24
Evolution and molecular characteristics of SARS-CoV-2 genome Yunmeng Bai 1# , Dawei Jiang 1# , Jerome R Lon 1# , Xiaoshi Chen 1 , Meiling Hu 1 , Shudai Lin 1 , Zixi Chen 1 , Yuhuan Meng 2* , Hongli Du 1* 1. School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China 2. Guangzhou KingMed Transformative Medicine Institute Co., Ltd, Guangzhou, China # Contributed equally as co-first authors *Correspondence address should be addressed to Yuhuan Meng (zb- [email protected]) and Hongli Du ([email protected]) Abstract In the evolution analysis of 622 complete human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes with high quality, the estimated Ka/Ks ratio of SARS-CoV-2 is 1.008, which is significantly higher than that of SARS-CoV and MERS-CoV, and the time to the most recent common ancestor (tMRCA) of SARS-CoV-2 is inferred in late September 2019 (95% CI: 2019/08/28-2019/10/26), which indicating that SARS-CoV-2 may have completed a positive selection pressure of the cross-host evolution in the early stage and be going through a neutral evolution at present. In addition, no-root phylogenetic tree of the 622 SARS-CoV-2 genomes were constructed by maximum likelihood (ML) with the bootstrap value of 100. According to the phylogenetic trees, all genomes were divided into Cluster 1 to 3, in which genomes were mainly from North America, global and Europe respectively. Further we find 9 key specific sites of highly linkage which play a decisive role in the classification of each cluster. Among them, 3 and 4 sites of almost complete linkage are the specific sites for Cluster 1 and Cluster 3 respectively. Notably the frequencies of haplotype TTTG and H1 are generally high in European countries and correlated to death rate (r>0.4) based on more than 3500 SARS-CoV-2 genomes, which indicated that the haplotypes might be related to pathogenicity of SARS-CoV-2 and need to be addressed. According to haplotype changes in chronological order, the H3 haplotype subgroup disappeared soon after detection, while H1 haplotype subgroup was globally increasing with time. The evolution and molecular characteristics of more than 3500 genomic sequences provided a new perspective for (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint this version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933 doi: bioRxiv preprint

Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

Evolution and molecular characteristics of SARS-CoV-2 genome

Yunmeng Bai1#, Dawei Jiang1#, Jerome R Lon1#, Xiaoshi Chen1, Meiling Hu1, Shudai

Lin1, Zixi Chen1, Yuhuan Meng2*, Hongli Du1*

1. School of Biology and Biological Engineering, South China University of

Technology, Guangzhou, China

2. Guangzhou KingMed Transformative Medicine Institute Co., Ltd, Guangzhou,

China

# Contributed equally as co-first authors

*Correspondence address should be addressed to Yuhuan Meng (zb-

[email protected]) and Hongli Du ([email protected]) Abstract

In the evolution analysis of 622 complete human severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) genomes with high quality, the estimated Ka/Ks ratio of SARS-CoV-2 is 1.008,

which is significantly higher than that of SARS-CoV and MERS-CoV, and the time to the most

recent common ancestor (tMRCA) of SARS-CoV-2 is inferred in late September 2019 (95% CI:

2019/08/28-2019/10/26), which indicating that SARS-CoV-2 may have completed a positive

selection pressure of the cross-host evolution in the early stage and be going through a neutral

evolution at present. In addition, no-root phylogenetic tree of the 622 SARS-CoV-2 genomes were

constructed by maximum likelihood (ML) with the bootstrap value of 100. According to the

phylogenetic trees, all genomes were divided into Cluster 1 to 3, in which genomes were mainly

from North America, global and Europe respectively. Further we find 9 key specific sites of highly

linkage which play a decisive role in the classification of each cluster. Among them, 3 and 4 sites

of almost complete linkage are the specific sites for Cluster 1 and Cluster 3 respectively. Notably

the frequencies of haplotype TTTG and H1 are generally high in European countries and correlated

to death rate (r>0.4) based on more than 3500 SARS-CoV-2 genomes, which indicated that the

haplotypes might be related to pathogenicity of SARS-CoV-2 and need to be addressed. According

to haplotype changes in chronological order, the H3 haplotype subgroup disappeared soon after

detection, while H1 haplotype subgroup was globally increasing with time. The evolution and

molecular characteristics of more than 3500 genomic sequences provided a new perspective for

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 2: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

revealing the epidemiology mechanism of SARS-CoV-2 and coping with SARS-CoV-2 effectively.

1. Introduction

The global outbreak of SARS-CoV-2 is currently and increasingly recognized as a serious, public

health concern worldwide. To date, a total of seven types of coronaviruses that can infect humans

have been found, among which the more typical ones are SARS-CoV, MERS-CoV and SARS-CoV-

2. They spread across species and usually cause mild to severe respiratory diseases. The total number

of SARS-CoV and MERS-CoV infections are only 8,069 and 2,494 with reproduction number (R0)

fluctuates 2.5-3.9 and 0.3-0.8, respectively. However, SARS-CoV-2 has infected 2471136 people in

212 countries up to April 22th1, with the basic R0 ranging from 1.4 to 6.492. Among these three

typical coronavirus, MERS-CoV has the highest death rate of 34.40%, SARS-CoV has the modest

death rate of 9.59%, SARS-CoV-2 is about 6.99% and 7.69% death rate of the global and Wuhan,

but is quite high death rate in some countries of Europe, such as Belgium, Italy, United Kingdom,

Netherlands, Spain and France, which even reaches 14.95%, 13.39%, 13.48%, 11.61%, 10.42% and

13.60% respectively according to the data of April 22th, 2020. Except for the shortage of medical

supplies, aging and other factors, it is not clear whether there is virus mutation effect in these

countries with such a significantly increased death rate.

It has been reported that SARS-CoV-2 belongs to beta-coronavirus and is mainly transmitted by the

respiratory tract, which belongs to the same subgenus (SarbeCoVirus) as SARS-CoV3. Through

analyzing the genome and structure of SARS-CoV-2, its receptor-binding domain (RBD) was found

to bind with angiotensin-converting enzyme 2 (ACE2), which is also one of the receptors for binding

SARS-CoV4. Some early genomic studies have shown that SARS-CoV-2 is similar to certain bat

viruses (RaTG13, with the whole genome homology of 96.2%5) and Malayan pangolins

coronaviruses (GD/P1L and GDP2S, with the whole genome homology of 92.4%6). They have

speculated several possible origins of SARS-CoV-2 based on its spike protein characteristics

(cleavage sites or the RBD)5-7, in particular, SARS-CoV-2 exhibits 97.4% amino acid similarity to

the Guangdong pangolin coronaviruses in RBD, even though it is most closely related to bat

coronavirus RaTG13 at the whole genome level. However, it is not enough to present genome-wide

evolution by a single gene or local evolution of RBD, whether bats or pangolins play an important

role in the zoonotic origin of SARS-CoV-2 remains uncertain8. Furthermore, since there is little

molecular characteristics analysis of SARS-CoV-2 based on a large number of genomes, it is

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 3: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

difficult to determine whether the virus has significant variation that affects its phenotype. Thereby,

it is necessary to further reveal the phylogenetic evolution and molecular characteristics of the whole

genome of SARS-CoV-2 in order to develop a comprehensive understanding of the virus and

provide a basis for designing vaccines and antiviral treatment strategies. Fortunately, with the

increase of SARS-CoV-2 genome data, we have an opportunity to reveal phylogenetic evolution

and molecular characteristics of SARS-CoV-2 more comprehensively. In this study, the Ka/Ks ratio,

substitution rate and the time to the most recent common ancestor (tMRCA) of SARS-CoV-2,

SARS-CoV and MERS-CoV were analyzed using KaKs_Calculator and BEAST, and then 622

SARS-CoV-2 genome sequences with high quality were clustered using maximum likelihood (ML)

with bootstrap of 100 to ensure the reliability of evolutionary trees. According to the clusters of

phylogenetic trees, the characteristic mutations of SARS-CoV-2 were screened and their potential

significance were explored. The results of this study will provide a landscape for us to further

understand SARS-CoV-2, and supply a possible basis for the prevention and treatment of SARS-

CoV-2 in different areas.

2. Materials and methods

2.1 Genome Sequences

The complete genome sequences of SARS-CoV-2 were downloaded from China National Center

for Bioinformation (https://bigd.big.ac.cn/ncov/release_genome/) and GISAID

(https://www.gisaid.org/) up to March 22th, 2020. The sequences were filtered out according to the

following criteria: (1) sequences with ambiguous time; (2) sequences with low quality which

contained the counts of unknown bases > 15 and degenerate bases > 50

(https://bigd.big.ac.cn/ncov/release_genome); (3) sequences with similarity of 100% were removed

to unique one. Finally, 624 high quality genomes with precise collection time were selected and

aligned using MAFFT v7 with automatic parameters. Besides, the genome sequences of 7 SARS-

CoV and 475 MERS-CoV were also downloaded from NCBI (https://www.ncbi.nlm.nih.gov/), and

the MERS-CoV dataset including samples collected from both human and camel.

2.2 Estimate of evolution rate and the time to the most recent common ancestor for SARS-

CoV, MERS-CoV, and SARS-CoV-2

The average Ka, Ks and Ka/Ks for all coding sequences were calculated using KaKs_Calculator

v1.29, and the substitution rate and tMRCA were estimated using BEAST v2.6.210. The temporal

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 4: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

signal with root-to-tip divergence was visualized in TempEst v1.5.311 using a ML whole genome

tree as input. For SARS-CoV and SARS-CoV-2, we selected a strict molecular clock and Coalescent

Exponential Population Model. For MERS-CoV, we selected a relaxed molecular clock and Birth

Death Skyline Serial Cond Root Model. We used the tip dates and chose the HKY as the site

substitution model in all these analyses. Markov Chain Monte Carlo (MCMC) chain length was set

to 10,000,000 steps sampling after every 1000 steps. The output was examined in Tracer v1.6

(http://tree.bio.ed.ac.uk/software/tracer/).

2.3 Variants calling of SARS-CoV-2 genome sequences

Each genome sequence was aligned to the Wuhan-Hu-1 reference genome (NC_045512.2) using

bowtie2 with default parameters12, and variants were called by samtools (sort; mpileup -gf) and

bcftoots (call -vm). The merge VCF files were created by bgzip and bcftools (merge --missing-to-

ref)13,14.

2.4 Phylogenetic tree construction and virus isolates clustering for SARS-CoV-2

After alignment of 624 SARS-CoV-2 genomes with high quality and manually deleted 2 highly

divergent genomes (EPI_ISL_415710, EPI_ISL_414690) according to the firstly constructed

phylogenetic tree, the aligned dataset was phylogenetically analyzed. The SMS method was used to

select GTR+G as the base substitution model15, and the MEGA16 and PhyML 3.117 were used to

construct the phylogenetic tree by the maximum likelihood method with the bootstrap value of 100.

The online tool iTOL18 was used to visually beautify the phylogenetic tree. The clusters were

defined by the shape of phylogenetic tree.

2.5 Detection of specific sites from each Cluster

Information (ID, countries/regions and collection time) and variants (NC_045512.2 as reference

genome) of each genome from each Cluster were extracted. The allele frequency and nucleotide

divergency (pi) for each site in the virus population of each Cluster were measured by vcftools19.

The Fst were also calculated by vcftools19 to assess the diversity between the Clusters. Sites with

high level of Fst together with different major allele in each Cluster were filtered as the specific

sites. PCA were analyzed by the GCTA v1.93.1beta20 with the specific sites and all SNV dataset

respectively.

2.6 Linkage analysis of specific sites and characteristics of main haplotype subgroups

The linkage disequilibrium of the specific sites for 622 genomes and the following redownloaded

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 5: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

genomes were analyzed by haploview21, and the statistics of the haplotype of the specific sites for

each Cluster or country were used in-house perl script.

2.7 Frequencies of specific sites or haplotypes and correlation with death rate

We redownloaded the sequences from GISAID up to April 6th, 2020 to further explore possible

roles of the specific sites, and obtained 3624 genome sequences from the countries with more than

10 complete genome sequences. The frequencies of specific sites for each country were

calculated. The death rate was estimated with Total Deaths /Confirmed Cases based on the data

from Johns Hopkins resources on April 22th, 2020

(https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6).

The correlation coefficient between death rate and frequencies of specific site or haplotype in

different countries was calculated using Pearson method.

3. Results

3.1 Genome Sequences

We got a total of 1053 sequences up to March 22th, 2020. According to the filter criteria, 37

sequences with ambiguous time, 314 with low quality and 78 with similarity of 100% were removed.

A total of 624 sequences were obtained to perform multiple sequences alignment. Two highly

divergent sequences (EPI_ ISL_414690, EPI_ISL_415710) according to the firstly constructed

phylogenetic tree were also filtered out (Extended Data Table 1). The remaining 622 sequences

were used to reconstruct a phylogenetic tree.

3.2 Estimate of evolution rate and the time to the most recent common ancestor for SARS-

CoV, MERS-CoV, and SARS-CoV-2

In this study, date for SARS-CoV-2 ranged from 2019/12/26 to 2020/03/18 was collected. The

average Ka/Ks of all the coding sequences was closer to 1 (1.008), which indicating the genome

was going through a neutral evolution. We also reevaluated the Ka/Ks of SARS-CoV and MERS-

CoV through the whole period, and found the ratio were significantly smaller than SARS-CoV-2

(Table 1). To estimate more credible Ka/Ks for SARS-CoV-2, we recalculated it using

redownloaded 3624 genome sequences ranged from 2019/12/26 to 2020/04/06, and the average

Ka/Ks of it was 1.009, which was almost same with the above result.

We assessed the temporal signal using TempEst v1.5.3. All three data sets exhibit a positive

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 6: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

correlation between root-to-tip divergence and sample collecting time (Extended Data Fig 1),

hence they are suitable for molecular clock analysis in BEAST11. The substitution rate of SARS-

CoV-2 genome was estimated to be 1.60 x 10-3 (95% CI: 1.42 x 10-3 - 1.80 x 10-3, Table 2, Extended

Data Fig 2a) substitution/site/year, which is as in the same order of magnitude as SARS-CoV and

MERS-CoV. The tMRCA was inferred on the late September, 2019 (95% CI: 2019/08/28-

2019/10/26,Table 2, Extended Data Fig 2b), about 2 months before the early cases of SARS-CoV-

222.

