001

Strength L 15 0.22 0.07Strength Q 0.50 0.01

16.5 and 12.7 cm wide Hardness L 6 0.23 0.34pneumatic tire HardnessQ 0.77 0.11single rider carts

Strength L 6 0.00 0.97Strength Q 0.24 0.65

t L = linear equation and Q = quadratic equation.

Page 18: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

56Table 11. Coefficient of determination (~)t model significance (P > F), andnumber of observations (n) for simple linear regression of the depth ofdepression of the forms of traffic with surface hardness and strength values ontopdressed modified native soil greens.

Form of Traffic Variable t n P>F

Heel of golf shoe Hardness L 21 0.01 0.67and sneaker Hardness a 0.07 0.50

Strength L 20 0.15 0~09Strength a 0.27 0.07

2.5 cm wide rigid Hardness L 19 0.18 0.07tire wheelchair Hardness a 0.23 0.12

Strength L 18 0.11 0.17Strength a 0.23 0.13

3.5 cm wide pneumatic Hardness L 16 0.03 0.52tire wheelchair Hardness a 0.09 0.53

Strength L 15 0.03 0.55Strength a 0.12 0.47

16.5 and 12.7 cm wide Hardness L 3pneumatic tire Hardness asingle rider carts

Strength L 3 0.75 0.33Strength a

t L = linear equation and Q = quadratic equation.

Page 19: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

90

••H

~ = 5.6 - 0.05xr = 0.44 **

l-:J

•[J

[]LJe [1

••[J- .

o [J• [J•"--A-- ••

• -A-- 'A-A.".•

50 60 70 80Surface Hardness (g)

-----e-- Rigid tire wheelchair

----EJ--- Pnuematic tire wheelchair

---A---- Heel of golf spike and sneaker••i:,"--~. __\2[]

~ = 26.2 - 0.689x + 0.005x ""r = 0.67 .. * "

~= 6.8 - 0.169x + 0.001x2 •r = 0.50 **

3

1

o40

4

c::o.-UJUJCD'- 2c.CDC'I-o.t:......C.CDC

Figure 8. Relationship between surface hardness (maximum deceleration measured ingravities) and the depth of depression caused by 30 seconds of static pressure from theheel of a sneaker and golf shoe, 2.5-cm wide rigid tire wheelchair, and 3.5-cm widepnuematic tire wheelchair on high sand greens located in New Jersery during 1996.**, *** Significant at the 0.01 and 0.001 probability levels, respectively.

Page 20: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

3

1/.

[J

r J

[I

A

..,A--.----A

-e-- Rigid tire wheelchair

-E-]-- Pnuematic tire wheelchair

.~-- Heel of sneaker and golf shoe

••

••••[J

[l

Y = 61.2 - 27,7x'" 3.j~~r2 = 0.50 .... •

[]

[] .' []LJ

I] 0A A [1

A -', -, ,-,~_ ..A ,.'.~--,t-._-;&---.t .'---. __'n A-

Y = 11.9 _4.6x + 0.53i A A '.i- '.'. ---'.r2 = 0.29~' A

Y2=19.2 - 3.1xr = 0.43" •

o

4

c:o.-tntnCD~ 2c.CDC"-o.c:.....0-CDC

12 16 20-2Surface strength (kg cm )

Figure 9. Relationship between surface strength measured for the 0- to 2.5-cm depthzone and the depth of depression caused by 30 seconds of static pressure from the heelof a sneaker and golf shoe, 2.5-cm wide rigid tire wheelchair, and 3.5-cm wide pnuematictire wheelchair on high sand greens located in New Jersey during 1996.+, ** Significant at the 0.06 and 0.01 probability level, respectively. (J'1

ex>

Page 21: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

4

l,>.... --.-"----

oL\

-1- -- --------.u •o • U---------LL -__.0 ---------0

••

Heel of golf spike and sneaker

••

-eu

-- Rigid tire wheelchair

--Ej--- Pnuematic wheelchair

[]l\

[)

I

•~Jfl----u

--- --

[1

u

II

y. = 0.6 --0.002xr2 = 0.01 NS

••~= 1.4 - 0.006xr = 0.03 NS

'2= 3.2 - ~.024xr = 0.18

3

1

o

t:a--UJUJ

~ 2c.Q)C....a.c....,c.Q)C

40 50 60 70Surface Hardness (g)

80

Figure 10. Relationship between surface hardness (maximum deceleration measuredin gravities) and the depth of depression caused by 30 seconds of static pressure fromthe heel of a sneaker and golf shoe, 2.5-cm wide rigid tire wheelchair, and 3.5-cm widepnuematic tire wheelchair on topdressed modified native soil greens located in NewJersey during 1996. NS = Not significant. + Significant at the 0.07 probability level. m

a

Page 22: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

12 16 20-2Surface strength (kg cm )

24

•--

---e- Rigid tire wheelchair

_n_[] __ Pnuematic tire wheelchair

,'.', l'-'.

--- ..--

Heel of sneaker and golf shoe

••••1[1 ••

• [J 1.1-[J----- -Tr-"--

[J 0 CJ t'~•6. {\ L

L~ _D.-----------.- ... '---ZS-TJ 6

••

/\

•'2= 11 .4 - 1.~xr = 0.11 NS

~= 5.0 - 0.28£L-r = 0.03 NS

~= 0.30 ~ 0.41xr = 0.15

3

o8

1

.--....4EE

~

co--enen(1)...2c.(1)C....o.c::..,Q.(1)C

Figure 11. Relationship between surface strength for the 0- to 2.5-cm depth zone anddepth of depression caused by 30 seconds of static pressure from the heel of a sneakerand golf shoe, 2.5-cm wide rigid tire wheelchair, and 3.5-cm wide pnuematic tirewheelchair on topdressed modified native soil greens located in New Jersey during 1996.NS = Not significant. + Significant at the 0.09 probability level, respectively.

