23
02.15 207481 Rev.100 EWXA EWXBA Models 801.2 | 1001.1 | 1201.1 | 1501.1 Cooling capacities from 25kW to 29kW Heating capacities from 24kW to 40kW CATALOGUE TECHNIQUE WATER CHILLER UNITS_ AXIAL FANS Heat pump Cooling only

EWXA-EWXBA MINIKRONO2 207481 Rev100 eng...3 02.15 207481 Rev.100 INDEX GENERAL SPECIFICATIONS.....4 AVAILABLE OPTIONALS.....6 4 WATER CHILLER UNITS – AXIAL FANS EWXA/EWXBA 02.15

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • 02.15 207481 Rev.100

    EWXA EWXBA

    Models 801.2 | 1001.1 | 1201.1 | 1501.1Cooling capacities from 25kW to 29kWHeating capacities from 24kW to 40kW

    CAT

    ALO

    GU

    E TE

    CH

    NIQ

    UE

    WATER CHILLER UNITS_ AXIAL FANS

    Heat pumpCooling only

  • 3

    02.15 207481 Rev.100

    INDEX

    GENERAL SPECIFICATIONS......................................................................................... 4

    AVAILABLE OPTIONALS................................................................................................ 6

    REFRIGERANT FLOW DIAGRAM .................................................................................. 8

    OPERATION LIMITS....................................................................................................... 9

    TECHNICAL SPECIFICATIONS...................................................................................... 12

    SOUND LEVELS............................................................................................................. 13

    COOLING CAPACITIES.................................................................................................. 14

    POTENCIAS CALORÍFICAS ........................................................................................... 16

    WATER EVAPORATOR PRESSURE DROP .................................................................. 18

    DIMENSIONS.................................................................................................................. 19

    MINIKRONO 2

  • 4

    WATER CHILLER UNITS – AXIAL FANS EWXA/EWXBA

    02.15 207481 Rev.100

    GENERAL SPECIFICATIONS

    NOMENCLATURE

    DESCRIPTION Water Chillers EWXA-EWXBA MINIKRONO 2 are compact units designed for its installation in the open air, on the ground or flat roof. MINIKRONO’s 2 are available in cooling only and heat pump version. These units offer great installation and operation versatility due the multiple acustic configurations along the possibility to add and hydronic kit, fitting all projects. The Water Chillers EWXA-EWXBA MINIKRONO 2 units are delivered fully finished after having been verified, and with the operative charge of R410A refrigerant.

    COMPRESSOR EWXA-EWXBA MINIKRONO 2 range incorporates 1 compressor Scroll R410A designed for its use in heat pump mode, offering a wide operation limits range. The compressor equips an internal damping system and is assembled on the chassis through dampers supports offering vibration-free operation. It is lubricated with high quality oil, resistant to high temperature and low foaming formation.

  • 5

    02.15 207481 Rev.100

    CABINET

    • Made of high quality galvanized steel plate, finished with oven polymerized polyester resins, with optimal corrosion resistance and weathering. The color of finish set is RAL 1013.

    • The assembly is internally thermo-acoustically insulated. Finished with aluminized polyester, M1 fire resistance and thickness of 5mm.

    • Freestanding base is built with profiles extremely rigid steel, compressor acces panels, electrical panelboard, fans, etc.

    OUTDOOR CIRCUIT

    • Outdoor coils built with copper tubing and aluminum fins.

    • Restrictor expansion system incorporated.

    • Axial fans prepared for open air operation, totally enclosed with permanent lubrication. They consist in aluminum blades designed to produce a low sound level, inserted into the outer rotor of a high-efficiency motor with IP54 protection Class F insulation. These fans have an internal temperature sensors for protection and an outer grill for safety.

    INDOOR CIRCUIT

    • Cooling exchanger is welded plates of stainless steel type. It is perfectly insulated and has an electrical heater to prevent the freezing of the water present in the exchanger, when the machine is stopped.

    • Thermostatic expansion valves incorporated.

    REFRIGERANT CIRCUIT It includes:

    • 1 R410A refrigerant circuit.

    • Drier filter in liquid lines.

    • Outdoor coils with dehydrated copper tubes, aluminum fins.

    • Schroder Valves , for easy verification and charge acces.

    • Expansion thermostatic system both cooling and heating.

    • Suction acumulator in compressor line for liquid return protection.

    • Liquid vessel, retention valve, 4-way reversible valve (only heat pump models).

    PROTECTIONS

    • High pressure pressostat (cut-off to 42bar), manual reset.