3.3 Phylogenetic tree and clusters of SARS-CoV-2

We firstly constructed the phylogenetic tree using PhyML 3.1 with fast likelihood-based method

(aLRT SH-like), while it failed when set the bootstrap value as 100 due to no response for a long

time, so that MEGA was used with GTR+G model and the bootstrap value was set to 100. According

to the shape of phylogenetic trees (Fig 1, Extended Data Fig 3a and b), we divided 622 sequences

into three clusters: Cluster 1 including 76 sequences mainly from North America, Cluster 2

including 367 sequences from all regions of the world, and Cluster 3 including 179 sequences

mainly from Europe (Extended Data Table 2).

3.4 The specific sites of each Cluster

The Fst and population frequency of a total of 9 sites (NC_045512.2 as reference genome) were

detected (Table 3, Extended Data Table 3). Thereinto, three (C17747T, A17858G and C18060T)

are the specific sites of Cluster 1, and four (C241T, C3037T, C14408T and A23403G) are the

specific sites of Cluster 3. Notably, C241T was located in the 5’-UTR region and the others were

located in coding regions (6 in ofr1ab gene, 1 in S gene and 1 in ORF8 gene). Five of them were

missense variant, including C14408T, C17747T and A17858G in ofr1ab gene, A23403G in S

gene, and C28144T in ORF8 gene. The PCA results showed that these 9 specific sites could

clearly separate the three Clusters, while all SNV dataset could not clearly separate Cluster 1

and Cluster 2 (Extended Data Fig 4), which further suggested that these 9 specific sites are

the key sites for separating the three Clusters.

3.5 Linkage of specific sites and characteristics of main haplotype subgroups

We found the 9 specific sites are highly linkage based on 622 genome sequences (Fig 2a), then we

carried out a further linkage analysis using the redownloaded 3624 genome sequences (Fig 2b). As

a result, for the 3624 genome sequences, 3 specific sites in the Cluster 1 were almost complete

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 7: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

linkage, and haplotype CAC and TGT accounted for 98.65% of all the 3 site haplotypes. The same

phenomenon was also found in 4 specific sites of Cluster 3, and haplotype CCCA and TTTG

accounted for 97.68% of all the 4 site haplotypes. Intriguingly, the 9 specific sites were still highly

linkage, and four haplotypes, including TTCTCACGT (H1), CCCCCACAT (H2), CCTCTGTAC

(H3) and CCTCCACAC (H4), accounted for 95.89% of all the 9 site haplotypes. The frequencies

of each site and main haplotype for each country were showed in Fig 3 and Extended Data Table

4. The data of 3624 genomes showed that the haplotype TTTG of the 4 specific sites in Cluster 3

had existed globally at present, and still exhibited high frequencies in most European countries but

quite low in Asian countries. While the haplotype TGT of the 3 specific sites in Cluster 1 existed

almost only in North America and Australia. For the 9 specific sites, most countries had only two or

three main haplotypes, except America, Australia and United Kingdom had all of four main

haplotypes.

All haplotypes of 9 specific sites and the numbers of them were shown in Extended Data Table 5,

and the numbers of these haplotypes detected in each country in chronological order were shown in

Fig 4a. From these results, H2 and H4 haplotype subgroups had existed for a long time (2019-12-

31 to 2020-04-14), and the H3 haplotype subgroup disappeared soon after detection (2020-02-18 to

2020-04-07), while H1 haplotype subgroup was globally increasing with time, which indicated H1

subgroup had adapted to the human hosts, and was under an adaptive growth period worldwide.

However, due to the nonrandom sampling on early phase (only patients having a recent travel to

Wuhan were detected), some earlier cases of H3 may be lost, the high proportion of H3 subgroup

during Feb 18 to 25 could confirm this point.

From the whole genome mutations in each haplotype subgroup (Fig 4b, Extended Data Table 6),

we found that except the 9 specific sites, there was no common mutations with frequencies more

than 0.01 in these haplotype subgroups but between H2 and H4 subgroups. H3 and H4 subgroups

had the lowest Ka/Ks ratio (0.795 and 0.796 respectively) among the 4 main subgroups (Table 4),

suggesting that H3 and H4 subgroup might be going through a purifying evolution and have existed

for a long time, while H2 (1.268) and H1 subgroup (1.099) might be going through a positive

selection and a neutral evolution according to their Ka/Ks ratios, respectively, which were consistent

with the above phenomenon that only H1 subgroup was expanding with time around the world.

3.6 Correlation analysis of specific sites with death rate

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 8: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

To explore the relationship between death rate and the 9 specific sites, we used Pearson method to

calculate the correlation coefficient between death rate and frequency of each specific site or main

haplotype in 17 countries. As a result, all r values of 241T, 3037T, 14408T, 23403G and haplotype

TTTG and H1 in Cluster 3 were more than 0.4 (Fig 5, Extended Data Table 4). This finding

integrating their high frequencies in most European countries indicated that the 4 sites and haplotype

TTTG and H1 might be related to the pathogenicity of SARS-CoV-2.

4. Discussion

SARS-CoV-2 poses a great threat to the production, living and even survival of human beings23. With

the further outbreak of SARS-CoV-2 in the world, further understanding on the evolution and molecular

characteristics of SARS-CoV-2 based on a large number of genome sequences will help us cope better

with the challenges brought by SARS-CoV-2. In the present study, we estimated the Ka/Ks ratio and

tMRCA of SARS-CoV-2, SARS-CoV and MERS-CoV, and constructed the phylogenetic tree of SARS-

CoV-2 genomes. As a result, we found that 9 specific sites of highly linkage could play a decisive role in

the classification of SARS-CoV-2, and the haplotype TTTG might be related to pathogenicity of SARS-

CoV-2 based on more than 3500 genomes. All these results could accelerate our further understanding of

SARS-CoV-2.

Exploring evolution rate, tMRCA and phylogenetic tree of SARS-CoV-2 would help us better

understand the virus24. The average Ka/Ks for all the coding sequences of 622 and 3624 SARS-

CoV-2 genomes was 1.008 and 1.009, which was significantly higher than those of SARS-CoV and

MERS-CoV, indicating that the SARS-CoV-2 was going through a neutral evolution. In general,

SARS-CoV would show purifying selection pressures and the Ka/Ks would go down at the middle

or end of the epidemic25. Therefore, it seemed to be reasonable considering that SARS-CoV-2 was

under an exponential growth period around the world. Interestingly, we also found that the

subgroups of different haplotypes (H1, H2, H3 and H4) seemed to experience different evolutionary

patterns according to their Ka/Ks. The H3 haplotype subgroup disappeared soon after detection

(2020-02-18 to 2020-04-07) (2020-02-18 to 2020-04-07, Fig 4a), while H1 haplotype subgroup was

globally increasing with time, these evolution and changes should be considered in developing

therapeutic drugs and vaccines as soon as possible. The tMRCA of SARS-CoV-2 was inferred on

the late September, 2019 (95% CI: 2019/08/28- 2019/10/26), about 2 months before the early cases

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 9: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

of SARS-CoV-222. We also estimated tMRCA of SARS-CoV and MERS-CoV with the same

methods, both were about 3 months later than the corresponding tMRCAs estimated by previous

studied26,27, which indicated the tMRCA of SARS-CoV-2 we estimated was reasonable.

A recent study clustered 160 SARS-CoV-2 whole-genome sequences into A, B and C groups by a

phylogenetic network analysis28. The cluster result was similar to our study: both the samples in

Cluster A and our Cluster 1 were mainly from the United States; the samples in Cluster C and our

Cluster 3 were mainly from European countries, while Cluster B and our Cluster 2 were mainly

from China and the other regions. It was interesting that the markers in Cluster B (T8782C and

C28144T) were also found in our study, but the other markers in Cluster A (T29095C) and Cluster

C (G26144T) were not significantly in our study. That may be caused by different sample sizes and

different constructing methods of phylogenetic tree. Based on the base substitution model, the ML

method avoids the possible "long-branch attraction" problem in the maximum parsimony method

and is faster than the Bayesian method29, hence it could be used as a reliable method for

phylogenetic analysis. Nowadays, there is still a shortage of studies on phylogenetic analysis of

SARS-CoV-2. Some studies used the genome of bat SARS-like-CoV30, RaTG1330 or MT019529

from Wuhan (https://bigd.big.ac.cn/ncov/tree) as the root of phylogenetic tree. Unfortunately, there

was no obvious evidence showing that SARS-CoV-2 was from the bat coronavirus even the identity

between SARS-CoV-2 and RaTG13 was up to 96.2%5. In our study, the tMRCA of SARS-CoV-2

was inferred on the late September 2019, which indicated there might exist an earlier SARS-CoV-2

strain we didn't find. Then in the case of unclear source of SARS-CoV-2 and high homology of its

genomes (> 99.9% homology), it may be inappropriate to identify the evolutionary characteristics

inside the genomes by taking bat SARS-like-CoV, RaTG13 or MT019529 as root. Therefore, the

maximum likelihood method was used in current study to construct a no-root tree to obtain the

reliable clusters with different characteristics. Based on the no-root tree, we identified 9 specific

sites of highly linkage that play a decisive role in the classification of clusters successfully. Among

the four main haplotypes, H1 and H3 were in Cluster 3 and Cluster 1, respectively, while there were

two haplotypes H2 and H4 in Cluster 2 (Fig 1, Extended Data Fig 3b).

Among the 9 specific sites, 8 of them were located in coding regions (6 in ofr1ab gene, 1 in S gene and

1 in ORF8 gene), and 5 of them were missense variant, including C14408T, C17747T and A17858G in

ofr1ab gene, A23403G in S gene, and C28144T in ORF8 gene. Orf1ab is composed of two partially

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 10: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

overlapping open reading frames (orf), orf1a and 1b. It is proteolytic cleaved into 16 non-structural

proteins (nsp), including nsp1 (suppress antiviral host response), nsp9 (RNA/DNA binding activity),

nsp12 (RNA-dependent RNA polymerase), nsp13 (helicase) and others31, indicating the vital role

of it in transcription, replication, innate immune response and virulence32. C14408T with high

frequencies of T in European countries were located at nsp12 region, indicating that this missense

variant might influence the role of RNA polymerase. Spike glycoprotein, the largest structural

protein on the surface of coronaviruses, comprises of S1 and S2 subunits which mediating binding

the receptor on the host cell surface and fusing membranes, respectively33. It has been reported that

S protein of SARS-CoV-2 can bind angiotensin-converting enzyme 2 (ACE2) with higher affinity

than that of SARS4,5. Whether the missense variant of A23403G in S gene, which with high

frequencies of G in European countries, will change the affinity between S protein and ACE2 remains

to be further investigated.

Previous studies showed that the death rate of SARS-CoV-2 is affected by many factors, such as

medical supplies, aging, life style and other factors34,35. However, our study found that the 4 specific

sites (C241T, C3037T, C14408T and A23403G) in the Cluster 3 were almost complete linkage, and the

frequency of haplotype TTTG was generally high in European countries and correlated to death rate

(r>0.4), which provides a new perspective to the reasons of relatively high death rate in Europe. In

order to make frequency relatively credible, we selected countries with more than 10 genomes

(except South Korea with 16 genomes, all the other countries with more than 20 genomes) to analyze

the correlation between frequencies of haplotypes and death rate. Therefore, the correlation between

the frequencies of haplotypes and death rate obtained in this study is quite reliable, and these specific

sites should be considered in designing new vaccine and drug development of SARS-CoV-2.

5. Conclusion and prospective

The Ka/Ks ratio of SARS-CoV-2 (1.008) and tMRCA of SARS-CoV-2 (95% CI: 2019/08/28-

2019/10/26) indicated that SARS-CoV-2 might have completed the positive selection pressure of

cross-host evolution in the early stage and be going through a neutral evolution at present. The 9

specific sites with highly linkage were found to play a decisive role in the classification of clusters.

Thereinto, 3 of them are the specific sites of Cluster 1 mainly from North America, 4 of them are

the specific sites of Cluster 3 mainly from Europe, both of these 3 and 4 specific sites are almost

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 11: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

complete linkage. The frequencies of haplotype TTTG for the 4 specific sites in Cluster 3 were

generally high in European countries and correlated to death rate (r>0.4) based on more than 3500

SARS-CoV-2 genomes, which suggested this haplotype might relate to pathogenicity of SARS-

CoV-2 and provided a new perspective to the reasons of relatively high death rates in Europe. The

relationship between the haplotype TTTG and the pathogenicity of SARS-CoV-2 needs to be further

verified by clinical samples or virus virulence test experiment, and the 9 specific sites with highly

linkage may provide a starting point for the traceability research of SARS-CoV-2. Given that the

different evolution patterns of different haplotypes subgroups, we should consider these evolution

and changes in the development of therapeutic drugs and vaccines as soon as possible.

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFC0910201), the

Key R&D Program of Guangdong Province (2019B020226001), the Science and the Technology

Planning Project of Guangzhou (201704020176) and the Science and Technology Program of

Guangzhou (2020Q-P013).

Author contributions

H.D. conceived the study. Y.M., Y.B., D.J., J.L and X.C. carried out the data analysis and wrote the

manuscript. M.H., S.L., and Z.C. collected data and revised the manuscript. H.D. and Y.M.

supervised the whole work, attended the discussions and revised the manuscript.

Competing interests

The authors declare no competing interests.

Data availability Sequence data that support the findings of this study could be downloaded in China National Center for Bioinformation(https://bigd.big.ac.cn/ncov/release_genome/), GISAID (https://www.gisaid.org/) and NCBI (https://www.ncbi.nlm.nih.gov/). Code availability The Perl script is available on Github (https://github.com/yunmengbai/SARS-CoV-2-genome.git).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 12: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

Reference 1 Coronavirus disease 2019 (COVID-19) Situation Report – 93. WHO (2020). 2 Liu, Y., Gayle, A. A., Wilder-Smith, A. & Rocklov, J. The reproductive number of COVID-19

is higher compared to SARS coronavirus. J Travel Med 27, doi:10.1093/jtm/taaa021 (2020). 3 Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus:

implications for virus origins and receptor binding. Lancet 395, 565-574, doi:10.1016/S0140-6736(20)30251-8 (2020).

4 Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260-1263, doi:10.1126/science.abb2507 (2020).

5 Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273, doi:10.1038/s41586-020-2012-7 (2020).

6 Lam, T. T. et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature, doi:10.1038/s41586-020-2169-0 (2020).

7 Zhang, Y. Z. & Holmes, E. C. A Genomic Perspective on the Origin and Emergence of SARS-CoV-2. Cell, doi:10.1016/j.cell.2020.03.035 (2020).