Page 23: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

62The depth of depression caused by the different forms of traffic on high

sand greens was associated with the factors of depth and organic matter content

of the upper mat layer and organic matter content of the topdressing material

(Table 12). The depth and organic matter content of the upper mat layer were

contained in the best single variable equations. The depth and organic matter

content of the upper mat layer was negatively correlated to the bulk density of

the upper mat layer (data not ~ho~n). The compactibility of a soil depends on

the initial compactness of the soil (Hakansson et. al. I 1988), therefore, the depth

and organic matter content of the upper mat layer may indicate the compactibility

of the turf surface and associated to the depth of depression caused by traffic.

Equations describing depth of depression on the topdressed modified

native soil greens did not have a single unique edaphic property that remained

in the best fit models for all forms of traffic. Depth of depression did not vary

with surface hardness and strength values on topdressed modified native soil

greens (Figures 10 and 11). The topdressed modified native soil greens may

have rootzones with a great amount of variation and the depth of depression

caused by traffic can not be accurately described by anyone edaphic property

or surface measurement. Apparently the bearing strength or 'resiliency' of

topdressed modified native soil greens was similar over a broad range of

conditions.

The organic matter content of the upper mat layer remained in all three

best single variable equations that were significantly associated with the percent

Page 24: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

Table 12. Regression equations, coefficient of multiple determination (R2), model significance (P > F), coefficient

of simple determination (r2) of best single variable model, and number of observations (n) for edaphic properties of

golf putting greens associated with the depth of depression (Y) of the forms of traffic on high sand greens andtopdressed modified native soil greens.

Construction Type Best Multipleand Form of Traffic + Variable Equation 9

High Sand:

n P>FBest Single

Variable Equation 9 r2 P > F

2.5 em tire3.5 cm tireheel of shoe

y = 2.9 - O.11 *X3

Y = O.1 + O.14*X2 - 1.13*XsY = 0.2 + 0.03*X2

16 0.2117 0.6321 0.16

0.07t0.001 *0.07t

Y = 2.9 - O.11 *X3

Y = -0.3 + 0.14*X2

Y = 0.2 + 0.03*X2

0.21 0.070.40 0.0060.16 0.07

Topdressed Modified Native Soil:

2.5 em tire3.5 cm tireheel of shoe

Y= -3.8 + 0.06*X6 + 0.04*X7

y= 1.1 - 0.1 O*XsY= -0.02 + 0.04*X2

191621

0.440.220.30

0.001 *0.06t0.009**

Y = -1.9 + 0.05*~Y = 1.1 - 0.10*XsY = -0.02 + 0.04*X2

0.30 0.010.22 0.060.30 0.009

t * ** All variables in the model significant at the 0.10,0.05 and 0.01 level, respectively.t 2.5 cm tire = 2.5 cm wide rigid tire wheelchair, 3.5 cm tire = 3.5 cm wide pneumatic tire wheelchair, and heel = heel of sneaker andgolf shoe for 30 seconds of stationary pressure.~ X1 = height of cut, X2 = depth of upper mat layer, X3 = organic matter content of the upper mat layer, X4 = organic matter content of theo to 5 cm depth below the upper mat layer, Xs = organic matter content of the topdressing material, ~ = soil temperature at the 5-cmdepth, and X7 = gravimetric moisture content of the 0 to 5 cm depth below the green surface.

0>w

Page 25: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

64rebound of a depression 30 minutes after traffic with the 2.5- and 3.5-cm wide

tire wheelchairs (Table 13). Thomas and Guerin (1981) developed a method to

measure the elasticity of sports turf, elasticity measurements were time intervals

required for the compacted area to closely return to its original state. They

observed differences in elasticity for growing media of different soil textures.

The organic matter content of the upper mat layer, like soil texture, may affect

the elasticity or rebound of a depression by wheeled traffic.

The percent rebound of a depression 30 minutes after foot traffic did not

show a strong association with any of the edaphic features studied (Table 13).

Although the percent rebound of a depression for foot traffic is similar to rebound

for wheeled traffic, the depth of depression was greater for the wheeled traffic.

The depth of depression for foot traffic may be to small to observe an

association of edaphic properties with the percent rebound of a depression.

Edaphic properties associated with surface hardness and strength

Multiple regression analysis for edaphic properties associated with

surface hardness and strength was performed over all green types (high sand

and topdressed modified native soil greens combined). The organic matter

content of the 0- to 5-cm depth below the upper mat layer and the gravimetric

moisture content of the 0- to 5-cm depth below the surface remained in the best

multiple variable equation fQr both surface hardness and strength (Table 14).

The height of cut and organic matter content of the upper mat layer also

remained in the best multiple variable equation for surface hardness and surface

Page 26: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

Table 13. Regression equations, coefficient of determination (R2), model significance (P > F), coefficient of simple

determination (r) of best single variable model, and number of observations (n) for edaphic properties of golfputting greens associated with the percent of rebound of a depression (Y) 30 minutes after different forms of trafficon high sand and topdressed modified native soil greens.

Construction Typeand Form of Traffic :1:

High Sand:

Best MultipleVariable Equation ~ n P>F

Best SingleVariable Equation ~ P>F

2.5 em tire3.5 cm tireheel

Y = -0.4 + 2.2*X3

No significant modelY = -10.3 + 1.9*X7

161721

0.28 0.03

0.14 0.08t

Y = -0.4 + 2.2*X3 0.28 0.03No significant modelY = -10.3 + 1.9*X7 0.14 0.08

Topdressed Modified Native Soil:

2.5 cm tire3.5 em tireheel

Y = 1.6 + 1.9*X3

Y = -1.5 + 2.2*X3

No significant model

161418

0.400.38

0.008**0.01*

Y = 1.6 + 1.9*X3

Y = -1.5 + 2.2*X3

No significant model

0.40 0.0080.38 0.01

t * ** All variables in the model significant at the 0.10,0.05,0.01 level.:J: 2.5 cm tire = 2.5 cm wide rigid tire wheelchair, 3.5 cm tire = 3.5 cm wide pneumatic tire wheelchair, and heel = heel of sneaker andgolf shoe for 30 seconds of stationary pressure.9 X1 = height of cut, X2 = depth of upper mat layer, X3 = organic matter content of the upper mat layer, Xt = organic matter content of theo to 5 cm depth below the upper mat layer, Xs = organic matter content of the topdressing material, Xa = soil temperature at the 5-cmdepth, and X7 = gravimetric moisture content of the 0 to 5 em depth below the turf surface.

m()1

Page 27: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

Table 14. Regression equations, coefficient of determination (R2), model significance (P > F), coefficient of simple

determination (r2) of best single variable model, and number of observations (n) for edaphic properties of golf

putting greens associated with surface hardness and strength (Y).