    • Compressor crankcase heater

    • Antifreeze protection for water

    • Compressors control sequence.

    ELECTRICAL PANELBOARD

    • Complet electrical panelboard, fully wired.

    • Isolated panelboard door to avoid condensation.

    • General ground wire.

    • Compressor contactor.s

    • Motorfans contactors.

    Electronic regulation: Control panel:

    • Maniobra de desescarche mediante transductores de presión.

    LCX thermostat:

    • The thermostat works as user interface and electronic board.

    • 20/30 Vdc – 24 Vac supply.

    • Wall incorporated

    • 3 ½ digits LED display. 8 icons to show all the information simultaneouly in the screen.

    • Operation mode: 1 compressor, cooling only, heat pump.

    • Recirculation pump and inertia module management.

    • Timer programmer

    • Parameterized thermostat, with 3 access level: User, Maintenance and Manufacturer.

  • 6

    WATER CHILLER UNITS – AXIAL FANS EWXA/EWXBA

    02.15 207481 Rev.100

    AVAILABLE OPTIONALS

    FOR WATER CIRCUIT SAFETY DIFERENTIAL PRESSURE CONTROL

    Redundant safety element to protect the unit against water flow scarcity problems. This diferential pressure control is an optional for chiller swith hydronic kit. It would be installed in the plate exchanger terminals. The intake and outlet water temperature sensors should be placed in the unit water entrance and water output. This element is complementary to unit safety, as the installation must have a flow switch.

    FLOW SWITCH

    Safety element to protect the unit against water flow scarcity problems. This flow switch is an optional for chillers with hydronic kit installed. Recall again that all chiller must be protected by a flow switch.

    FOR ENERGY EFFICIENCY COMPRESSOR SOFT START

    This electronic device reduces the high intensity at the start of the compressors to protect them. CONDENSATION CONTROL BY TENSION DRIVE

    For units working in cooling mode with outdoor temperatures below 10ºC it’s required a condensation control. (See Operation limits section for cooling mode). In cooling mode, fan speed is regulated in function of the refrigerant own pressure, thanks to Condensation control. This increases unit efficiency and performance. EC FAN

    The use of EC axial fans is a way to increases the chiller efficiency, as well as an improvement of sound levels. An EC fan is an electronically commutated DC motor. These fans reopresents a significant saving in power consumption, which results in increased efficiency of the unit, both in cooling and heating mode. Due to the shape of the blades, for the same air flow performance, the sound power level produced is much lower .

    FOR SOUND LEVEL COMPRESSOR SOUND-PROOFING

    Acoustic insulation consists in a compressor cover or Jacket: a special cover with reduction in sound power of compressor.

    FOR UNITS INSTALLATION ELECTRICAL PANELBOARD MAGNETOTHEMIC Circuit breaker incorporated to the compressor, fan and water pump (in case that the optional is used). SEPARATE ELECTRICAL PANELBOARD

    A separate electrical panelboard would be provided with the whole control necessary for the chiller management. CONTROL WITHOUT NEUTRAL

    These chiller units need 230V. In the facilities without NEUTRAL terminal it will be additional electrical transformer. The maneuver or control of these units requires a voltage of 230V. To do this in the facilities where there is no NEUTRAL terminal supply, an additional electrical transformer is incorporated in order to generate a monophase supply necessary for the units control. 60HZ AND 230V or 208V SUPPLY

    In the case of existence of different voltages to 400V, 50Hz supply in the facilities where the units are installed. ALUZINC COIL

    Additional protection against corrosion of the coils or the outdoor exchanger. OUTDOOR EXCHANGER PROTECTION GRILLE

    Coil fins protection grille could be installed in the outdoor exchanger to avoid bumps and abrasion. MODBUS CONNECTION

    Serial type communication protocol in case that remotely control or monitor is required to supervise the performance parameters of the chiller units. REMOTE CONTROL

    The unit control could be realized by a physically separate remote control. This option is possilbe only when the unit is previously adapted for MODBUS connection. NETWORKED UNITS

    Possibility of interconnection of networked units in master/slave configuration. One unit is defined as master and the others (up to 3) as slave units.