8 Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nature Medicine, doi:10.1038/s41591-020-0820-9 (2020).

9 Zhang, Z. et al. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics 4, 259-263, doi:10.1016/S1672-0229(07)60007-2 (2006).

10 Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 15, e1006650, doi:10.1371/journal.pcbi.1006650 (2019).

11 Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol 2, vew007 (2016).

12 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357-359, doi:10.1038/nmeth.1923 (2012).

13 Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford, England) 25, 2078-2079, doi:10.1093/bioinformatics/btp352 (2009).

14 Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics (Oxford, England) 27, 2987-2993, doi:10.1093/bioinformatics/btr509 (2011).

15 Lefort, V., Longueville, J. E. & Gascuel, O. SMS: Smart Model Selection in PhyML. Mol Biol Evol 34, 2422-2424, doi:10.1093/molbev/msx149 (2017).

16 Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 35, 1547-1549, doi:10.1093/molbev/msy096 (2018).

17 Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59, 307-321, doi:10.1093/sysbio/syq010 (2010).

18 Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47, W256-W259, doi:10.1093/nar/gkz239 (2019).

19 Danecek, P. et al. The variant call format and VCFtools. Bioinformatics (Oxford, England) 27, 2156-2158, doi:10.1093/bioinformatics/btr330 (2011).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 13: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

20 Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88, 76-82, doi:10.1016/j.ajhg.2010.11.011 (2011).

21 Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263-265 (2005).

22 Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497-506, doi:10.1016/S0140-6736(20)30183-5 (2020).

23 Guo, Y. R. et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res 7, 11, doi:10.1186/s40779-020-00240-0 (2020).

24 Yuen, K.-S., Ye, Z.-W., Fung, S.-Y., Chan, C.-P. & Jin, D.-Y. SARS-CoV-2 and COVID-19: The most important research questions. Cell Biosci 10, 40, doi:10.1186/s13578-020-00404-4 (2020).

25 Chinese, S. M. E. C. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303, 1666-1669, doi:10.1126/science.1092002 (2004).

26 Zhao, Z. et al. Moderate mutation rate in the SARS coronavirus genome and its implications. BMC Evol Biol 4, 21, doi:10.1186/1471-2148-4-21 (2004).

27 Cotten, M. et al. Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus. mBio 5, doi:10.1128/mBio.01062-13 (2014).

28 Forster, P., Forster, L., Renfrew, C. & Forster, M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proceedings of the National Academy of Sciences, 202004999, doi:10.1073/pnas.2004999117 (2020).

29 Holder, M. & Lewis, P. O. Phylogeny estimation: traditional and Bayesian approaches. Nat Rev Genet 4, 275-284, doi:10.1038/nrg1044 (2003).

30 Zhang, L., Shen, F.-m., Chen, F. & Lin, Z. Origin and Evolution of the 2019 Novel Coronavirus. Clinical Infectious Diseases, doi:10.1093/cid/ciaa112 (2020).

31 Chan, J. F. et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 9, 221-236, doi:10.1080/22221751.2020.1719902 (2020).

32 Graham, R. L., Sparks, J. S., Eckerle, L. D., Sims, A. C. & Denison, M. R. SARS coronavirus replicase proteins in pathogenesis. Virus Res 133, 88-100, doi:10.1016/j.virusres.2007.02.017 (2008).

33 Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol 3, 237-261, doi:10.1146/annurev-virology-110615-042301 (2016).

34 Malavolta, M., Giacconi, R., Brunetti, D., Provinciali, M. & Maggi, F. Exploring the Relevance of Senotherapeutics for the Current SARS-CoV-2 Emergency and Similar Future Global Health Threats. Cells 9, doi:10.3390/cells9040909 (2020).

35 Liu, Y. et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J Infect, doi:10.1016/j.jinf.2020.04.002 (2020).

Figure Legends

Figure 1. Phylogenetic tree and clusters of 622 SARS-CoV-2 genomes. The 622 sequences

were clustered into three clusters: Cluster 1 were mainly from North America, Cluster 2 were

from regions all over the world, and Cluster 3 were mainly from Europe.

Figure 2. Linkage disequilibrium plot of haplotypes of the 9 specific sites. a, The plot for 622

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 14: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

genome sequences; b, The plot for 3624 genome sequences.

Figure 3. The frequencies of both the 9 specific sites and haplotypes. The frequencies of the 9

specific sites (a) and haplotypes (b) in each country which with more than 10 genome sequences

up to April 6th, 2020.

Figure 4. The characteristics of haplotype subgroups. a, The numbers of haplotypes of the 9

specific sites detected in each country in chronological order (In order to get the latest trend of

haplotype subgroup in chronological order, we had updated the genome data to April 20th,

2020); b, The whole genome mutations in each main haplotype subgroup.

Figure 5. The correlation between death rate and frequencies of both the 9 specific sites and

haplotypes.

Tables

Table 1. Statistics of Ka, Ks and Ka/Ks ratios for all coding regions of the SARS-CoV, MERS-

CoV and SARS-CoV-2 genome sequences

Table 2. Substitution rate and tMRCA estimated by BEAST v2.6.2

Table 3. The information of the 9 specific sites in each Cluster.

Table 4. Statistics of Ka, Ks and Ka/Ks ratios for all coding regions of each 4 main haplotype

genomes

Extended Data

Extended Data Figure 1. Regression analyses of the root-to-tip divergence with the maximum-

likelihood phylogenetic tree of SARS-CoV (a), MERS-CoV (b) and SARS-CoV-2 (c). The

root-to-tip genetic distances were inferred in TempEst v1.5.3. Three data sets exhibit a positive

correlation between root-to-tip divergence and sample collecting time, and they appear to be

suitable for molecular clock analysis.

Extended Data Figure 2. Substitution rate and tMRCA estimate of SARS-CoV-2

a, Estimated substitution rate of SARS-CoV-2 using BEAST v2.6.2 under a strict molecular

clock. The mean rate was 1.60 x 10-3 (substitutions per site per year). b, The estimated tMRCA

of SARS-CoV-2 using BEAST v2.6.2 under a strict molecular clock. The mean tMRACA was

2019.74 (date: 2019-09-27).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 15: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

Extended Data Figure 3. Phylogenetic tree of 622 SARS-CoV-2 genomes. a, Phylogenetic tree

constructed by MEGA with bootstrap value of 100. b, Phylogenetic tree constructed by PhyML

3.1.

Extended Data Figure 4. The PCAs analysis result based on the 9 specific sites (a) and all SNVs

(b).

Extended Data Table 1. The information of the first downloaded complete genome sequences.

Extended Data Table 2. The sequence IDs in each Cluster.

Extended Data Table 3. The details information of the SNVs in all Clusters.

Extended Data Table 4. The information of death rate, frequencies of the 9 specific sites and

main haplotypes in each country for 3624 genomes.

Extended Data Table 5. All haplotypes of the 9 specific sites and numbers of them for 3624

genomes.

Extended Data Table 6. Whole genome mutations and frequencies in each main haplotype

subgroup (NC_045512.2 as reference genome)

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 16: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