Surface Measurement

Surface Hardness

Best MultipleVariable Equation t n P>F

Best SingleVariable Equation t r2 P>F

Y = 103 + -5.9*X1 + 2.5*X4 - O.9*X7 99

Surface Strength

0.52 0.001* Y = 76 - 0.41*X7 0.33 0.001

Y = 13.5 + 0.46*X3 + 0.58*X4 - 0.15*X7 94 0.44 0.001 * Y = 11.7 + 0.43*X3 0.34 0.001

* All variables in the model significant at the 0.05 level.t X1 = height of cut, X2 = depth of upper mat layer, X3 = organic matter content of the upper mat layer, X4 = organic matter content of theo to 5 cm depth below the upper mat layer, Xs = organic matter content of the topdressing material, ~ = soil temperature at the 5-cmdepth, and X7 = gravimetric moisture content of the 0 to 5 cm depth below the green surface.

0>0>

Page 28: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

67strength, respectively. The association of the height of cut and organic matter

content of the upper layer with surface hardness and strength will be discussed

later with the analysis at specific gravimetric moisture levels.

As discussed previously, surface hardness and strength were separated

into two groups based on gravimetric moisture content of the 0- to 5-cm depth

below the turf surface (Figures 6 and 7) and organic matter content of the 0- to

5-cm depth below the upper mat layer (Table 2). The factors of gravimetric

moisture content of the 0- to 5-cm depth below the turf surface and organic

matter content of the 0- to 5-cm depth below the upper mat .layer separated the

rootzones into high sand and topdressed modified native soil greens. Thus the

type of root zone was consistently associated with surface hardness and

strength and is an important consideration when evaluating the bearing strength

of putting greens.

The examination of the relationship between surface hardness and

edaphic properties at specific gravimetric moisture levels was performed to

identify edaphic characteristics other than gravimetric moisture which influenced

surface hardness measurements. Surface hardness measurements were

grouped into four levels of gravimetric moisture content: 10 to 15, 15 to 20, 35 to

40, and 40 to 45%). The 10 to 150ft,and 15 to 20% levels of gravimetric moisture

consisted of high sand greens and the 35 to 400ft,and 40 to 45% were

topdressed modified native soil greens.

Page 29: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

68The best single variable model associated with surface hardness at the

10- to 15- and 15- to 20-0/0levels of gravimetric moisture cqntent of the O-to 5-cm

depth below the turf surface included the variable of depth of the upper mat layer

(Table 15). Rogers et al. (1988) found that lack of turf cover inside the

hashmarks of high school athletic fields contributed to higher surface hardness

measurements. The depth of mat layer could provide a cushioning effect similar

to turf cover for surface hardness measurements on high sand greens.

At the 35 to 40% gravimetric moisture range, the height of cut remained in

the best fit single variable model accounting for the largest percentage of the

variation of surface hardness (Table 15). While the relative change in the height

of cut between putting greens does not appear to be large enough to change

readings of surface hardness, the factor of height of cut is likely associated with

other management practices (i. e. I rolling, topdressing, irrigation, etc.) which

influence surface hardness.

The organic matter content of the upper mat layer was in the best single

variable equation of surface hardness at the 40 to 45 0;0range of gravimetric

moisture content. Surface hardness would be expected to decrease as the

organic matter content of the upper mat layer increased, increased organic

matter content would reduce bulk density and lower surface hardness values

(Rogers et. aI., 1988). However, the equation indicates a positive relationship,

that as organic matter content increases, surface hardness increases. Possibly,

Page 30: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

Table 15. Regression equations, coefficient of determination (R2), model significance (P > F), coe.tficient of simpledetermination (r2

) of best single variable model, and number of observations (n) for edaphic properties of golfputting greens associated with surface hardness and strength (Y) at four distinct moisture ranges.

Surface Me~surementand Moisture Content t

Best MultipleVariable Equation 9 n P>F

Best SingleVariable Model P>F

Surface Hardness:----%----

10 to 15 Y = 109 - 2.5*X2 + 1.4*X3 -12.5*X4 - 17.9*Xs 20 0.53 0.02* Y = 87.7 - 1.28*X2 0.24 0.0315 to 20 Y = 103 - 2.0*X2 - 9.5*X4 -10.8*Xs 19 0.47 0.02t Y = 77.3 - 0.97*X2 0.26 0.0335 to 40 Y= 72 - 7.5*X1 + 1.7*X2 + 3.3*Xs 11 0.70 0.03t Y = 79.2 - 4.05*X1 0.32 0.0740 to 45 Y= 8 + 1.6*X3 + 4.6*X4 17 0.77 0.001 ** Y = 36.9 + 1.79*X3 0.46 0.03

Surface Strength:---- % ----

10 to 15 Y = 6.2 + 0.42*X3 + 0.09*X6 19 0.53 0.003* Y = 11.0 + 0.56*X3 0.41 0.00215 to 20 Y = 9.7 + 0.60*X3 13 0.37 0.009** Y = 9.7 + 0.60*X3 0.37 0.00935 to 40 Y = 9.6 + 0.65*X3 11 0.70 0.001 *** Y = 9.6 + 0.65*X3 0.70 0.00140 to 45 Y = 3.4 + 0.41 *X2 + 0.66*X3 17 0.76 0.001 ** Y = 8.2 + 0.60*X3 0.60 0.001

t * ** *** All variables in the model significant at the 0.10, 0.05, 0.01, and 0.001 levels, respectively.:I: Gravimetric moisture content for the 0- to 5-cm depth below the turf surface.~ X1 = height of cut, X2 = depth of upper mat layer, X3 = organic matter content of the upper mat layer, X4 = organic matter content of theo to 5 cm depth below the upper mat layer, Xs = organic matter content of the topdressing material, and ~ = soil temperature at the 5-cmdepth.

m<0

Page 31: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

70when upper mat layers are at high moisture contents, increased organic matter

content of that layer may increase surface hardness.