  • 7

    02.15 207481 Rev.100

    HYDRONIC KIT The hydronic kit is formed by the water drive pump and the expansion tank. It regulates the volume changes of the hydraulic circuit caused by the change of the water density in relation to the temperature. In addition it could be provided with a buffer tank. In this case the unit includes: - Pressure gauge; - Safety valve calibrated to 3 bars; - Connections for filling and emptying the water circuit; -

    HYDRONIC KIT 801.1 1001.1 1201.1 1501.1

    GENERAL SPECIFICATIONS

    Buffer tank volume l 100

    Expansion tank volume l 12

    Water pump supply V 50Hz~ / 400.III

    Water flow m3/h 4.3 5.1 5.7 6.7

    ELECTRICAL RESISTANCE FOR SUPPERT (OPTIONAL)

    Power kW 8

    Supply voltage V 400

    WATER PUMP SPECIFICATIONS

    Available static pressure kPa 235 211 209 178

    Nominal power kW 0.9 0.9 0.9 0.9

    Pump reference CEA 120/5

    Maximum absorbed current A 2.4 2.4 2.4 2.4

    SUPPLY PRESSURE WITH WATER PUMP

    Availaple pressure water pump (kPa)

    Waterflow /m3/h)

  • 8

    WATER CHILLER UNITS – AXIAL FANS EWXA/EWXBA

    02.15 207481 Rev.100

    REFRIGERANT FLOW DIAGRAM

    COOLING REFRIGERANT FLOW DIAGRAM

    1 Compressor 2 Fan

    3 Condenser coil 4 Expansión system

    5 Suction acumulator 6 Plate heat exchanger

    TC Condensing pressure transducer TE Evaporatin pressure transducer PA High pressure diferential pressure control

    HEATING REFRIGERANT FLOW DIAGRAM

    1 Compressor 2 4-way valve 3 Condenser coil

    4 Fan 5 Expansion system 6 Check valve

    7 Filter dryer 8 Liquid reservoir 9 Suction acumulator 10 Plate heat exchanger

    TC Condensing pressure transducer TE Evaporatin pressure transducer PA High pressure diferential pressure control

  • 9

    02.15 207481 Rev.100

    OPERATION LIMITS

    COOLING ONLY

    HEAT PUMP

  • 10

    WATER CHILLER UNITS – AXIAL FANS EWXA/EWXBA

    02.15 207481 Rev.100

    CORRECTION FACTORS The actual power delivered by the unit in working conditions is calculated according to the operation mode using the following equations:

    Cooling mode PF = PN x FCPF x FCH x FDT

    Heating mode PC = PN x FCPC x FCH x FHR

    PF Real Cooling capacity in working conditions (kW)

    PN Cooling/Heating capacities in nominal conditions (kW)

    FCPF Correction factor for clogging (Only in cooling mode)

    FCH Slope correction factor for heicht above sea level

    FDT .Correction factor for thermal rise (Only in cooling mode)

    PC Real Heating capacity in working conditions(kW)

    PN Cooling/Heating capacities in nominal conditions (kW)

    FCPC Correction factor for clogging (Only in heating mode)

    FCH Slope correction factor for heicht above sea level

    FHR Humidity correction factor for air (Only in heating mode)

    Correction factor heat exchanger clogging

    FCPF FCPC

    m2ºC / kW Cooling capacity Power input m2ºC / kW Heating capacity Power input

    0,044 1,000 1,000 0,044 1,000 1,000

    0,088 0,988 0,995 0,088 0,985 1,024

    0,176 0,964 0,985 0,176 0,956 1,068

    0,264 0,939 0,974

    0,264 0,931 1,105

    Slope correction factorfor height above sea level FCH

    Heigh (m) Cooling capacity Power input

    0 1,000 1,000

    500 0,989 1,008

    1000 0,978 1,017

    1500 0,966 1,025

    2000 0,953 1,032

    2500 0,94 1,039 Correction factor for thermal rise FDT

    Thermal rise (k) Cooling capacity Power input

    3 (10/7) 0,950 0,980

    4 (11/7) 0,970 0,990

    5 (12/7) 1,000 1,000

    6 (13/7) 1,030 1,012

    7 (14/7) 1,050 1,027

    Correction factor for heating capacity FHR

    Relative humidity

    Outdoor air 50% 87% 100%

    -5ºC 0,900 1,000 1,020

    0ºC 0,940 1,000 1,020

    7ºC 0,960 1,000 1,020

    10ªC 0,940 1,000 1,020

  • 11

    02.15 207481 Rev.100

    Correction factors for the use of antifreeze

    The incorporation of ethylene-glycol in the water circuit solves the problem of ice formation in the water circuit; thus the units wide their range of outlet temperatures of said fluid. However using this antifreeze reduces the operational performance of the unit. To get the actual values it is necessary to multiply the standard values by the following factors depending on the amount of antifreeze used. CPF Cooling capacity correction factor CQA Water flow correction factor CDQ Pressure drop correction factor