EPI ISL 416365

EPI ISL 414626

EPI ISL 415454

EPI ISL 403936

EPI ISL 414618

MN908947

EPI ISL 414451

EPI ISL 414

617

EPI ISL 415156

18

55

14

LSI I

PE

EPI ISL 415612

EPI ISL 413566

EPI IS

L 4136

02

EPI ISL 416035

EPI ISL 416336

EPI ISL 413931

EPI ISL

415155

MT152824

67

44

14

LSI I

PE

MN975262

EPI ISL 412026

EPI ISL 416318

CNA0007332

EPI ISL 416140

EPI ISL 415598

EPI ISL 403932

EPI ISL 416466

EPI ISL 415531

EPI ISL 415497

24

36

14

LSI

IP

E

EPI ISL 416036

MT072688

EPI ISL 415707

EPI ISL 413459

EPI ISL 406597

EPI ISL 414549

EPI ISL 414527

51

911

4 L

SI I

PE

MT1849081

35

01

4 L

SI I

PE

EPI ISL 416397

EPI ISL 415630

EPI ISL 414624

MT123291

EPI ISL 407988

EPI ISL 415482

NMDC60013002-06

57

92

14

LSI I

PE

EPI IS

L 4149

38

EPI ISL 416390

EPI ISL 416355

69

53

14

LSI I

PE

EPI ISL 416435

EPI ISL 412030

EPI ISL 414006

EPI ISL 414628

EPI ISL 413016

EPI ISL 415159

EPI ISL 414021

MN996527

EPI ISL 416032

EPI ISL 414551

MT159722

EPI ISL 414630

EPI ISL 4

15488

EPI ISL 415492

EPI ISL 415541

EPI ISL 414536

EPI ISL 416377

EPI ISL 416438

EPI ISL 408976

59

53

14

LSI

IP

E

EPI ISL 415495

EPI ISL 406536

EPI ISL 414642

MT188341

EPI ISL 416506

EPI ISL

414577

EPI ISL 415583

EPI ISL 406592

EPI ISL 4144

70

79

53

14

LSI

IP

E

72

911

4 L

SI IP

E

MN996530

MT159706

EPI ISL 414620

EPI ISL 406596

EPI ISL 414005

EPI ISL 416446

EPI ISL 414429

EPI ISL 413651

EPI ISL 40

8478

EPI ISL 415596

EPI ISL 41

6473

EPI ISL 413861

MT123290

EPI ISL 413017

EPI ISL 416341

EPI ISL 415532

EPI ISL 414526

EPI ISL 413560

EPI ISL 416324

EPI ISL 415708

MT163718

EPI ISL 408484

EPI ISL 415491

EPI ISL 414544

EPI IS

L 4156

40

EPI IS

L 4135

93

EPI IS

L 4140

45

MT019530

EPI ISL 415455

EPI ISL

416428

EPI ISL 414592

EPI ISL 414595

EPI ISL 414616

EPI ISL 416363

EPI ISL

413022

EPI ISL 4

15535

EPI ISL 41

6430

MT135041

EPI ISL 410713MT066176

EPI ISL 410716

EPI ISL 416316

EPI ISL 4

12869

EPI ISL 416046

EPI ISL 403934

02

54

14

LSI I

PE

EPI ISL 411952

EPI ISL

416402

EPI ISL 416448

EPI ISL 414445

MT135043

EPI ISL 416367

EPI ISL 415539

EPI ISL 414637

10

55

14

LSI

IP

E

EPI ISL 416398

EPI ISL 415594

EPI ISL 412028

EPI ISL 414499

EPI ISL 414634

EPI ISL 416507

EPI ISL 416454

EPI ISL 406595

MT188340

EPI ISL 415614

EPI IS

L 4154

35

EPI ISL 416389

36

54

14

LSI

IP

E

EPI ISL 416475

LC522974

EPI ISL 406862

EPI ISL 416521

EPI ISL 413555

EPI ISL 415622

EPI ISL 415500

EPI ISL 415605

EPI ISL 416403

EPI ISL 416029

EPI ISL 412982

EPI ISL 415157

LC522972

EPI ISL 416337

EPI ISL 416436

08

53

14

LSI

IP

E

EPI ISL 414629

EPI ISL 415591

EPI ISL 412972

EPI ISL 416457

EPI ISL 414554

EPI ISL 415654

EPI ISL 415617

MT106053

EPI ISL 415129

EPI ISL 411218

EPI ISL 416441

EPI ISL 407894

EPI ISL 416399

EPI ISL 408430

EPI ISL 414457

EPI ISL 41

4023

EPI ISL 415471

EPI ISL 412981

EPI ISL 415611

EPI ISL 416440

EPI ISL 415458

636414 LSII

PE

EPI ISL 415128

EPI ISL 415151

EPI ISL 416047

CNA0007334

EPI ISL 414632

88

48

04

LSI I

PE

LC522973

EPI ISL 414552

EPI ISL 415543

EPI ISL 416503

EPI ISL 415631

EPI ISL 408977

EPI ISL 416319

EPI ISL 410718

EPI ISL 416493

EPI IS

L 4129

79

EPI ISL 415655

01

94

81

TM

EPI ISL 41

5584

EPI ISL 416028

EPI ISL 415651

EPI ISL 4

07893

EPI ISL 415604

EPI ISL 415649

EPI IS

L 4138

54

EPI ISL 416511

EPI ISL 411219

EPI ISL 414022

EPI ISL 415600

EPI IS

L 4149

41

MT159715

EPI IS

L 4164

70

EPI ISL 413023

EPI ISL 414509

MN996531

EPI ISL 414497

EPI ISL

416042

EPI ISL 411066

EPI IS

L 4145

87

EPI ISL 406531

EPI IS

L 4146

31

EPI ISL 413513

EPI ISL 414641

31

23

14

LSI

IP

E

MT159719

EPI ISL 415613

28

36

14

LSI

IP

E

EPI ISL 406594

EPI ISL 416401

EPI ISL 416497

EPI ISL 412980

EPI IS

L 4138

60

EPI ISL 414687

EPI ISL 416474

EPI ISL 410536

EPI ISL 415624

MN994467

EPI ISL 415473

EPI ISL 404227

EPI ISL 415512

MT066175

EPI ISL 416044

EPI ISL 416510

EPI ISL 413857

EPI ISL 415460

EPI ISL 414692

MT019533

EPI ISL 413653

EPI ISL 415461

EPI ISL 415534

EPI ISL 416477

EPI ISL 410719

EPI ISL 415457

MT159712

119

48

1T

M

MT0499

51

EPI ISL 413021

EPI ISL 416452

EPI ISL 413648

EPI IS

L 4156

46

EPI ISL 406593

MT039873

EPI ISL 414517

EPI ISL 415627

MN994468

37

36

14

LSI I

PE

EPI ISL 415706

MT118835

EPI ISL 416415

EPI ISL 413584

34

75

14

LSI

IP

E

EPI ISL 404228

EPI ISL 406973

734614 LSIIPE

MN996529

EPI ISL 416339

EPI ISL 416361

EPI ISL 414625

78

44

14

LSI I

PE

EPI ISL 415472

EPI ISL 416432

EPI ISL 413019

EPI ISL 415467

EPI ISL 414523

MN985325

EPI ISL 416495

NMDC60013002-08

EPI ISL

414559

EPI ISL 416372

EPI ISL 415625

EPI ISL 415592

EPI ISL 416465

EPI ISL 412029

EPI ISL 416405

EPI ISL 416502

EPI ISL 413603

EPI ISL 403963

EPI ISL 416376

EPI ISL 416429

EPI ISL 415648

EPI ISL 416325

EPI ISL 410535

EPI ISL 415487

MN938384

EPI IS

L 4149

40

EPI ISL 407896

EPI ISL 407071

EPI ISL 416514

MT184912

EPI ISL 414019

EPI ISL 415652

CNA0007335

EPI IS

L 4163

22

EPI ISL 416443

EPI ISL 416439

EPI ISL

413579

EPI ISL 416482

EPI ISL 416434

EPI ISL 415607

EPI ISL 414011

EPI ISL 416480

00

63

14

LSI I

PE

MT066156

EPI ISL 415505

EPI ISL 409067

EPI ISL 413647

EPI ISL 416406

EPI ISL 415525

EPI ISL 414009

28

48

04

LSI I

PE

EPI ISL 415608

EPI ISL

414578

EPI ISL 407073

77

53

14

LSI

IP

E

EPI ISL 411220

NMDC60013002-10

EPI ISL

414689

EPI ISL 414579

EPI ISL 407987

EPI ISL 416362

EPI ISL 413589

EPI ISL 413515

EPI ISL 413864

EPI ISL 415616

EPI ISL 415603

EPI ISL 408485

EPI ISL 410714

EPI ISL 4154

76

71

79

51

TM

MT188339

EPI ISL 415709

MT044258

EPI ISL 416491

EPI ISL 410537

EPI ISL 414008

EPI ISL 413024

EPI IS

L 4163

30

EPI ISL 408668

EPI ISL 413925

EPI ISL 414601

EPI ISL 413650

EPI ISL 413928

EPI ISL 413572

EPI ISL 416370

EPI ISL 41

6431EPI ISL 414633

EPI ISL 416433

EPI ISL 408481

EPI ISL 413996

EPI ISL 416512

EPI ISL 414528

EPI ISL 407313

EPI ISL 416024

EPI ISL 416476

EPI ISL 402132

EPI ISL 415702

EPI ISL 412116

078214 LSIIPE

MT093571

EPI ISL 416387

EPI ISL 415711

EPI ISL 408515

EPI ISL 415650

EPI ISL 415597

MT159709

EPI ISL 416472

EPI ISL 416442

23

36

14

LSI I

PE

MT106054

EPI ISL 416411

EPI ISL 4145

80

MT123293

MT163716

EPI IS

L 4164

94

EPI ISL 413592

EPI ISL 415620

EPI ISL 4134

56

EPI ISL

415153

EPI ISL

416333

EPI ISL 415481

EPI ISL 413563

EPI ISL 414522

MT159708

EPI ISL 413853

MT019529

MT027064

EPI ISL 413863

EPI ISL 416460

EPI ISL 413558

MT019532

EPI ISL 415920

EPI ISL 414500

EPI ISL 415485

EPI ISL 414621

70

46

14

LSI

IP

E

EPI ISL 416478

MT126808

MT159716

EPI ISL 410984

EPI ISL 414591

EPI ISL 41

4012

EPI ISL 416451

EPI ISL 416338

EPI ISL 415527

MT039887

EPI ISL 416467

EPI ISL 416461

MT184913

EPI ISL 415602

EPI ISL 416425

EPI ISL 414537

EPI ISL 414020

EPI ISL 416317

EPI ISL 414468

EPI ISL 403962

EPI ISL 415478

MT093631

EPI ISL 416034

EPI ISL 416479

EPI ISL 414638

EPI ISL 415660

EPI ISL 414539

EPI ISL 416366

EPI ISL 415510

EPI ISL 416496

EPI ISL 415615

EPI ISL 415468

EPI ISL 413997

EPI ISL 413015

EPI ISL 414562

MT159705

EPI ISL 415506

EPI ISL 414684

85

46

14

LSI

IP

E

MT106052

MT007544

EPI ISL 415657

EPI IS

L 4146

91

EPI IS

L 4079

76

EPI ISL 416498

EPI ISL 415601

EPI ISL

416326

EPI IS

L 4119

26

EPI ISL 414545

EPI ISL 416505

EPI ISL 416445

EPI ISL 414467

EPI ISL 416499

LC522975

EPI ISL 415658

EPI ISL 414627

EPI ISL 413488

EPI ISL 412912

EPI ISL 414623

27

82

14

LSI

IP

E

EPI ISL 416471

MN988713

LC521925

EPI ISL 412871

EPI ISL 408486

MT123292

EPI ISL 416426

EPI ISL 414569

EPI IS

L 4156

42

41

58

04

LSI

IP

E

EPI ISL 416353

EPI ISL 410546

49

53

14

LSI I

PE

EPI ISL 4

08480

EPI ISL 415609

EPI ISL 41

1060

MT044257

MT163719

EPI ISL 413582

EPI ISL 411902

MT0504

93

EPI ISL 414643

EPI ISL408479

EPI ISL 416468

EPI ISL 414571

EPI ISL

412978

MT019531

EPI ISL 415503

EPI ISL 416320

EPI ISL 414688

EPI ISL 414635

EPI ISL 416033

MT121215

EPI IS

L 4163

35

NMDC60013002-07

EPI ISL 414558

MT163720

EPI ISL 413485

90-

20

03

10

06

CD

MN

EPI ISL 415606

EPI IS

L 4134

89

EPI ISL 414555

EPI ISL

416469

EPI ISL 413018

EPI ISL 416321

EPI ISL 407193

EPI ISL 415705

LC528233

EPI ISL 406535

EPI IS

L 4156

29

EPI ISL 416409

MT159707

EPI ISL 414452

EPI ISL 415516

EPI ISL 416334

EPI ISL 412974

EPI ISL 416489

EPI ISL 4154

59MT012098

EPI ISL 408431

EPI ISL 415456

EPI ISL 414648

EPI ISL 413599

EPI ISL 413604

EPI ISL 414524

EPI ISL 415698

EPI IS

L 41515

4

EPI IS

L 4160

31

EPI ISL 415158

MT027062

EPI ISL 410715

EPI ISL 414007

EPI IS

L 4138

58

MN997409

EPI ISL 416481

EPI ISL 415479

MT163717

EPI ISL 412873

EPI ISL 413214

EPI ISL 415486

EPI ISL 414597

04

36

14

LSI

IP

E

EPI ISL 415626

EPI ISL 414505

EPI ISL 415105

EPI ISL 413999

MT159720

EPI ISL

415703

EPI ISL 415704

EPI IS

L 4145

25

14

75

14

LSI

IP

E

EPI ISL 415595

EPI ISL 414428

EPI ISL 414593

EPI ISL 415619

EPI ISL 416455

EPI IS

L 4163

23

EPI ISL 415700

EPI IS

L 4161

41

09

43

14

LSI

IP

E

EPI ISL 410720

21

46

14

LSI

IP

E

05

911

4 L

SI I

PE

EPI ISL 410717

EPI ISL 415462

EPI ISL 415475

EPI ISL 416488

EPI ISL 416444

EPI ISL 414600

EPI ISL 412973

EPI ISL 416379LC528232

EPI ISL 406533

EPI ISL 413573

EPI ISL 413559

EPI ISL 41

6519

EPI ISL 415641

EPI ISL 413014

EPI ISL 415701

EPI ISL 414646

EPI ISL 416513

EPI ISL 414435

EPI ISL 414521

EPI IS

L 4129

83

MN988668

EPI ISL 412898

EPI ISL 416509

EPI ISL 415621

EPI ISL 406031

EPI IS

L 4145

86

EPI ISL

413020

EPI IS

L 4146

63

EPI ISL 406538

EPI ISL 415643

EPI ISL 416447

EPI ISL 406534

EPI ISL 412459

MT159718

EPI_ISL_415473_2020/03/09_Europe/Netherlands

EPI_ISL_415596_2020/03/09_NorthAmerica/USA/Washington

EPI_ISL_415532_202

0/03/09_Europe/Net

herlands/ZuidHolla

nd

EPI_ISL_407893_2020/01/24_Oceania/Australia/NewSouthWales/Sydney

EPI_ISL_415481_2020/03/08_Europe/Netherlands

EPI_ISL_414643_2020/03/07_Europe/Finland

EPI_ISL_414648_2020/03/11_NorthAmerica/USA/California/SanDiegoCounty

MT012098_2020/01/27_India/KeralaState

MT184912_2020/02/17_UnitedStates

EPI_ISL_415654_2020/03/09_Europe/France/HautsdeFrance/Compigne

EPI_ISL_415657_2020/03/12_Europe/UnitedKingdom/Wales

EPI_ISL_416382_2020/02/08_Asia/China/Shanghai

dn

alkc

uA/

dn

ala

eZ

we

N/ai

na

ecO

_7

2/2

0/0

20

2_

09

43

14

_L

SI_I

PE

MT019530_2019/12/30_China/Hubei/Wuhan

EPI_IS

L_4160

31_202

0/03/0

4_Sout

hAmeri

ca/Bra

zil/Sa

oPaulo

/SaoPa

ulo

EPI_ISL_415458_2020/

03/01_Europe/Switzer

land

EPI_ISL_415706_2020/03/06_Europe/Switzerland

EPI_IS

L_4149

41_202

0/01/3

0_Asia

/China

/Shand

ong

EPI_ISL_

414577_2

020/03/0

2_SouthA

merica/C

hile/Tal

ca

EPI_ISL_416035_2020/03/05_SouthA

merica/Brazil/SaoPaulo/SaoPaulo

EPI_ISL_415534_2020/03/11_Europe/Netherlands/ZuidHolland

EPI_ISL_416451_2020/03/10_NorthAmerica/USA/Washington

EPI_ISL_415158_2020/03/01_Europe/Belgium/Brussels

EPI_ISL_416033_2020/03/03_SouthAmerica/Brazil/SaoPaulo/SaoPauloEPI_ISL_414505_2020/02/27_Europe/Germany/NorthRhineWestphalia/HeinsbergDistrict

EPI_ISL_413459_2020/02/20_Asia/Japan/Tokyo

ye

ndy

S/W

SN/

ailar

tsu

A/ai

na

ecO

_2

0/3

0/0

20

2_

79

53

14

_L

SI_I

PE

EPI_ISL_415650_2020/03/02_Europe/France/IDF

MT123292

_2020/01

/27_Chin

a/Guangd

ong/Guan

gzhou

EPI_ISL_412980_2020/01/18_Asia/China/Hubei/Wuhan

EPI_ISL_414452_2020/03/06_Europe/Netherlands/NoordBrabant

ye

ndy

S/W

SN/

ailarts

uA/

ain

aec

O_

82/

20/

02

02

_4

95

31

4_

LSI

_IP

E

set

atS

deti

nU

_8

1/2

0/0

20

2_

01

94

81

TM

EPI_ISL_407896_2020/01/30_Oceania/Australia/Queensland/GoldCoast

ye

ndy

S/W

SN/

ailarts

uA/

ain

aec

O_

82/

20/

02

02

_6

95

31

4_

LSI

_IP

E

EPI_ISL_408485_2020/01/18_Asia/China/Beijing

EPI_ISL_415621_2020/03/09_NorthAmerica/USA/Washington/Seattle

EPI_ISL_415105_2020/03/04_So

uthAmerica/Brazil/Bahia/Feir

adeSantana

EPI_ISL_416044_2020/01/25_Asia/China/Hangzhou

ia

hg

na

hS/

ani

hC/

ais

A_

20/

20/

02

02

_0

43

61

4_

LSI

_IP

E

EPI_ISL_414499_2020/02/26_Europe/Germany/NorthRhineWestphalia/HeinsbergDistrict

EPI_ISL_416403_2020/02/02_Asia/China/Shanghai

MT163717_202

0/02/28_Unit

edStates/Was

hington

EPI_ISL_415592_2020/03/09_NorthAmerica/USA/Washington

EPI_ISL_406593_2020/01/13_Asia/China/Guandong/Shenzhen

EPI_IS

L_4134

89_202

0/03/0

3_Euro

pe/Ita

ly/Lom

bardy/

Milan

MN997409_2020/01/22_UnitedStates/Arizona/Phoenix

EPI_ISL_416426_2020/03/17_Europe/Hungary/Budapest

EPI_ISL_406533_2020/01/22_Asia/China/Guangdong/Guangzhou

EPI_ISL_413573_2020/03/02_Europe/Netherlands/HardinxveldGiessendam

EPI_ISL_415698

_2020/02/27_Eu

rope/Switzerla

nd

EPI_ISL_

415153_2

020/03/0

3_Europe

/Belgium

/Huldenb

erg

EPI_ISL_415462_2020/03/09_Europe/Netherlands/Gelderland

EPI_ISL_416438_2020/03/10_NorthAmerica/USA/Washington

MN994467_2020/01/23_UnitedStates/California/LosAngeles

EPI_ISL_415157_2020/03/01_Europe/Belgium/Sint-Niklaas

EPI_ISL_413582_2020/03/01_Europe/Netherlands/Rotterdam

EPI_ISL_413996_2020/02/24_Europe/Switzerland/Tessin

EPI_ISL_

416469_2

020/03/0

3_Europe

/Belgium

/Kessel-

Lo

EPI_IS

L_4136

02_202

0/03/0

3_Euro

pe/Fin

land/H

elsink

i

EPI_ISL_416467_2020/03/02_Europe/Belgium/Holsbeek

EPI_ISL_414621_2020/03/08_NorthAmerica/USA/Washington/Kirkland

EPI_ISL_411066_2020/01/22_Asia/China/Fujian

MN908947_2019/12/30_China/Hubei/Wuhan

dleiff

eh

S/eri

hskro

Y/d

nal

gn

E/m

od

gni

Kd

etin

U/e

por

uE

_4

0/3

0/0

20

2_

00

54

14

_L

SI_I

PE

EPI_ISL_416507_2020/03/05_Europe/France/Bretagne/Rennes

MT007544_2020/01/25_Australia/Victoria/Clayton

EPI_ISL_416401_2020/02/02_Asia/China/Shanghai

EPI_ISL_414528_2020/02/10_Asia/HongKong

EPI_ISL_415641_2020/02/27_Asia/Georgia/Tbilisi

EPI_ISL_416028_2020/03/03_SouthAmerica/Brazil/SaoPaulo/SaoPaulo

EPI_ISL_415602_2020/03/10_NorthAmerica/USA/Washington/Seattle

EPI_ISL_416475_2020/03/03_Europe/Belgium/Leuven

MN988668_2020/01/02_China/Hubei/Wuhan

EPI_ISL_415456_2020/02/29_Europe/SwitzerlandEPI_ISL_414022_2020/02/27_Europe/Switzerland/Geneva