Factors associated with surface strength other than gravimetric moisture

content of the 0- to 5-cm depth below the turf surface were determined using

best fit multiple regression models similar to surface hardness (Table 15). The

organic matter content of the upper mat layer was in all best fit multiple and

single variable models for the four narrow moisture ranges. Penetration

resistance increased as percentage of organic matter in the soil mixture and

amount of rooting increased (van Wijk and Beuving, 1980). The organic matter

content of the mat layer was measured by loss on ignition, this loss can be

associated with either plant debris or organic humus, an increase in either of

these would be expected to be associated with increased surface strength.

Page 32: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

71SUMMARY

A traffic event exerts a force on a surface that results in pressures being

distributed to the surface and down through the soil below. The magnitude of

the forces exerted and the condition of the surface being trafficked will determine

the amount of deformation of the surface after a traffic event.

The amount of depression was measured immediately after 30 seconds of

static pressure from the heel of a shoe, a 2.5-cm wide rigid tire wheelchair, and a

3.5-cm pneumatic tire wheelchair on golf putting greens. A change in microrelief

was used to measure the depth of depression occurring after 30 seconds of

static pressure for each form of traffic. The depth of depression was different for

the forms of traffic evaluated; the wheeled traffic was associated with greater

depth of depression compared to foot traffic.

The 0- to 5-cm depth zone below the upper mat layer is composed of

material used during construction and/or topdressing of a putting green. The

organic matter content and gravimetric moisture content of the 0- to 5-cm depth

zone below the upper mat layer characterized two distinct group of the putting

greens studied. One group, designated as high sand greens, had organic

matter levels below 2%)and gravimetric moisture contents less than 27%. The

other, referred to as topdressed modified native soil greens, had organic matter

levels above 2°1«> and gravimetric moisture content greater than 27°1«>.

Surface hardness and surface strength measurements were used to

characterize putting green surfaces. Surface hardness was measured with the

Page 33: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

72Clegg Impact Soil Tester. Surface strength was measured for the 0- to 2.5-cm

depth of putting greens with a hand held penetrometer.

The depth of depression caused by traffic on high sand greens was lower

when surface hardness was higher. The depth of depression for the heel of a

shoe, 2.5-cm wide rigid tire wheelchair, and 3.5-cm wide pneumatic tire

wheelchair averaged 0.7,2.8, and 2.1 mm, respectively, when surface hardness

values were below 65 gravities. Depths of 0.5, 1.5, and 1.2 mm were measured

for a heel of a shoe, 2.5-cm wide rigid tire wheelchair, and 3.5-cm wide

pneumatic tire wheelchair, respectively, when surface hardness values were

above 75 gravities.

Surface strength measurements showed similar relationship with the

depth of depression on high sand greens. The depth of depression for a heel of

a shoe, 2.5-cm wide rigid tire wheelchair, and 3.5-cm wide pneumatic tire

wheelchair averaged 0.7, 2.8, and 2.4 mm, respectively, at surface strength

values below 13.0 kg cm-2 and depths of 0.5, 1.4, and 1.1 mm, respectively,

when surface strength measurements were above 16.0 kg cm"2. This is in close

agreement with Van wijk and Beauving (1980) who found that the top layer of

soccer fields withstand intensive play without serious deformation if the

penetration resistance of the upper 2 to 3 cm of the top layer is about 13 to 14

kg cm-2.

The depth of depression caused by for each form of traffic on topdressed

modified native soil greens did not change significantly over the range of

Page 34: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

73conditions measured. The average depth of depression for topdressed modified

native soil greens across all measured values of surface hardness and strength

was 0.5, 1.7, and 1.0 mm for the heel of a shoe, 2.5-cm wide rigid tire

wheelchair, and 3.5-cm wide pneumatic tire wheelchair, respectively.

Ball roll lateral distance was altered 600/0of the time when depth of

depression was greater than 1.5 mm for the 2.5-cm wide rigid tire wheelchair in

1996. The traffic of golf putting greens with a 2.5-cm wide rigid tire of a

wheelchair at surface hardness below 65 gravities or surface strength values

below 13 kg cm-2 would be associated with depth of depressions large enough to

cause ball rol/ deflection 600/0of the time. Surface hardness values above 75

gravities and surface strength values above 16 kg cm-2 on high sand greens

would be associated with depth of depression measurements that altered ball

roll lateral distance 20°Jlo of the time in 1996.

Ball roll deflection data in 1997 support these results with a larger percent

of ball roll altered at greater depths of depression. Wheeled traffic altered ball

roll lateral distance 380/0of the time when depth of depression was greater than

2.0 mm. Wheeled traffic on golf putting greens at surface hardness below 65

gravities or surface strength values below 13 kg cm-2 would be associated with

depth of depressions large enough to cause ball roll deflection 38% of the time.

Surface hardness values above 75 gravities and surface strength values above

16 kg cm-2 on high sand greens would be associated with depth of depression

measurements that altered bal/ rol/lateral distance 220/0of the time in 1997.

Page 35: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

74Edaphic properties of putting greens were examined for relationships with

depth of depression and percent rebound of a depression .. Multiple regression

best fit equations indicated that the depth of the upper mat layer was an

important factor associated with the depth of depression on high sand putting

greens. Greater rebound of a depression 30 minutes after traffic was associated

with higher organic matter content of the upper mat layer on high sand and

topdressed modified native soil greens.