    Percentage of ethylene by weight (%)

    0 5 10 15 20 25 30 35 40

    Freezing temp (ºC) 0,0 -1,5 -3,5 -5,5 -8,0 -11,0 -14,5 -18,5 -23,5

    CPF 1,000 0,933 0,987 0,980 0,973 0,967 0,960 0,952 0,944

    CQA 1,000 1,005 1,014 1,025 1,039 1,056 1,076 1,098 1,125

    CDQ 1,000 1,031 1,063 1,094 1,125 1,157 1,118 1,220 1,251

  • 12

    WATER CHILLER UNITS – AXIAL FANS EWXA/EWXBA

    02.15 207481 Rev.100

    TECHNICAL SPECIFICATIONS

    MINIKRONO 2 serie 801.1 1001.1 1201.1 1501.1

    CAPACITIES

    kW 22,4 26,3 30,4 38,7 Cooling capacity (1)

    TR 6,4 7,5 8,6 11,0

    EER kW / kW 3,10 2,92 3,10 2,90

    ESSEER kW / kW

    kW 25,2 29,3 33,7 40,3 Heating capacity (2)

    TR 7,2 8,3 9,6 11,5

    COP kW / kW 3,21 3,20 3,21 3,00

    REFRIGERANT

    Quantity 1

    Type R410A

    PCA (3)

    Load Kg 8,2 8,4 9,0 9,2

    COMPRESSOR

    Type Scroll Quantity 1 Oil POE

    Oil volume L 3,3 3,3 3,3 3,6 Oil reference 160SZ

    Cranccase heater W 65

    FAN

    Type Axial

    Quantity 1

    Nominal air flow m3/h 16.700 16.700 19.500 19.500

    Diameter mm 800 800 800 800

    Power kW 1.2 1.2 1.9 1.9

    EXCHANGER

    Type Plates

    Quantity 1

    Water flow m3/h 3,9 4,5 5,2 6,7

    Pressure drop KPa 30 42 35 45

    Antifreeze Heat resistance W 50

    CARACTERÍSTICAS ELÉCTRICAS

    Voltage supply V – Hz 400 / 3 / 50 +N

    Max. power input kW 11,8 13,1 14,9 18,6 Max.current A 20,8 22,3 25,3 31,5

    Current A 144 144 149 200

    COOLING

    Power absorbed (4) kW 7,22 9,00 9,80 13,35

    Current absorbed A 14,5 18,1 19,4 26,4

    HEATING

    Power absorbed (4) kW 7,85 9,15 10,50 13,45

    Current absorbed A 14,8 17,0 19,2 24,6

    SOUND LEVEL

    Sound power level dB(A) 74 74 77 78 Sound pressure level (5m) dB(A) 52 52 56 57

    WATER CONNECTIONS

    Type Rp 1 1/2"

    External diameter (‘’) 1 1/2

    DIMENSIONS

    Lenght mm 1.200 1.200 1.200 1.200 Width mm 1.050 1.050 1.050 1.050

    Height mm 1.470 1.470 1.470 1.470 Weight Kg 312 340 348 354

    (1) Calculated according to the UNE-EN-14511, for 12ºC returning water temperature conditions and 35ºC outdoor temperature. (2) Calculated according to the UNE-EN-14511, for 40ºC returning water temperature conditions and 7ºC outdoor temperature. (3) Global warming potential of a kg of fluorinated greenhouse gas in comparison with one kilogram of carbon dioxide over a period of 100 years. (4) Total power absorbed by the compressor and motorfans in the nominal conditions , calculated according to the UNE-EN-14511.

  • 13

    02.15 207481 Rev.100

    SOUND LEVELS SOUND POWER LEVELS dB(A)

    MINIKRONO 2 serie 801.1 1001.1 1201.1 1501.1

    63 Hz 49.3 49.1 45.5 46.5

    125 Hz 55.0 55.0 57.0 57.0

    250 Hz 57.1 57.4 64.1 64.1

    500 Hz 63.3 63.1 67.1 66.7

    1000 Hz 70.4 69.7 73.8 74.7

    2000 Hz 68.1 68.9 71.6 73.7

    4000 Hz 63.1 63.4 66.5 68.2

    8000 Hz 56.0 55.9 61.4 62.4

    Total dB(A) 74 74 77 78

    SOUND PRESSURE LEVELS dB(A) Conditions measured in open land , directivity 2 and 1.5 meters above the ground.