EPI_ISL_415541_202

0/03/13_NorthAmeri

ca/USA/Utah

kro

Yw

eN/

AS

U/acir

em

Ahtr

oN

_9

2/2

0/0

20

2_

67

44

14

_L

SI_I

PE

EPI_ISL_416452_2020/03/10_NorthAmerica/USA/Washington

EPI_ISL_414593_2

020/03/05_NorthA

merica/USA/Washi

ngton/Kirkland

EPI_ISL_415500_2020/03/10_Europe/Netherlands/NoordBrabant

EPI_ISL_416466_2020/03/03_NorthAmerica/USA/Washington/KingCounty

MT066176_2020/02/05_China/Taiwan/Taipei

EPI_ISL_41

4023_2020/

03/01_Euro

pe/Switzer

land/Vaud

EPI_ISL_414457_2020/03/06_Europe/Netherlands/NoordBrabant

EPI_ISL_415471_2020/03/11_Europe/Netherlands

nai

au

H/us

gn

aiJ/a

nih

C/ais

A_

91/

10/

02

02

_8

84

80

4_

LSI

_IP

E

EPI_ISL_410714_2020/02/03_Asia/Singapore

EPI_ISL_416387_2020/02/01_Asia/China/Shanghai

EPI_ISL_414007_2020/02/28_Europe/UnitedKingdom/England

EPI_ISL_415597_2020/03/10_NorthAmerica/USA/Washington/Seattle

EPI_IS

L_4156

29_202

0/03/0

4_Euro

pe/Uni

tedKin

gdom/S

cotlan

d

EPI_ISL_414517_2020/02/25_Asia/HongKong

EPI_ISL_415622_2020/03/09_NorthAmerica/USA/Washington

EPI_ISL_416477_2020/03/08_Asia/Georgia/Tbilisi

EPI_ISL_416502_2020/02/26_Europe/France/Bretagne/Rennes

EPI_ISL_413572_2020/03/01_Europe/Netherlands/Haarlem

EPI_ISL_415606_2020/03/08_No

rthAmerica/USA/Washington

EPI_ISL_413024_2020/02/29_Europe/Switzerland/Zurich

MT027064_2020/01/29_UnitedStates/California

EPI_ISL_415543_2020/03/13_NorthAmerica/USA/Utah

EPI_ISL_

416428_2

020/03/0

7_Asia/V

ietnam/Q

uangning

EPI_ISL_415491_2020/03/07_Europe/Netherlands

LC528232_2020/02/10_Japan/Kanagawa

EPI_ISL_414624_2020/02/26_Europe/France/Normandie/Rouen

EPI_ISL_414591_2020/03/06_NorthAmerica/USA/Washington/Kirkland

EPI_ISL_415583_2020/03/03_NorthAmerica/Canada/BritishColumbia

EPI_ISL_415604_2020/03/10_NorthAmerica/USA/WashingtonEPI_ISL_416140_202

0/03/02_Europe/Den

mark/Copenhagen

EPI_IS

L_4149

40_202

0/01/2

5_Asia

/China

/Shand

ong

EPI_ISL_416425_2020/02/03_Asia/China/Hangzhou

EPI_ISL_416478_2020/03/14_Asia/Georgia/Tbilisi

EPI_IS

L_4163

30_202

0/02/0

2_Asia

/China

/Shang

hai

EPI_ISL_416432_2020/03/07_Asia/SaudiArabia/Riyadh

ia

hg

na

hS/

ani

hC/

ais

A_

40/

20/

02

02

_2

43

61

4_

LSI

_IP

E

EPI_ISL_415616_2020/03/08_NorthAmerica/USA/Was

hington

EPI_ISL_416436_2020/03/10_NorthAmerica/USA/Washington

EPI_ISL_414554_2020/03/08_Europe/Netherlands/Utrecht

EPI_IS

L_4156

40_202

0/03/0

8_Euro

pe/Uni

tedKin

gdom/S

cotlan

d

EPI_ISL_414563_2020/03/03_Europe/Netherlands/ZuidHolland

EPI_ISL_416476_2020/03/02_Europe/Belgium/Holsbeek

EPI_ISL_412870_2020/01/30_Asia/SouthKorea/Seoul

EPI_IS

L_4129

79_202

0/01/1

8_Asia

/China

/Hubei

/Wuhan

MN975262_2020/01/11_China/Guangdong/Shenzhen

EPI_ISL_408479_2020/01/23_Asia/China/Chongqing/Zhongxian

EPI_ISL_415611_2020/03/09_NorthAmerica/USA/Washington

ila

wa

H/ti

aw

uK/

ais

A_

20/

30/

02

02

_8

54

61

4_

LSI

_IP

E

EPI_ISL_415601_2020/03/10_NorthAmerica/USA/Washington

EPI_ISL_414634_2020/03/04_Europe/France/HautsdeFrance/Compigne

EPI_ISL_416471_2020/03/02_Europe/Belgium/Kessel-Lo

EPI_ISL_414021_2020/02/27_Europe/Switzerland/Basel

EPI_ISL_404228_2020/01/17_Asia/China/Zhejiang

EPI_ISL_414630_2020/03/03_Europe/France/HautsdeFrance/Compigne

MT159718_2020/02/18_UnitedStates

EPI_ISL_414600_2020/02/26_Europe/France/Grand-Est/Strasbourg

EPI_ISL_414524_2020/03/01_Europe/UnitedKingdom/England

EPI_ISL_414635_2020/03/04_Europe/France/HautsdeFrance/Compigne

EPI_ISL_413015_2020/01/23_NorthAmerica/Canada/Ontario

EPI_ISL_414692_2020/02/25_Asia/China/Guangdong/Guangzhou

EPI_ISL_406862_2020/01/28_Europe/Germany/Bavaria/Munich

EPI_ISL_416034_2020/03/04_SouthAmerica/Brazil/SaoPaulo/SaoPa

ulo

EPI_ISL_404227_2020/01/16_Asia/China/Zhejiang

kjiwr

etsi

O/s

dn

alr

eht

eN/

ep

oru

E_

20/

30/

02

02

_0

85

31

4_

LSI

_IP

E

EPI_ISL_413566_2020/03/02_Europe/Netherlands/Blaricum

EPI_IS

L_4138

54_202

0/01/3

0_Asia

/China

/Guang

dong

EPI_ISL_415516_2020/03/11_Europe/Netherlands/NoordBrabant

EPI_ISL_410715_2020/02/04_Asia/Singapore

EPI_ISL_415497_2020/03/09_Europe/Netherlands

EPI_IS

L_4146

31_202

0/03/0

4_Euro

pe/Fra

nce/Gr

and-Es

t/Reim

s

EPI_ISL_415488_2020/03/13_Europe/Netherlands

EPI_ISL_416321_2020/01/28_Asia/China/Shanghai

MT159716_2020/02/24_UnitedStates

EPI_ISL_415454_2

020/02/28_Europe

/Switzerland

EPI_ISL_414451_2020/03/06_Europe/Netherlands/NoordBrabant

EPI_ISL_407071_2020/01/29_Europe/UnitedKingdom/England

EPI_ISL_414623_2020/02/25_Europe/France/Grand-Est/Strasbourg

EPI_ISL_416448_2020/03/11_NorthAmerica/USA/Washington

EPI_ISL_416479_2020/03/05_Asia/Georgia/Tbilisi

EPI_ISL_414687_2020/02/25_Asia/China/Guangdong/Guangzhou

EPI_ISL_414638_2020/03/04_Europe/France/HautsdeFrance/Compigne

EPI_ISL_413016_2020/02/28_SouthAmerica/Brazil/SaoPaulo/SaoPaulo

EPI_ISL_415655_2020/03/12_Europe/UnitedKingdom/Wales

EPI_ISL_414011_2020/02/26_Europe/UnitedKingdom/England

EPI_ISL_413647_2020/03/01_Europe/Portugal

EPI_ISL_416446_2020/03/10_NorthAmerica/USA/Washington

EPI_ISL_414006_2020/02/28_Europe/UnitedKingdom/England

EPI_ISL_415531_2020/03/09_Europe/Netherlands/ZuidHolland

CNA0007334_2020/01/01_China/Hubei/Wuhan

EPI_ISL_412030_2020/02/01_Asia/HongKong

EPI_ISL_410720_2020/01/23_Europe/France/Ile-de-France/Paris

MT106054_2020/02/11_UnitedStates/Texas

EPI_IS

L_4164

94_202

0/03/0

4_Euro

pe/Fra

nce/No

rmandi

e/Roue

n

MT159720_2020/02/21_UnitedStates

EPI_ISL_416444_2020/03/10_NorthAmerica/USA/Washington

EPI_ISL_414009_2020/02/25_Europe/UnitedKingdom/England

MT121215_2020/02/02_China/Shanghai

EPI_ISL_410713_2020/01/27_Asia/Singapore

EPI_ISL_415461_2020/03/10_Europe/Netherlands/Gelderland

EPI_ISL_414539_2020/03/08_Europe/Netherlands/NoordBrabant

EPI_ISL_408484_2020/01/15_Asia/China/Sichuan/Chengdu

EPI_ISL_41

6473_2020/

01/26_Asia

/China/Han

gzhou

MT188340_2020/03/07_UnitedStates/MN

EPI_ISL_

416333_2

020/01/3

0_Asia/C

hina/Sha

nghai

EPI_ISL_413853_2020/01/30_Asia/China/Guangdong

EPI_ISL_416482_2020/03/13_Asia/Georgia/Tbilisi

EPI_ISL_406031_2020/01/23_Asia/Taiwan/Kaohsiung

MT163719_2020/03/01_UnitedStates/Washington

EPI_ISL_416498_2020/03/11_Europe/France/IledeFrance/Garches

EPI_ISL_416510_2020/03/06_Europe/France/Bretagne/Rennes

EPI_ISL_415652_2020/03/05_Europe/France/Bourgogne-France-Comt/Thise

EPI_ISL_410716_2020/02/04_Asia/Singapore

EPI_ISL_407894_2020/01/28_Oceania/Australia/Queensland/GoldCoast

MT123290_2020/02/05_China/Guangdong/Guangzhou

MT044258_2020/01/27_UnitedStates/California

EPI_ISL_416024_2020/03/11_Europe/UnitedKingdom/Wales

EPI_ISL_415624_2020/03/09_NorthAmerica/USA/Washington

EPI_ISL_415709_2020/01/25_Asia/China/Hangzhou

EPI_ISL_416461_2020/02/29_NorthAmerica/USA/Washington/KingCounty

EPI_ISL_413863_2020/02/01_Asia/China/Guangdong

EPI_ISL_416443_2020/03/10_NorthAmerica/USA/Washington

ye

ndy

S/W

SN/

ailar

tsu

A/ai

na

ecO

_8

2/2

0/0

20

2_

59

53

14

_L

SI_I

PE

EPI_ISL_403962_2020/01/08_Asia/Thailand/Nonthaburi

EPI_ISL_416032_2020/03/04_SouthAmerica/Brazil/DistritoFederal/Brasilia

EPI_ISL_416365_2020/01/30_Asia/China/Shanghai

EPI_ISL_413599_2020/03/04_Oceania/Australia/NSW/Sydney

EPI_ISL_416319_2020/01/28_Asia/China/Shanghai

EPI_ISL_416491_2020/03/15_NorthAmerica/USA/WI/Danecounty

set

atS

deti

nU

_7

1/2

0/0

20

2_

119

48

1T

M

EPI_ISL_416521_2020/03/10_Asia/SaudiArabia

EPI_ISL_412898_2019/12/30_Asia/China/Hubei/Wuhan

EPI_ISL_414642_2020/03/08_Europe/Finland

EPI_ISL_408668_2020/01/24_Asia/Vietnam/ThanhHoa

EPI_ISL_413928_2020/03/05_NorthAmerica/USA/California/SanFrancisco

EPI_ISL_416376_2020/02/05_Asia/China/Shanghai

EPI_ISL_415658_2020/03/06_SouthAmerica/Chile/Santiago

EPI_ISL_416495_2020/03/10_Europe/France/HautsdeFrance/Compigne

EPI_ISL_413653

_2020/03/05_No

rthAmerica/USA

/Washington

EPI_ISL_414637_2020/03/04_Europe/France/HautsdeFrance/Compigne

EPI_ISL_414632_2020/03/04_Europe/France/Grand-Est/Reims

EPI_ISL_406597_2020/01/23_Europe/France/Ile-de-France/Paris

MT188339_2020/03/09_UnitedStates/MN

MN988713_2020/01/21_UnitedStates/Illinois/Chicago

EPI_ISL_416370_2020/02/01_Asia/China/Shanghai

EPI_ISL_407988_2020/02/01_Asia/Singapore

EPI_ISL_416457_2020/03/18_NorthAmerica/USA/California/SanDiegoCounty

EPI_ISL_416036_2020/03/05_SouthAmerica/Brazil/SaoPaulo/SaoPaulo

EPI_ISL_412912_2020/02/25_Europe/Germa

ny/Baden-Wuerttemberg

EPI_ISL_414684_2020/02/27_Asia/China/Guangdong/Guangzhou

EPI_ISL_416433_2020/03/10_NorthAmerica/USA/Washington

EPI_ISL_414521_2020/03/02_Europe/Germany/Munich

EPI_ISL_413861_2020/02/01_Asia/China/Guangdong

ye

ndy

S/s

ela

Wht

uo

Sw

eN/

ailar

tsu

A/ai

na

ecO

_9

2/2

0/0

20

2_

31

23

14

_L

SI_I

PE

EPI_ISL_414552_2020/03/07_Europe/Netherlands/Utrecht

EPI_ISL_416377_2020/02/07_Asia/China/Shanghai

EPI_ISL_413864_2020/02/09_Asia/China/Guangdong

EPI_ISL_

414559_2

020/03/0

7_Europe

/Netherl

ands/Zui

dHolland

EPI_ISL_416367_2020/02/01_Asia/China/Shanghai

set

atS

deti

nU

_7

1/2

0/0

20

2_

71

79

51

TM

MT159707_2020/02/17_UnitedStates

na

uyo

aT/

na

wia

T/ai

sA

_5

2/1

0/0

20

2_

51

911

4_

LSI

_IP

E

EPI_ISL_416489_2020/03/15_NorthAmerican/USA/WI/Danecounty

MT159719_2020/02/18_UnitedStates

EPI_ISL_412871_2020/01/31_Asia/SouthKorea/Seoul

EPI_ISL_416514_2020/03/15_Oceania/Australia/Victoria/Melbourne

EPI_ISL_413997_2020/02/26_Europe/Switzerland/Geneva

EPI_ISL_416047_2020/02/02_Asia/China/Hangzhou

ara

N/n

ap

aJ/

ais

A_

52/

10/

02

02

_1

35

01

4_

LSI

_IP

E

MT159708_2020/02/17_UnitedStates

MN938384_2020/01/10_China/Guangdong/Shenzhen

EPI_ISL_415505_2020/03/11_Europe/Netherlands/NoordBrabant

EPI_ISL_406594_2020/01/16_Asia/China/Guandong/Shenzhen