Surface hardness measurements decreased with increasing gravimetric

moisture for both green construction types. Rogers and Waddington (1990)

similarly found impact absorption decreased with increased gravimetric moisture

for high school athletic fields. Multiple regression analysis was used to help

identify the most important variables controlling surface hardness at narrow

ranges of gravimetric moisture. The depth of the upper mat layer was included

in the best fit models of surface hardness at the selected moisture ranges of high

sand greens.

Surface strength measurements were evaluated at different moisture

ranges similarly to surface hardness. The organic matter content of the upper

mat layer remained in the best single variable equation for edaphic features

associated with surface strength at all four narrow gravimetric moisture ranges

evaluated.

The depth and organic matter content of the upper mat layer was

associated with the depth of depression, percent rebound of a depression,

Page 36: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

75surface harness, and surface strength, These edaphic characteristics along with

gravimetric moisture content of the 0- to 5-cm depth zone below the turf surface

and organic matter content of the 0- to 5-cm depth zone below the upper mat

layer are important factors affecting the bearing strength of putting greens.

The results indicate that the depth of depression after traffic with a 2.5-

and 3.5 cm wide tire wheelchairs was dependent on surface conditions

(hardness and strength) for high sand greens, whereas the depth of depression

caused by foot traffic did not change under varying surface conditions. The

edaphic properties associated with depth of depression, surface hardness, and

surface strength were depth and organic matter content of the upper mat layer.

The evaluation of depth and organic matter content of the upper mat layer in

designed replicated experiments would provide a better understanding of the

effect these factors have on the depth of depression after traffic events.

Ball roll deflection needs further study if depth of depression

measurements are to be clearly interpreted for acceptable limits of depression

and interference with play. Further investigation is necessary to determine if

values of surface hardness and strength represent the entire range of surface

conditions found on topdressed modified native soil greens.

Future work might also include the following. The evaluation of different

width pneumatic tires (6.4, 7.6, 10.1 cm) for depth of depression and ball roll

deflection. The examination of surface hardness between 65 and 75 gravities

and surface strength values between 13 and 16 kg cm-2 for depth of depression

Page 37: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

76of different forms of traffic and associated edaphic features. The evaluation of

traffic on putting greens with different grass species including bermudagrass

(Cynodon dactylon), overseeded perennial ryegrass (Lolium perenne) and rough

bluegrass (Poa trivialis).

Page 38: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

77REFERENCES

Adam, K.M., and D.C. Erbach. 1995. Relationship of tire sinkage depth to depthof soil compaction. Trans. ASAE 38(4):1011-1016.

Akram, Mohd, and W. D. Kemper. 1979. Infiltration of soils as affected by thepressure and water content at the time of compaction. Soil ScL Soc. Am.J. 43: 1080-1086.

Baker, S.W., and C.W. Richards. 1991. Rootzone composition and theperformance of golf greens. II. Playing quality under conditions ofsimulated wear. J. Sports Turf Res. Inst. 67:24-31.

Baker: S.W., and P.M. Canaway. 1993. Concepts of playing quality: Criteriaand measurement. Int. Turfgrass Soc. Res. J. 7: 172-181.

Balough, J.C., V.A. Gibeault, W.J. Walker, M.P. Kenna, and J.T. Snow. 1992.Backround and overview of environmental issues. in J.C. Balough andW.J. Walker (eds.) Golf course management and constructionenvironmental issues. Lewis Publishers, Chelsea, M.1. Chaper 1.

Beard, J.B. 1973. Turfgrass: Science and culture. Prentice Hall, EnglewoodCliffs, NJ.

Bell, M.J., and G. Homes. 1988. The playing quality of association footballpitches. J. Sports Turf Res. Inst. 64:19-47.

Bell, M.J., S.W. Baker, and P.M. Canaway. 1985. Playing quality of sportssurfaces: A review. J. Sports Turf Res. Inst. 61 :24-31.

Blake, G.R. 1980. Proposed standards and specifications for quality of sand torsand-soil-peat mixes. p. 195-203. In J.B. Beard (ed.) Proc. 3rd Int.Turfgrass Res. Cont.: Munich, Germany. 11-13 July 1977. Int. TurfgrassSoc., and ASA, CSSA, and SSSA, Madison, WI.

Boekel, P. 1980. Some physical aspects of sports turfs. p.437 -441. In J. B.Beard (ed.) Proc. 3rd Int. Turfgrass Res. Cont., Munich, Germany. 11-13July 1977. Int. Turfgrass Soc., and ASA, CSSA, and SSSA, Madison,WI.

Burton, G.W., and C. Lance. 1966. Golt car versus grass. The GolfSuperintendent. 34(1 ):66-68, 70.

Page 39: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

78Burwell, R.E., R.R. Allmaras, and M. Amemiya. 1963. A field measurement of

total porosity and surface microrelief of soils. Soil Sci. Soc. Am. Proc.27(6):697 -700.

Callahan, L.M., W.L. Sanders, J.M. Parham, C.A. Harper, L.D. Lester, and E.R.McDonald. 1997. Comparative methods of measuring thatch on acreeping bentgrass green. Crop Sci. 37:230-234.

Canaway, P.M., and S.W. Baker. 1993. Soil and turf properties governingplaying quality. Int. Turfgrass Soc. Res. J. 7:192-200.

Carrow, R.N. 1991. Physical problems of fine textured soils. Golf CourseManagement. 59( 1):118, 120, 124.

Carrow, R.N., and B.J. Johnson. 1989. Turfgrass wear as affected by golf cartire design and traffic patterns. J. Amer. Soc. Hort. Sci. 114(2):240-246.

Carrow, R.N., B.J. Johnson, and R.E. Burns. 1987. Thatch and quality of Tifwaybermudagrass turf in relation to fertility and cultivation. Agron. J. 79:523-530 ..

Carrow, R.N., and A.M. Pertrovic. 1992. Effects of traffic on turfgrasses. InD.V. Waddington, R.N. Carrow, and R.C. Shearman (eds.) Turfgrass.Agronomy Monograph. 32:285-330.