EPI_ISL_414627_2020/03/02_Europe/France/HautsdeFrance/Compigne

EPI_IS

L_4145

87_202

0/03/0

3_Euro

pe/Ire

land/L

imeric

k

EPI_ISL_416480_2020/03/11_Asia/Georgia/Tbilisi

EPI_ISL_414562_2020/03/03_Europe/Netherlands/ZuidHolland

EPI_ISL_415701_2020/03/02_Europe/Switzerland

EPI_ISL_416399_2020/02/13_Asia/China/Shanghai

EPI_ISL_415920_2020/03/12_Europe/UnitedKingdom/Wales

EPI_ISL_415708_2020/03/07_Europe/Switzerland

EPI_ISL_414646_2020/03/04_Europe/Finland

EPI_ISL_412973_2020/02/20_Europe/Italy/Lombardy

ia

hg

na

hS/

ani

hC/

aisA

_7

0/2

0/0

20

2_

37

36

14

_L

SI_I

PE

EPI_ISL_415501_2020/03/11_Europe/Netherlands/NoordBrabant

EPI_ISL_413513_2020/02/27_Asia/SouthKorea

EPI_ISL_409067_2020/01/29_NorthAmerica/USA/Massachusetts

na

hu

W/ie

bu

H/a

nih

C/ai

sA

_1

0/1

0/0

20

2_

41

58

04

_L

SI_I

PE

EPI_IS

L_4146

91_202

0/02/2

5_Asia

/China

/Guang

dong/G

uangzh

ou

EPI_ISL_407313_2020/01/19_Asia/China/Zhejiang/Hangzhou

MT106053_2020/02/10_UnitedStates/California

EPI_ISL_416337_2020/02/04_Asia/China/Shanghai

EPI_ISL_416379_2020/02/01_Asia/China/Shanghai

EPI_ISL_415603_2020/03/10_NorthAmerica/USA/Washington/Seattle

MT135041_2020/01/26_China/Beijing

EPI_ISL_416361_2020/02/01_Asia/China/Shanghai

MT163716_2020/02/27_UnitedStates/Washington

MT106052_2020/02/06_UnitedStates/California

MT072688_2020/01/13_Nepal/KathmanduEPI_ISL_415627_2020/03/09_NorthAmerica/USA/Washington

EPI_ISL_416472_2020/03/02_Europe/Belgium/Kessel-LoEPI_ISL_415648_2020/03/03_Europe/Italy

NMDC60013002-06_2019/12/30_China/Hubei/Wuhan

EPI_ISL_415156_2020/03/01_Europe/Belgium/Huldenberg

EPI_IS

L_4138

60_202

0/01/3

0_Asia

/China

/Guang

dong

EPI_ISL_416513_2020/03/07_Europe/France/Bretagne/Rennes

EPI_ISL_415535_2020/03/12_Europe/Netherlands/ZuidHolland

EPI_ISL_406536_2020/01/22_Asia/China/Guangdong/Foshan

MT0504

93_202

0/01/3

1_Indi

a/Kera

laStat

e

EPI_ISL_415482_2020/03/09_Europe/Netherlands

EPI_ISL_414601_2020/02/27_Europe/France/Normandie/Rouen

EPI_ISL_416415_2020/02/08_Oceania/Australia/Victoria/Melbourne

EPI_ISL_416389_2020/01/21_Asia/China/Shanghai

EPI_ISL_

416326_2

020/01/3

0_Asia/C

hina/Sha

nghai

EPI_ISL_414558_2020/03/06_Europe/Netherlands/ZuidHolland

EPI_ISL_414688_2020/02/25_Asia/China/Guangdong/Guangzhou

EPI_ISL_406595_2020/01/16_Asia/China/Guandong/Shenzhen

EPI_ISL_407987_2020/01/25_Asia/Singapore

EPI_IS

L_4145

25_202

0/03/0

2_Euro

pe/Uni

tedKin

gdom/E

ngland

EPI_ISL_415128_2020/02/29_SouthAmerica/Brazil/EspiritoSanto/VilaVelha

EPI_ISL_415704_2020/03/04_Europe/Switzerland

EPI_ISL_415487_2020/03/13_Europe/Netherlands

EPI_ISL_412869_2020/01/30_Asia/SouthKorea/Seoul

EPI_IS

L_4164

70_202

0/03/0

2_Euro

pe/Bel

gium/C

outhui

n

EPI_ISL_41

6519_2020/

03/02_Ocea

nia/NewZea

land/Auckl

and

EPI_ISL_413555_2020/02/27_Europe/UnitedKingdom/Wales

EPI_ISL_413559_2020/02/27_NorthAmerica/USA/California/SolanoCounty

ye

ndy

S/sel

aW

htu

oS

we

N/ail

artsu

A/ai

na

ecO

_9

2/2

0/0

20

2_

41

23

14

_L

SI_I

PE

LC522974_2020/01/31_Japan/Tokyo

EPI_ISL_413021_2020/02/29_Europe/Switzerland/Z

urich

EPI_ISL_415619_2020/03/09_NorthAmerica/USA/Washington

EPI_ISL_416355_2020/02/04_Asia/China/Shanghai

EPI_ISL_415468_2020/03/10_Europe/Netherlands

EPI_ISL_414445_2020/03/03_Europe/Netherlands/ZuidHolland

EPI_ISL_414620_202

0/03/08_NorthAmeri

ca/USA

EPI_ISL_

412978_2

020/01/1

7_Asia/C

hina/Hub

ei/Wuhan

NMDC60013002-07_2020/01/07_China/Hubei/Wuhan

EPI_ISL_414428_2020/03/02_Europe/Netherlands/NoordBrabant

EPI_ISL_410717_2020/02/05_Oceania/Australia/Queensland/GoldCoast

EPI_ISL_413023_2020/02

/29_Europe/Switzerland

/Zurich

EPI_ISL_

413022_2

020/02/2

9_Europe

/Switzer

land/Zur

ichEPI_ISL_403963_2020/01/13_Asia/Thailand/Nonthaburi

EPI_ISL_414005_2020/02/25_Europe/UnitedKingdom/England

EPI_ISL_415591_2020/

03/10_NorthAmerica/U

SA/Washington

EPI_ISL_415630_2020/03/09_Europe/UnitedKingdom/Scotland

EPI_ISL_413019_2020/02/26_Europe/Switzerland/Zurich

EPI_ISL_415485_2020/03/12_Europe/Netherlands

EPI_ISL_416499_2020/03/11_Europe/France/IledeFrance/Longjumeau

EPI_ISL_416336_2020/02/01_Asia/China/Shanghai

EPI_ISL_413592_2020/03/02_Asia/Taiwan/Taipei

ne

dra

aN/

sd

nal

re

hte

N/e

por

uE

_2

0/3

0/0

20

2_

77

53

14

_L

SI_I

PE

EPI_ISL_415608_2020/03/08_NorthAmerica/USA/Washington

EPI_ISL_

413579_2

020/03/0

3_Europe

/Netherl

ands/Noo

tdorp

ia

hg

na

hS/

ani

hC/

ais

A_

51/

20/

02

02

_7

04

61

4_

LSI

_IP

E

EPI_ISL_415707_2020/03/08_Europe/Switzerland

EPI_ISL_410537_2020/02/09_Asia/Singapore

EPI_IS

L_4151

54_202

0/03/0

1_Euro

pe/Bel

gium/K

raaine

m

hcin

uM/y

na

mre

G/e

por

uE

_2

0/3

0/0

20

2_

02

54

14

_L

SI_I

PE

MT019532_2019/12/30_China/Hubei/Wuhan

EPI_ISL_4144

70_2020/03/0

6_Europe/Net

herlands/Zui

dHolland

EPI_ISL_406534_2020/01/22_Asia/China/Guangdong/Foshan

EPI_ISL_403934_2020/01/15_Asia/China/Guandong/Shenzhen

EPI_ISL_

415703_2

020/03/0

1_Europe

/Switzer

land

EPI_IS

L_4156

46_202

0/03/0

3_Euro

pe/Ita

ly

EPI_ISL_414551_2020/03/07_Europe/Netherlands/Utrecht

MT184908_2020/02/21_UnitedStates

EPI_IS

L_4156

42_202

0/03/1

0_Asia

/Georg

ia/Tbi

lisi

EPI_ISL_415510_2020/03/09_Europe/Netherlands/NoordBrabant

EPI_ISL_415455_2020/02/28_Europe/Switzerland

EPI_ISL_408977_2020/01/25_Oceania/Australia/NewSouthWales/Sydney

EPI_ISL_415472_2020/03/11_Europe/Netherlands

EPI_IS

L_4154

35_202

0/03/0

6_Euro

pe/Uni

tedKin

gdom/W

ales

MT188341_2020/03/05_UnitedStates/MN

EPI_ISL_413014_2020/01/25_NorthAmerica/Canada/Ontario

EPI_ISL_406973_2020/01/23_Asia/Singapore

EPI_ISL_412981_2020/01/18_Asia/China/Hubei/Wuhan

EPI_ISL_408431_2020/01/29_Europe/France/Ile-de-France/Paris

EPI_ISL_414597_2020/03/04_NorthAmerica/USA/Washington/Kirkland

EPI_ISL_402132_2019/12/30_Asia/China/Hubei/Wuhan

dn

alg

nE/

mo

dg

niK

deti

nU/

ep

oru

E_

82/

20/

02

02

_2

25

41

4_

LSI

_IP

E

EPI_ISL_414467_2020/03/05_Europe/Netherlands/ZuidHolland

MT152824_2020/02/24_UnitedStates/Washington/SnohomishCounty

EPI_ISL_414537_2020/03/08_Europe/Netherlands/NoordBrabant

EPI_ISL_416503_2020/03/01_Europe/France/Bretagne/Rennes

enr

uo

ble

M/ai

rot

ciV/

ailar

tsu

A/ai

na

ecO

_2

0/3

0/0

20

2_

21

46

14

_L

SI_I

PE

EPI_ISL_416468_2020/03/02_Europe/Belgium/Holsbeek

EPI_ISL_410535_2020/02/03_Asia/Singapore

EPI_ISL_415594_2020/03/10_NorthAmerica/USA/WashingtonMT123291_2020/01/29_China/Guangdong/Guangzhou

EPI_ISL_407073_2020/01/29_Europe/UnitedKingdom/England

EPI_ISL_416437_2020/03/10_NorthAmerica/USA/Washington

MN996531_2019/12/30_China/Hubei/Wuhan

LC522975_2020/01/31_Japan/Tokyo

EPI_ISL_416341_2020/02/01_Asia/China/Shanghai

EPI_ISL_406592_2020/01/13_Asia/China/Guandong/Shenzhen

EPI_ISL_416029_2020/03/04_

SouthAmerica/Brazil/SaoPau

lo/SaoPaulo

na

uyo

aT/

na

wia

T/ai

sA

_7

2/2

0/0

20

2_

34

75

14

_L

SI_I

PE

EPI_ISL_408430_2020/01/29_Europe/France/Ile-de-France/Paris

EPI_ISL_41

1060_2020/

01/21_Asia

/China/Fuj

ian

EPI_ISL_411902_2020/01/27_Asia/Cambodia/Sihanoukville

EPI_ISL_414569_2020/02/12_Asia/HongKong

EPI_ISL_416474_2020/01/28_Asia/China/Hangzhou

EPI_IS

L_4163

23_202

0/01/2

9_Asia

/China

/Shang

hai

MT066156_2020/01/30_Italy

EPI_ISL_415159_2020/02/29_Europe/Belgium/Leuven

MT0499

51_202

0/01/1

7_Chin

a/Yunn

an

EPI_ISL_414633_2020/03/04_Europe/France/Ile-de-France/Pontoise

EPI_ISL_412028_2020/01/22_Asia/HongKong

EPI_ISL_416434_2020/03/10_NorthAmerica/USA/Washington

MT159706_2020/02/17_UnitedStates

EPI_ISL_410718_2020/02/05_Oceania/Australia/Queensland/GoldCoast

EPI_ISL_412116_2020/02/09_Europe/UnitedKingdom/England

EPI_ISL_415614_2020/03/09_NorthA

merica/USA/Washington

EPI_ISL_408976_2020/01/22_Oceania/Australia/NewSouthWales/Sydney

EPI_ISL_415527_2020/03/12_Europe/Netherlands/Utrecht

EPI_ISL_415649_2020/03/05_Europe/France/Hauts-de-France/Crpy-en-Valois

EPI_ISL_414641_2020/03/05_Europe/Finland

EPI_ISL_412459_2020/01/08_Asia/China/Hubei/Jingzhou

EPI_ISL_414555_2020/03/08_Europe/Netherlands/Utrecht

MT163718_202

0/02/29_Unit

edStates/Was

hington

EPI_ISL_415503_2020/03/11_Europe/Netherlands/NoordBrabant

MT159722_2020/02/21_UnitedStates

EPI_ISL_413017_2020/02/06_Asia/SouthKorea

EPI_ISL_4154

59_2020/02/2

9_Europe/Swi

tzerland/Gen

ve

EPI_ISL_412873_2020/02/06_Asia/SouthKorea/Chungcheongnam-do

od-

ig

gn

oey

G/a

ero

Kht

uo

S/ai

sA

_1

0/2

0/0

20

2_

27

82

14

_L

SI_I

PE

EPI_ISL_415460_2020/03/09_Europe/Netherlands/Flevoland

EPI_ISL_413931_2020/03/05_NorthAmerica/USA/California/SanFrancisco

EPI_ISL_410546_2020/01/31_Europe/Italy/Rome

EPI_ISL_

414689_2

020/02/2

5_Asia/C

hina/Gua

ngdong/G

uangzhou

EPI_ISL_416511_2020/03/07_Europe/France/Bretagne/Rennes

ye

ndy

S/sel

aW

htu

oS

we

N/ail

artsu

A/ai

na

ecO

_8

2/2

0/0

20

2_

57

92

14

_L

SI_I

PE

EPI_ISL_410536_2020/02/06_Asia/Singapore

EPI_ISL_414579_2020/03/03_SouthAmerica/Chile/Santiago

EPI_ISL_414429_2020/03/02_Europe/Netherlands/NoordBrabant

EPI_ISL_411952_2020/01/24_Asia/China/Jiangsu

EPI_ISL_416320_2020/01/28_Asia/China/Shanghai

EPI_ISL_413515_2020/02/27_Asia/SouthKorea

EPI_ISL_414020_2020/02/27_Europe/Switzerland/Geneva

EPI_ISL_41

5584_2020/

03/02_Nort

hAmerica/C

anada/Brit

ishColumbi

a

EPI_ISL_416334_2020/02/06_Asia/China/Shanghai

EPI_ISL_414468_2020/03/06_Europe/Netherlands/ZuidHolland

EPI_ISL_41

6431_2020/

03/06_Asia

/Vietnam/H

anoi

EPI_IS

L_4079

76_202

0/02/0

3_Euro

pe/Bel

gium/L

euven

EPI_IS

L_4119

26_202

0/01/2

4_Asia

/Taiwa

n/Taip

ei

EPI_ISL_413651_2020/03/05_NorthAmerica/USA/WashingtonEPI_ISL_406596_2020/01/23_Europe/France/Ile-de-France/Paris

EPI_ISL_406531_2020/01/22_Asia/China/Guangdong/Zhuhai

EPI_ISL_416454_2020/03/06_NorthAmerica/USA/Washington

EPI_ISL_40

8478_2020/

01/21_Asia

/China/Cho

ngqinq/Yon

gchuan

gni

qg

no

hC/

ani

hC/

ais

A_

81/

10/

02

02

_1

84

80

4_

LSI

_IP

E

EPI_ISL_403936_2020/01/17_Asia/China/Guangdong/Zhuhai

EPI_ISL_415660_2020/03/07_SouthAmerica/Chile/Santiago

EPI_ISL_415625_2020/03/09_NorthAmerica/USA/Washington

EPI_ISL_416465_2020/02/29_NorthAmerica/USA/Washington/KingCounty

EPI_ISL_414544_2020/03/09_Europe/Netherlands/NoordBrabant

MT019533_2020/01/01_China/Hubei/Wuhan

EPI_ISL_415631_2020/03/10_Europe/UnitedKingdom/Scotland

EPI_ISL_407193_2020/01/25_Asia/SouthKorea/Gyeonggi-do

EPI_ISL_414549_2020/03/03_Europe/Netherlands/NoordHolland

MT019531_2019/12/30_China/Hubei/Wuhan

EPI_ISL_415506_2020/03/11_Europe/Netherlands/NoordBrabant

EPI_ISL_416366_2020/01/30_Asia/China/Shanghai

EPI_ISL_412029_2020/01/30_Asia/HongKong

oa

dg

niQ/

gn

od

na

hS/

ani

hC/

aisA

_9

1/1

0/0

20

2_

28

48

04

_L

SI_I

PE

MT093631_2020/01/08_China

EPI_ISL_415700_2

020/02/28_Europe

/Switzerland

EPI_ISL_414509_2020/02/28_Europe/Germany/NorthRhineWestphalia/HeinsbergDistrict

EPI_ISL_415605_2020/03/05_NorthAmerica/USA/Washington

EPI_ISL_416390_2020/01/31_Asia/China/Shanghai

EPI_ISL_416318_2020/01/28_Asia/China/Shanghai

MT044257_2020/01/28_UnitedStates/Illinois

EPI_ISL_415595_2020/03

/09_NorthAmerica/USA/W

ashington

EPI_ISL_412972_2020/02/27_NorthAmerica/Mexico/MexicoCity

EPI_ISL_414526_2020/03/03_Europe/UnitedKingdom/England

LC528233_2020/02/10_Japan/Kanagawa

EPI_ISL_413584_2020/03/03_Europe/Netherlands/Rotterdam

EPI_IS

L_4146

63_202

0/02/2

5_Asia

/China

/Guang

dong/G

uangzh

ou

EPI_ISL_4154

76_2020/03/1

0_Europe/Net

herlands

EPI_ISL_415475_2020/03/12_Europe/Netherlands

MT066175_2020/02/01_China/Tai

wan/Tai

pei

EPI_ISL_416316_2020/01/25_Asia/China/Shanghai

EPI_ISL_414595_2020/03/05_NorthAmerica/USA/Washington/Kirkland

MT019529_2019/12/23_China/Hubei/Wuhan

EPI_ISL_414019_2020/02/27_Europe/Switzerland/Geneva

MN996527_2019/12/30_China/Hubei/Wuhan

MT135043_2020/01/28_China/Beijing

EPI_ISL_415495_2020/03/10_Europe/Netherlands

EPI_ISL_414008_2020/02/27_Europe/UnitedKingdom/England

EPI_ISL_414628_2020/03/02_Europe/France/HautsdeFrance/Compigne

EPI_ISL_414629_2020/03/03_Europe/France/HautsdeFrance/Compigne

EPI_ISL_416455_2020/03/07_NorthAmerica/USA/Washington

EPI_ISL_416372_2020/02/01_Asia/China/Shanghai

EPI_ISL_415479_2020/03/08_Europe/Netherlands

EPI_IS

L_4135

93_202

0/02/2

9_Euro

pe/Lux

embour

g

EPI_ISL_

416402_2

020/02/11

_Asia/Ch

ina/Shan

ghai

EPI_ISL_416325_2020/02/02_Asia/China/Shanghai

EPI_ISL_416505_2020/03/02_Europe/France/Bretagne/Rennes

EPI_ISL_416493_2020/03/08_Europe/France/HautsdeFrance/Chteau-Thierry

kro

C/d

nal

erI/e

por

uE

_4

0/3

0/0

20

2_

78

44

14

_L

SI_I

PE

EPI_ISL_414626_2020/02/29_Europe/France/HautsdeFrance/CrpyenValois

EPI_ISL_416405_2020/02/02_Asia/China/Shanghai

ia

hg

na

hS/

ani

hC/

aisA

_0

3/1

0/0

20

2_

23

36

14

_L

SI_I

PE

CNA0007335_2020/01/05_China/Hubei/Wuhan

EPI_ISL_415609_2020/03/08_NorthAmerica/USA/Washington

EPI_ISL_414497_2020/02/25_Europe/Germany/NorthRhineWestphalia/HeinsbergDistrict

EPI_ISL_4134

56_2020/02/2

0_NorthAmeri

ca/USA/Washi

ngton/KingCo

unty

EPI_ISL_415615_2020/03/08_NorthAmerica/USA/Washington

EPI_ISL_415626_2020/03/10_NorthAmerica/USA/Washington

MN996530_2019/12/30_China/Hubei/Wuhan

usg

nai

J/a

nih

C/ai

sA

_3

2/1

0/0

20

2_

05

911

4_

LSI

_IP

E

EPI_ISL_416397_2020/02/02_Asia/China/Shanghai

EPI_ISL_416362_2020/02/02_Asia/China/Shanghai

MT039873_2020/01/20_China/Zhejiang/Hangzhou

MT039887_2020/01/31_UnitedStates/Wisconsin

EPI_IS

L_4129

83_202

0/02/0

8_Asia

/China

/Hubei

/Tianm

en

EPI_ISL_416435_2020/03/10_NorthAmerica/USA/Washington

EPI_IS

L_4163

22_202

0/01/2

9_Asia

/China

/Shang

hai

EPI_ISL_415620_2020/03/09_NorthAmerica/USA/Washington

EPI_ISL_4145

80_2020/03/0

5_SouthAmeri

ca/Chile/San

tiago

EPI_ISL_411219_2020/01/28_Europe/France/Ile-de-France/Paris

EPI_ISL_416509_2020/03/06_Europe/France/Bretagne/Rennes

EPI_ISL_416488_2020/03/03_Europe/Poland/Zielonogorskie

EPI_ISL_414435_2020/03/03_Europe/Netherlands/Utrecht

EPI_IS

L_4149

38_202

0/01/2

4_Asia

/China

/Shand

ong

MN994468_2020/01/22_UnitedStates/California/OrangeCounty

EPI_ISL_416445_2020/03/10_NorthAmerica/USA/Washington

EPI_ISL_412982_2020/02/07_Asia/China/Hubei/Wuhan

EPI_ISL_415612_2020/03/09_NorthAmerica/USA/Washington/Seattle

MT118835_2020/02/23_UnitedStates/California/Solano

EPI_ISL_414571_2020/02/22_Asia/HongKong

EPI_ISL_416339_2020/02/03_Asia/China/Shanghai

EPI_ISL_416442_2020/03/10_NorthAmerica/USA/Washington

EPI_ISL_414625_2020/02/26_Europe/France/PaysdelaLoire/Nantes

EPI_ISL_415651_2020/03/05_Europe/France/Bourgogne-France-Comt/Montreux-Chateau

EPI_ISL_416439_2020/03/10_NorthAmerica/USA/Washington

MT126808_2020/02/28_Brazil

EPI_ISL_416506_2020/03/03_Europe/France/Bretagne/Rennes

EPI_ISL_415598_2020/03/1

0_NorthAmerica/USA/Washi

ngton

EPI_IS

L_4138

58_202

0/01/3

0_Asia

/China

/Guang

dong

EPI_ISL_416440_2020/03/10_NorthAmerica/USA/Washington

aib

mul

oC

hsitirB/

ad

an

aC/

acir

em

Ahtr

oN

_1

0/3

0/0

20

2_

18

55

14

_L

SI_I

PE

EPI_ISL_416512_2020/03/07_Europe/France/Bretagne/Rennes

EPI_ISL_416046_2020/01/24_Asia/China/Hangzhou

EPI_ISL_414545_2020/03/03_Europe/Netherlands/NoordBrabant

CNA0007332_2019/12/26_China/Hubei/Wuhan

EPI_ISL_416411_2020/01/25_Oceania/Australia/Victoria/Melbourne

EPI_ISL_415607_2020/03/09_NorthAmerica/USA/Washington

EPI_ISL_41

4012_2020/

02/27_Euro

pe/UnitedK

ingdom/Eng

land

EPI_ISL_415711_2020/01/22_Asia/China/Hangzhou

EPI_ISL_41

4617_2020/

03/08_Nort

hAmerica/U

SA

EPI_ISL_411220_2020/01/28_Europe/France/Ile-de-France/Paris

EPI_ISL_411218_2020/02/02_Europe/France/Ile-de-France/Paris

EPI_ISL_414527_2020/02/09_Asia/HongKong

EPI_ISL_413857_2020/01/31_Asia/China/Guangdong

EPI_ISL_414616_2020/03/08_NorthAmerica/USA/Washington/Kirkland

NMDC60013002-10_2019/12/30_China/Hubei/Wuhan

EPI_IS

L_4140

45_202

0/03/0

4_Sout

hAmeri

ca/Bra

zil/Ri

odeJan

eiro/R

iodeJa

neiro

EPI_ISL_415151_2020/03/04_NorthAmerica/USA/NewYork

EPI_ISL_408480_2020/01/17_Asia/China/Yu

nnan/Kunming

MT093571_2020/02/07_Sweden

EPI_ISL_416338_2020/02/01_Asia/China/Shanghai

EPI_ISL_413018_2020/02/06_Asia/SouthKorea

EPI_ISL_406535_2020/01/22_Asia/China/Guangdong/Foshan

EPI_ISL_403932_2020/01/14_Asia/China/Guandong/Shenzhen

EPI_ISL_416409_2020/02/02_Asia/China/Shanghai

LC521925_2020/01/25_Japan/Aichi

EPI_ISL_412026_2020/02/23_Asia/China/Anhui/Hefei

EPI_ISL_415643_2020/03/10_Asia/Georgia/Tbilisi

EPI_ISL_414636_2020/03/04_Europe/France/HautsdeFrance/Compigne

EPI_ISL_406538_2020/01/23_Asia/China/Guangdong

EPI_ISL_415492_2020/03/10_Europe/Netherlands

MT159715_2020/02/24_UnitedStates

EPI_ISL_416429_2020/02/11_Asia/Vietnam/Vinhphuc

EPI_ISL_414592_2

020/03/06_NorthA

merica/USA/Washi

ngton/Tacoma

EPI_ISL_410719_2020/02/02_Asia/Singapore

EPI_ISL_414523_2020/02/27_Europe/UnitedKingdom/England

EPI_ISL_415702_2020/03/02_Europe/Switzerland

ie

pia

T/n

awi

aT/

aisA

_8

2/1

0/0

20

2_

72

911

4_

LSI

_IP

E

EPI_ISL_416497_2020/03/10_Europe/France/HautsdeFrance/Compigne

EPI_ISL_416317_2020/01/25_Asia/China/Shanghai

EPI_ISL_416363_2020/02/08_Asia/China/Shanghai

EPI_ISL_415478_2020/03/08_Europe/Netherlands

EPI_ISL_416460_2020/02/29_NorthAmerica/USA/Washington/KingCounty

EPI_ISL_414618_2020/03/08_NorthAmerica/USA

EPI_ISL_416324_2020/01/29_Asia/China/Shanghai

EPI_ISL_413589_2020/03/01_Europe/Netherlands/Utrecht

EPI_ISL_415613_2020/03/09_NorthAmerica

/USA/Washington

EPI_ISL_413604_2020/03/03_Europe/Finland/Helsinki

EPI_ISL_415539_2020/03/13_NorthAmerica/USA/Utah

EPI_ISL_416496_2020/03/10_Europe/France/HautsdeFrance/Compigne

EPI_ISL_416398_2020/02/02_Asia/China/Shanghai

EPI_ISL_408486_2020/01/11_Asia/China/Jiangxi/Pingxiang

EPI_ISL_413999_2020/02/27_Europe/Switzerland/Argovie

MN985325_2

020/01/19_

UnitedStat

es/Washing

ton/Snohom

ishCounty

LC522973_2020/01/29_Japan/Tokyo

EPI_ISL_413603_2020/03/03_Europe/Finland/Helsinki

na

uyo

aT/

na

wia

T/ai

sA

_6

2/2

0/0

20

2_

14

75

14

_L

SI_I

PE

EPI_ISL_41

6430_2020/

03/06_Asia

/Vietnam/H

anoi

EPI_ISL_

416042_2

020/01/2

6_Asia/C

hina/Han

gzhou

EPI_ISL_413650_2020/03/05_NorthAmerica/USA/Washington

EPI_ISL_413488_2020/02/28_Europe/Germany/NorthRhineWestphalia/HeinsbergDistrict

EPI_ISL_415705_2020/03/06_Europe/Switzerland

MT027062_2020/01/29_UnitedStates/California

EPI_ISL_416441_2020/03/10_NorthAmerica/USA/Washington

MT159712_2020/02/25_UnitedStates

EPI_IS

L_4163

35_202

0/02/0

2_Asia

/China

/Shang

hai

EPI_ISL_413558_2020/02/27_NorthAmerica/USA/California/SolanoCounty

NMDC60013002-08_2019/12/30_China/Hubei/Wuhan

MT123293_2020/01/29_China/Guangdong/Guangzhou

EPI_ISL_415467_2020/03/10_Europe/Netherlands

EPI_ISL_

414578_2

020/03/0

4_SouthA

merica/C

hile/Tal

ca

MT163720_2020/03/01_UnitedStates/Washington

LC522972_2020/01/29_Japan/Kyoto

EPI_IS

L_4161

41_202

0/03/0

3_Euro

pe/Den

mark/C

openha

gen

MT159705_2020/02/17_UnitedStates

EPI_ISL_413485_2020/01/24_Asia/China/Anhui/Suzhou

ye

ndy

S/W

SN/

ailarts

uA/

ain

aec

O_

30/

30/

02

02

_0

06

31

4_

LSI

_IP

E

EPI_ISL_415486_2020/03/13_Europe/Netherlands

EPI_ISL_

415155_2