Carrow, R.N., and G. Weicko. 1989. Soil compaction and wear stresses onturfgrass: Future research directions. p.37-42. In H Takatoh (ed.) Proc.Sixth Int. Turfgrass Res. Cont. 31 July - 4 Aug. Jpn. Soc. Turfgrass Sci.,Toyko.

Chancellor, W.J. 1971. Effects of compaction on soil strength. In K.K. Barneset al. (eds.) Compaction of agricultural soil. Am. Soc. of Agric. Eng., St.Joseph, MO.

Chancellor, W.J. 1976. Compaction of soil by agricultural equipment. Bull.1881, Div. Agr. SCi., Univ. California, Richmond, California.

Clegg, B. 1976. An impact testing device for in situ base course evaluation.Australian Road Res. Bur. Proc. 8: 1-6.

Ferguson, M.H. 1958. Effects of Golf-Shoe Soles on Putting Green Turf. USGAJ. Turf Management. 11(6):25-28.

Page 40: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

79Ferguson, M.H. 1959. Turf damage from foot traffic. USGA J. Turf

Management. 12(9):29-32.

Field, T.R.O., J.W. Murphy, and P.J. Lovejoy. 1993. Penetrometric assessmentof the playability of course turf. In1.Turfgrass Soc. Res. J. 7:512-516.

Gaussoin, R.J., Nuss, and L. Leuthold. 1995. A modified stimpmeter for small-plot turfgrass research. Hort. Sci. 30(3):547-548.

Gee, G.W., and J.W. Bauder. 1986. Particle-size Analysis. In A. Klute (ed.)Methods of Soil Analysis. Part 1. 2nd ed. Agronomy Monograph. 9:383-411.

Gibbs, R.J., W.A. Adams, and S.W. Baker. 1989. Factors affecting the surfacestability of a sand rootzone. p. 189-191. In H Takatoh (ed.) Proc. SixthInt. Turfgrass Res. Cont. 31July - 4 Aug. Jpn. Soc. Turfgrass Sci.,Toyko.

Gibbs, R.J., W.A. Adams, and S.W. Baker. 1993. Changes in soil physicalproperties of different construction methods for soccer pitches underintensive use. Int Turfgrass Soc. Res. J. 7:413-421.

Gibeault, V.A., V.B. Younger, and W.H. Bengeyfield. 1983. Golf shoe study II.USGA Green Sect. Rec. ~1 (5): 1-7.

Gill, W. R., and C.A. Reaves. 1956. Compaction patterns of smooth rubber tires.Agric. Eng. 37:677-680, 684.

Gill, W.R., and G.E. Vanderberg. 1967. Soil dynamics in tillage and traction.Handbook 316, Agr. Res. Service, U.S. Dep1. of Agriculture, Washington,D.C.

Hakansson, I., W. B. Voorhees, and H. Riley. 1988. Vehicle and wheel factorsinfluencing soil compaction and crop response in different traffic regimes.Soil Till. Res. 11:239-282.

Harris, W.L. 1971. The soil compaction process. p.9-44. In K.K. Barnes et al.(eds.) Compaction of agricultural soil. Am. Soc. of Agric. Eng., S1.Joseph, MO.

Henderson, R.L., D.V. Waddington, and C.A. Morehouse. 1990. Laboratorymeasurements of impact absorption on turfgrass and soil surfaces. p.127-135. In R.C. Schmidt, E.F. Hoerner, E.M. Milner, and C.A.Morehouse (eds.) Natural and artificial playing fields: Characteristics and

Page 41: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

80safety features, ASTM STP 1073. Amer. Soc. for Testing and Materials,Philadelphia, PA.

Hillel, D. 1980. Fundamentals of Soil Physics. Academic Press Inc., New York.

Huang, C" I. White, E.G. Thwaite, and A. Bendel. 1988. A non contact lasersystem for measuring soil surface topography. Soil Sci. Soc. Agric. J.52: 350-355.

Hurto, K.A., A.J. Turgeon, and L.A. Spomer. 1980. Physical characteristics ofthatch as a turfgrass growing medium. Agron. J. 72:165-167.

Kuipers, H. 1957. A relief meter ~or soil cultivation studies. Neth. J. Agric. Sci.5:255-262.

Ledeboer, F.B., and C.R. Skogley. 1967. Investigations into the nature ofthatch and methods for its decomposition. Agron. J. 59:320-323.

Liston, R.A" and L.A. Martin. 1968. Multi-pass behavior of a rigid wheel indeformable soils. ASEA Paper No. 68-133. St. Joseph, MI.

Lush, W.M. 1985. Objective assessment of turf cricket pitches using an impacthammer. J. Sports Turf Res. Inst. 61 :71-79.

Porterfield, J.W., and T.G. Carpenter. 1986. Soil compaction: An index ofpotential compaction for agricultural tires. Trans. ASAE 29(4):917-922.

O'Neil, K.J., and R.N. Carrow. 1983. Perennial ryegrass growth, water use, andsoil aeration status under soil compaction. Agron. J. 75: 177-180.

Radko, A.M. 1980. The USGA Stimpmeter for measuring the speed of puttinggreens. p. 473-476. In J.B. Beard (ed.) Proc. 3rd Int. Turfgrass Res.Conf., Munich, Germany. 11-13 July 1977. Int. Turfgrass Soc., and ASA,CSSA, and SSSA, Madison, WI.

Rogers, J.N. III, D.V. Waddington, and J.C. Harper II. 1988. Relationshipsbetween athletic field hardness and traction, vegetation, soil properties,and maintenance practices. Agric. Exp. Stn. Prog. Rep. 393. ThePennsylvania State University, University Park, PA.

Romkens, M. J. M., J.Y. Wang, and R.W. Darden. 1986. A laser'microrelief.Trans. ASAE 31(2):408-413.

Page 42: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

81SAS Institute. 1985 SAS/ST AT guide for personal computers. version 6. SAS

Inst., Cary, NC

Soane, B.D., P.S. Blackwell, J.W. Dickson, and D.J. Painter. 1981. Compactionby agricultural vehicles A review. II Compaction under tyres and otherrunning gear. Soli Till Res. 1:373-399 ..

Soehne, W. 1958. Fundamentals of pressure distribution and soil compactionunder tires. Agnc Eng Res. 39:276-281,290.

Sifers, S.I., and J.B. Boord 1992. Monitoring surface hardness. GroundsMaintenance (6)60, 91, 93.

Smith, D.L.O., and J W DIckson. 1990. Contributions of vehicle weight andground pressuro 10 sOIl compaction. J. Agric. Eng. Res. 46: 13-29.

Stafford, J.V., and P do C:'Hvalho Mattos. 1981. The effect of forward speed ontractor wheel-lr1ejucoc1sorl compaction: Laboratory simulation and fieldexperiments. J Agnc Eng. Res. 26(4):333-347.

Swartz, W. E., and L OJ Ktlfdos 1963. Effects of compaction on physicalproperties of Srin(j'liH)tl ..peat mixtures at various moisture contents.Agron. J. 55.7 10

Taylor, D.H., and G R Blfjk .., 1979. Sand content of sand-soil-peat mixtures forturfgrass. Soil Sac Am. J. 43:394-398.

Taylor, D.H., and G H BIlk., 1981. Laboratory evaluation of soil mixtures forsports turf. Soli SCt 80c Am. J. 45:936-940.

Taylor, J.H., and E C fhHt1Q87 Total axle load effects on soil compaction. J.Terramechanlc8 24(3) 179-186.

Thomas, R., and J.P Gut'lnn 1981. A method of measuring quality of sportsturf. p. 151-156 In ft W Sheard (ed.) Proc. 4th Int. Turfgrass Res.Conf., Guelph, ON. Clnitda. 19-23 July. Int. Turfgrass Soci., and OntarioAgric. Coil., Unlv of Guelph, Guelph, ON .

.van Wijk, A.L.M., W n Vort\,..gh. and J. Beuving, 1977. Grass sportsfields:Top layer complt(~t.on.nd soil aeration. Rason Turf Gazon 8:47-52.

van Wijk, A.L.M., and J IJ .. uv,ng 1980. Playing conditions of grass sportsfields: A soil tectulJti.' Ipproach. p.451-459. In J.B. Beard (ed.) Proc. 3rd

Page 43: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

82Int. Turfgrass Res. Cant., Munich, Germany. 11-13 July 1977. Int.Turfgrass Soc., and ASA, CSSA, and SSSA, Madison, WI.

Volk, G.M. 1972. Compressibility of turf as a measure of grass growth andthatch development on bermudagrass greens. Agron. J. 64:503-506.

Walkley, A., and I.A. Black. 1934. An examination of Degtjareff method fordetermining soil organic matter and a proposed modification of thechromic acid titration method. Soil Sci. 37:29-37.

Watson, J.R. 1961. Some soil physical effects on traffic. p. 1-9. In Proc. of16th Am. Texas Turf Conf., College Station. Texas A&M Univ., Col.legeStation.

Weisberg, S. 1985. Applied linear regression. Wiley, New York.

White, R.H., and R. Dickens, 1984. Thatch accumulation in bentgrass asinfluenced by cultural practices. Agron. J. 76: 19-22.

Page 44: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

83Appendix 1. Date of evaluation, surface hardness, surface strength, gravimetric moisturecontent of the 0- to 5-cm depth below the turf surface, and soil temperature at the 5-cm depth ofhigh sand greens evaluated during 1996.

Putting Green Surface Surface GravimetricLocation 1996 Hardnesst Strength; Moisture Temp

g kg cm-2 % °c

Canoebrook 11th May 13 64 18.4 16.6 19May 23 62 18.4 13.4 24Jun 24 73 16.0 16.5 26Aug 6 54 11.2 18.2 22Aug 26 63 11.6 14.3 18Oct 2 55 11.6 18.4 14Oct 28 61 11.6 18.1 14Nov 25 61 13.6 17.3 7

Fiddler's Elbow practice May 1 51 18.8 25.1 16Jun 13 66 16.8 24.9 21Jul10 57 14.8 26.7 21Aug 22 61 13.6 19.0Sept 18 57 13.6 23.1 19Oct 15 68 14 23.2 8

Montclair 5th May 14 85 19.6 8.6 13Jun 17 82 18.8 11.4 21Jul 16 68 14.8 13.7 22Aug 12 69 16.2 19Sept 24 69 15.2 16.9 10Nov 20 77 14.4 12.6 2

Metedeconk 19th May 2 58 14.4 19.8Jun 6 62 13.2 15.5 18Jul11 69 14 11.8 22Aug 14 67 16.1 22Sept 11 61 14.8 14.2 22Oct 16 66 14 14.5 11

Woodbury 1st Apr 22 62 16.8 8.2 22May 15 17.6 7.9 20Jun 19 74 13.2 16.8 21Jul25 74 13.6 15.0 21Aug 29 81 14.0 13.2 20Sept 27 79 13.2 14.5 14Oct 30 88 14.4 13.7 12

Page 45: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

84Appendix 1 (continued).

Putting Green Surface Surface GravimetricLocation 1996 Hardness Strength Moisture Temp

9 kg cm-2 % °c

Galloway 17th Jun 4 77 20.0 12.6 24Jul9 78 17.2 8.4 28Aug 6 78 18.8 10.9 25Oct 1 64 15.6 14.6 18

Galloway 18th Jun 4 64 19.6 17.5 24Jul9 73 19.6 11.4 28Aug 6 74 18.8 11.4 27Oct 1 65 16.4 15.8 17

Blue Heron Pines 1st Apr 30 74 19.6 13.7 20Jun 4 66 17.6 22.5 26Jul9 67 16.4 19.4 27Aug 6 71 17.6 13.5 27Oct 1 64 12.8 22.7

Pine Valley 12th Apr 22 56 19.6 20.4Jul29 72 15.6 20.3 24Oct 7 78 18.8 24.9 13

t Surface hardness is maximum deceleration measured in gravities.:; Surface strength measured at the 0- to 2.5-cm depth zone.- Measurement not taken.