020/03/0

1_Europe

/Belgium

/Huldenb

erg

EPI_ISL_416406_2020/02/15_Asia/China/Shanghai

EPI_IS

L_4145

86_202

0/03/0

3_Euro

pe/Ire

land/L

imeric

k

EPI_ISL_413560

_2020/02/28_No

rthAmerica/USA

/Washington

EPI_ISL_413563_2020/03/03_NorthAmerica/USA/Washington

EPI_ISL_416481_2020/03/16_Asia/Georgia/Tbilisi

EPI_ISL_410984_2020/01/29_Europe/France/Ile-de-France/Paris

MN996529_2019/12/30_China/Hubei/Wuhan

EPI_ISL_415129_2020/02/29_Europe/UnitedKingdom/England

na

hu

W/ie

bu

H/a

nih

C_

10/

10/

02

02

_9

0-2

00

31

00

6C

DM

N

EPI_ISL_415525_2020/03/12_Europe/Netherlands/NoordHolland

EPI_ISL_413925_2020/03/05_NorthAmerica/USA/California/SanFrancisco

EPI_ISL_413648_2020/03/01_Europe/Portugal

EPI_ISL_416353_2020/02/04_Asia/China/Shanghai

EPI_ISL_408515_2020/01/01_Asia/China/Hubei/Wuhan

EPI_ISL_415600_2020/03/09_NorthAmerica/USA

EPI_ISL_416447_2020/03/10_NorthAmerica/USA/Washington

EPI_ISL_414536_2020/03/08_Europe/Netherlands/NoordBrabant

EPI_ISL_415512_2020/03/09_Europe/Netherlands/NoordBrabant

MT184913_2020/02/24_UnitedStates

EPI_ISL_412974_2020/01/29_Europe/Italy/Rome

EPI_ISL_415457

_2020/02/29_Eu

rope/Switzerla

nd

EPI_ISL_415617_2020/03/09_NorthAmerica/USA/Washington

EPI_ISL_

413020_2

020/02/2

7_Europe

/Switzer

land/Zur

ich

MT159709_2020/02/20_UnitedStates

Tree scale: 0.0001

Inner Color: Continents

Asia

Europe

NorthAmerica

Oceania

SouthAmerica

Outer Clolors: Countries

Australia

Belgium

Brazil

Cambodia

Canada

Chile

China

Denmark

Finland

France

Georgia

Germany

HongKong_China

Hungary

India

Ireland

Italy

Japan

Kuwait

Luxembourg

Mexico

Nepal

Netherlands

NewZealand

Poland

Portugal

SaudiArabia

Singapore

SouthKorea

Sweden

Switzerland

Taiwan_China

Thailand

UnitedKingdom

UnitedStates

Vietnam

Shape Plot: Haplotype

H1

H2

H3

H4

H5

H6

Other

Cluster 1

Cluster 2

Cluster 2

Cluster 3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 17: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

1 2 3 4 5 6 7 8 9

9999

9898

99

9898

Block 1 (27 kb)1 2 3 4 5 6 7 8 9

9799

9799

9999

9999

9998

9999

9997

9797

9898

9999

9898

98

98

98

9998

99

Block 1 (27 kb)

.423

.288

.148

.122

.423

.288

.148

.122

C C C C C A C A T

T T C T C A C G T

C C T C C A C A C

C C T C T G T A C

.454

.324

.123

.063

.454

.324

.123

.063

a bC

241T

C30

37T

C87

82T

C14

408T

C17

747T

A178

58G

C18

060T

A234

03G

T281

44C

C24

1T

C30

37T

C87

82T

C14

408T

C17

747T

A178

58G

C18

060T

A234

03G

T281

44C

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

T T C T C A C G T

C C C C C A C A T

C C T C T G T A C

C C T C C A C A C

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 18: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

18060T 23403G 28144C

14408T 17747T 17858G

241T 3037T 8782T

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Freq

uenc

y of

eac

h sp

ecifi

c si

te

TTCTCACGT(H1) CCCCCACAT(H2) CCTCTGTAC(H3) CCTCCACAC(H4)

CCCA TTTG CAC TGT

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Freq

uenc

y of

mai

n ha

plot

ypes

of t

he 4

,3 a

nd 9

spe

cific

site

s

countrySouthKoreaChinaJapanUSACanadaAustraliaSpainUKGermanyNetherlandAustriaPortugalBelgiumItalyFranceSwitzerlandBrazil

Asia

NorthAmerica Ocieania

Europe

SouthAmerica

a

b

countrySouthKoreaChinaJapanUSACanadaAustraliaSpainUKGermanyNetherlandAustriaPortugalBelgiumItalyFranceSwitzerlandBrazil

Asia

NorthAmerica Ocieania

Europe

SouthAmerica

Sout

hKor

eaC

hina

Japa

nU

SAC

anad

aAu

stra

liaSp

ain

UK

Ger

man

yN

ethe

rland

Aust

riaPo

rtuga

lBe

lgiu

mIta

lyFr

ance

Switz

erla

ndBr

azil

Sout

hKor

eaC

hina

Japa

nU

SAC

anad

aAu

stra

liaSp

ain

UK

Ger

man

yN

ethe

rland

Aust

riaPo

rtuga

lBe

lgiu

mIta

lyFr

ance

Switz

erla

ndBr

azil

Sout

hKor

eaC

hina

Japa

nU

SAC

anad

aAu

stra

liaSp

ain

UK

Ger

man

yN

ethe

rland

Aust

riaPo

rtuga

lBe

lgiu

mIta

lyFr

ance

Switz

erla

ndBr

azil

Sout

hKor

eaC

hina

Japa

nU

SAC

anad

aAu

stra

liaSp

ain

UK

Ger

man

yN

ethe

rland

Aust

riaPo

rtuga

lBe

lgiu

mIta

lyFr

ance

Switz

erla

ndBr

azil

Sout

hKor

eaC

hina

Japa

nU

SAC

anad

aAu

stra

liaSp

ain

UK

Ger

man

yN

ethe

rland

Aust

riaPo

rtuga

lBe

lgiu

mIta

lyFr

ance

Switz

erla

ndBr

azil

Sout

hKor

eaC

hina

Japa

nU

SAC

anad

aAu

stra

liaSp

ain

UK

Ger

man

yN

ethe

rland

Aust

riaPo

rtuga

lBe

lgiu

mIta

lyFr

ance

Switz

erla

ndBr

azil

Sout

hKor

eaC

hina

Japa

nU

SAC

anad

aAu

stra

liaSp

ain

UK

Ger

man

yN

ethe

rland

Aust

riaPo

rtuga

lBe

lgiu

mIta

lyFr

ance

Switz

erla

ndBr

azil

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 19: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

0.0

0.1

0.2

0.3

0.4

0.5

0 10000 20000 30000

H1

0.0

0.1

0.2

0.3

0.4

0.5

0 10000 20000 30000

H2

0.0

0.1

0.2

0.3

0.4

0.5

0 10000 20000 30000

H3

0.0

0.1

0.2

0.3

0.4

0.5

0 10000 20000 30000Pos

H4

COL other mutation sitesthe 9 specific sitesa b

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 20: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

● ●

●R = 0.44 , p = 0.07904

●●

●R = 0.19 , p = 0.4561

● ●

●R = 0.28 , p = 0.2738

● ●

●R = 0.45 , p = 0.06932

●●

●R = 0.2 , p = 0.4333

● ●

●R = 0.43 , p = 0.08647

● ●

●R = 0.27 , p = 0.3018

●●

●R = 0.21 , p = 0.423

●●

●R = 0.21 , p = 0.4241

● ●

●R = 0.42 , p = 0.09602

● ●

●R = 0.44 , p = 0.07926

● ●

●R = 0.42 , p = 0.09164

28144T TTTG CAC TTCTCACGT(H1)

17747C 17858A 18060C 23403G

241T 3037T 8782C 14408T

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0.04

0.08

0.12

0.04

0.08

0.12

0.04

0.08

0.12

Frequency of 9 specific sites and haplotypes

Est

imat

ed d

eath

rat

e

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 21: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

Ka (mean) 10-3 s.e. (Ka)10-3 Ks (mean) 10-3 s.e. (Ks)10-3 Ka/Ks (mean) s.e. (Ka/Ks) Hypothesis P-value*

SARS-CoV 0.985 0.018 1.310 0.049 0.760 0.038 Ka/Ks ( SARS-CoV < SARS-CoV-2) 0.007

MERS-CoV 1.319 0.040 4.887 0.096 0.260 0.003 Ka/Ks ( MERS-CoV < SARS-CoV-2) 0.000

SARS-CoV-2 0.231 0.004 0.265 0.005 1.008 0.020

*One-sided T-test for the means of two independent samples.

Table 1. Statistics of Ka, Ks and Ka/Ks ratios for all coding regions of the SARS-CoV, MERS-CoV and SARS-CoV-2 genome sequences

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 22: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

substitution rate (10-3) 95% CI (10-3) tMRCA 95% CI references

SARS-CoV1.05 0.49, 1.65 2002-6-28 2002/1/19, 2002/11/3 this study

- 0.80, 2.38 spring of 2002 - 26

MERS-CoV1.52 1.39, 1.63 2012-6-7 2012/6/4, 2012/6/9 this study

1.12 0.88; 1.37 2012-3 2011/12, 2012/6 27

SARS-CoV-2 1.6 1.42, 1.80 2019-9-27 2019/8/28, 2019/10/26 this study

26 Zhao, Z. et al. Moderate mutation rate in the SARS coronavirus genome and its implications. BMC Evol Biol 4, 21, doi:10.1186/1471-2148-4-21 (2004).

27 Cotten, M. et al. Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus. mBio 5, doi:10.1128/mBio.01062-13 (2014).

Table 2. Substitution rate and tMRCA estimated by BEAST v2.6.2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 23: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

Pos Ref AltCluster 1 Cluster 2 Cluster 3

Fst Gene region

Mutation type

Protein changed

codon changed Impact

pi Major allelefrequency pi Major allelefrequency pi Major allelefrequency

241 C T 0.0000 C 1.0000 0.0109 C 0.9945 0.0000 T 1.0000 0.991240 5'UTR upstream NA NA MODIFIER

3037 C T 0.0000 C 1.0000 0.0109 C 0.9945 0.0000 T 1.0000 0.991240 gene-orf1ab synonymous 924F 2772ttC>ttT LOW

8782 C T 0.0000 T 1.0000 0.3863 C 0.7390 0.0000 C 1.0000 0.582113 gene-orf1ab synonymous 2839S 8517agC>agT LOW

14408 C T 0.0000 C 1.0000 0.0055 C 0.9973 0.0000 T 1.0000 0.995609 gene-orf1ab missense 4715P>L 14144cCt>cTt MODERATE

17747 C T 0.0735 T 0.9620 0.0000 C 1.0000 0.0000 C 1.0000 0.975245 gene-orf1ab missense 5828P>L 17483cCt>cTt MODERATE

17858 A G 0.0497 G 0.9747 0.0000 A 1.0000 0.0000 A 1.0000 0.983573 gene-orf1ab missense 5865Y>C 17594tAt>tGt MODERATE

18060 C T 0.0000 T 1.0000 0.0164 C 0.9918 0.0000 C 1.0000 0.976100 gene-orf1ab synonymous 5932L 17796ctC>ctT LOW

23403 A G 0.0000 A 1.0000 0.0164 A 0.9918 0.0000 G 1.0000 0.986895 gene-S missense 614D>G 1841gAt>gGt MODERATE

28144 T C 0.0000 C 1.0000 0.3915 T 0.7335 0.0000 T 1.0000 0.578530 gene-ORF8 missense 84L>S 251tTa>tCa MODERATE

Table 3. The information of the 9 specific sites in each Cluster.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint

Page 24: Evolution and molecular characteristics of SARS-CoV-2 genome · genome of SARSCoV-2 - in order to develop a comprehensive understanding of the virus and provide a basis for designing

Ka (mean) 10-3 s.e. (Ka)10-3 Ks (mean) 10-3 s.e. (Ks)10-3 Ka/Ks (mean) s.e. (Ka/Ks) Hypothesis P-value*(Ka/Ks)

H1 0.510 0.057 0.498 0.056 1.099 0.010 Ka/Ks ( H3 < H1) 0.000

H2 0.347 0.042 0.334 0.044 1.268 0.023 Ka/Ks ( H3 < H2) 0.000

H3 0.298 0.007 0.397 0.009 0.795 0.010 - -

H4 0.334 0.023 0.414 0.019 0.796 0.019 - -

*One-sided T-test for the means of two independent samples.

Table 4. Statistics of Ka, Ks and Ka/Ks ratios for all coding regions of each 4 main haplotype genomes

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.24.058933doi: bioRxiv preprint