Page 46: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

85Appendix 2. Date of evaluation, surface hardness, surface strength, gravimetric moisturecontent of the 0- to 5-cm depth below the turf surface, and soil temperature at the 5-cm depth oftopdressed modified native soil greens evaluated during 1996.

Putting Green Surface Surface GravimetricLocation 1996 Hardnesst Strength; Moisture Temp

g kg cm-2 % °c

Canoebrook 13th Apr4 50 14.8 42.0 16May 13 50 17.2 48.8 14May 23 48 14.0 48.2 18Jun 24 51 14.0 44.0 24Aug 6 54 12.8 42.5 27Aug 26 60 14.4 39.1 23Oct 2 53 12.0 42.1 14Oct 28 53 12.4 47.7 13Nov 25 56 14.0 48.5 6

Fiddle(s Elbow 12th May 1 42 13.2 40.6 20Jun 13 60 15.2. 36.1 22Jul10 55 "10.8 36.0 22Aug 22 71 15.2 28.4 24Sept 18 46 11.2 43.4 18Oct 15 60 13.6 37.9 7

Montclair 18th May 14 69 23.6 37.0 13Jun 17 . 67 21.3 35.8 22Jul 16 56 17.2 42.9 25Aug 12 72 34.2 19Sept 24 63 19.6 39.8 11Nov 20 60 19.2 39.8 2

Plainfield 5th Apr 15 46 14.4 34.6 16Jun 10 70 14 30.6 22Jul22 71 16.8 32.5 20Aug 19 74 15.6 31.6 22Sept 16 .68 14.4 36.0 23Oct 17 80 16.8 33.1 14

Springdale 12th Apr 18 62 15.2 41.5 11May 15 67 18.0 39.6 9Jun 19 57 15.6 42.5 18Jul 18 65 14.8 40.1 23Aug 20 64 14.4 43.5 19Sept 30 60 14.8 41.2 18Oct 29 58 16.0 41.7

Page 47: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

86Appendix 2 (continued).

Putting Green Surface Surface . GravimetricLocation 1996 Hardness Strength Moisture Temp

g kg cm-2 % °c

Tavistock 5th Apr 17 58 18.0 41.7 11May 15 69 21.6 32.4 17Jun 20 51 17.2 45.6 20Jul24 71 21.2 37.3 20Aug 28 72 20.4 30.7 22Nov 18 62 18.0 41.2 5Nov 18 75 20.0 27.7 5

Ramblewood 9th May 15 57 19.2 50.3 15Jun 20 59 17.2 49.4 25Jul25 73 19.6 41.8 26Aug 29 60 16.4 44.6 24Sept 25 62 15.6 48.9 14Oct 30 63 16.4 46.1 13

t Surface hardness is maximum deceleration measured in gravities.; Surface strength measured at the 0- to 2.5-cm depth zone.- Measurement not taken.

Page 48: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief
Page 49: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

Appendix 3 (continued).

putting Green 1996Location

Galloway 18th Jul 9Aug 6

Blue Heron Pines 1st Jul 9Oct 1

t Number of observations.t Depth of depression.9 Percent rebound of depression 30 minutes after traffic.~ Pneumatic tire of 16.5 cm wide pneumatic tire single rider cart.

(X)(X)

Page 50: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief
Page 51: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

Appendix 4. (continued).

Putting GreenLocation

1996 Rigid TireWheelchair

nt Dep:j: Reb~

Pneumatic TireWheelchair

nt Dep:j: Reb~

Heel ofSneaker

nt Dep:j: Reb~

Heel ofGolf Shoe

nt Dep:j: Reb~

PneumaticSinale Rider

nt Dep:j: Reb~

mm -%- mm % mm %

Tavistock 5th Jun 20 1 1.3 1 0.7July 24 1 1.9 1 1.0 20 1 0.9 22Aug 28 2 1.4 14 2 1.1 45

Ramblewood 9th Sep 25 2 1.7 41 2 1.0 40

t Number of observations.:j: Depth of depression.~ Percent rebound of depression 30 minutes after traffic.11 Pneumatic tire of 16.5 cm wide pneumatic tire single rider cart.

mm %

1 0.5 40

2 0.5 40

mm %

(!)a

Page 52: Evaluation of traffic and disruption of golf putting greenarchive.lib.msu.edu/tic/thesdiss/gentilucci1997b.pdfEvaluation of traffic and disruption of golf putting green Microrelief

8created to distribute the load (Chancellor, 1976). A firm surface trafficked by a

rigid wheel will have a smaller contact area than the same wheel load on a softer

surface. If a load is increased, the tendency is for the wheel to sink more

deeply, spreading the load over a larger contact area. The pressure distribution

is not uniform under a rigid wheel; pressures under the edge of the wheel are

less than those under the center (Liston & Martin, 1968).

The pressure exerted on a surface by a traffic event will distribute

stresses through the soil profile below. Most pressure distributions resulting

from traffic on turfgrass surfaces occur in the upper 8-cm of soil (Beard, 1973).

Burton and Lance (1966) studied the affects of golf car traffic on bermudagrass

turf, and found that soil physical properties were affected in the upper 10-cm

zone. The physical properties in the upper 3-cm of a soil below Kentucky

bluegrass was altered by compaction treatment that simulated foot traffic and turf

equipment, whereas the 3- to 6-cm zone changed very little (0' Neil and Carrow,

1983).

The pattern of surface pressure determines how the pressure is

transferred within a soil (Chancellor, 1976). Pressure distributions in soils under

a concentrated load have been described by a set of equations known as the

Boussinesq equations (Hillel, 1980). The equations are intended for uniform

elastic materials and disregard horizontal components of stress placed on a

surface.