    MINIKRONO 2 serie 801.1 1001.1 1201.1 1501.1

    1 m 66.0 66.1 69.7 70.9

    2 m 60.0 60.1 63.7 64.9

    5 m 52.0 52.1 55.7 56.9

    10 m 46.0 46.1 49.7 50.9

    Note: The sound pressure level depends on the installation conditions and therefore the values are given as a guidance. Values obtained according to ISO 3744.

  • 14

    WATER CHILLER UNITS – AXIAL FANS EWXA/EWXBA

    02.15 207481 Rev.100

    COOLING CAPACITIES

    801.1

    Ta ºC 25 30 32 35 40 42 44 45 25 30 32 35 40 42 44 45

    Te ºC 10 11

    Ts ºC 5 6

    Pf kW 23,3 22,3 21,8 21,2 19,9 19,3 18,7 18,4 23,8 22,8 22,4 21,8 20,4 19,8 19,2 18,9

    PAc kW 4,8 5,5 5,7 5,9 6,6 6,9 7,1 7,3 4,8 5,5 5,7 6,0 6,6 6,9 7,2 7,4

    Pat kW 6,0 6,7 6,9 7,1 7,8 8,1 8,3 8,5 6,0 6,7 6,9 7,2 7,8 8,1 8,4 8,6

    Qa m3/h 4,0 3,8 3,7 3,6 3,4 3,3 3,2 3,2 4,1 3,9 3,9 3,8 3,5 3,4 3,3 3,3

    Te ºC 12 13

    Ts ºC 7 8

    Pf kW 24,6 23,5 23,0 22,4 21,0 20,4 19,7 19,4 25,1 24,1 23,6 23,0 21,6 20,9 20,3 19,9

    PAc kW 4,9 5,6 5,8 6,1 6,7 7,0 7,3 7,4 4,9 5,6 5,8 6,1 6,7 7,0 7,3 7,5

    Pat kW 6,1 6,8 7,0 7,2 7,9 8,2 8,5 8,6 6,1 6,8 7,0 7,3 7,9 8,2 8,5 8,7

    Qa m3/h 4,2 4,0 4,0 3,9 3,6 3,5 3,4 3,3 4,3 4,2 4,1 4,0 3,7 3,6 3,5 3,4

    Te ºC 14 15

    Ts ºC 9 10

    Pf kW 25,8 24,8 24,2 23,6 22,2 21,5 20,8 20,5 26,4 25,4 24,8 24,3 22,7 22,1 21,4 21,1

    PAc kW 5,0 5,7 5,9 6,2 6,8 7,1 7,4 7,5 5,0 5,7 6,0 6,2 6,8 7,1 7,4 7,6

    Pat kW 6,2 6,9 7,1 7,4 8,0 8,3 8,6 8,7 6,2 6,9 7,2 7,4 8,0 8,3 8,6 8,8

    Qa m3/h 4,4 4,3 4,2 4,1 3,8 3,7 3,6 3,5 4,5 4,4 4,3 4,2 3,9 3,8 3,7 3,6

    Te ºC 16 17

    Ts ºC 11 12

    Pf kW 27,1 26,1 25,5 24,9 23,3 22,6 21,9 21,6 27,7 26,7 26,1 25,5 23,9 23,2 22,5 22,2

    PAc kW 5,0 5,8 6,0 6,2 6,9 7,2 7,5 7,7 5,1 5,8 6,1 6,3 7,0 7,3 7,5 7,7

    Pat kW 6,2 7,0 7,2 7,4 8,1 8,4 8,7 8,9 6,3 7,0 7,3 7,5 8,2 8,5 8,7 8,9

    Qa m3/h 4,7 4,5 4,4 4,3 4,0 3,9 3,8 3,7 4,8 4,6 4,5 4,4 4,1 4,0 3,9 3,8

    1001.1

    Ta ºC 25 30 32 35 40 42 44 45 25 30 32 35 40 42 44 45

    Te ºC 10 11

    Ts ºC 5 6

    Pf kW 27,2 26,1 25,5 24,9 23,3 22,6 21,9 21,6 28,0 26,9 26,3 25,6 24,0 23,3 22,6 22,2

    PAc kW 6,3 7,1 7,4 7,7 8,5 8,9 9,2 9,4 6,3 7,2 7,4 7,8 8,6 8,9 9,3 9,5

    Pat kW 7,5 8,3 8,6 8,9 9,7 10,1 10,4 10,6 7,5 8,4 8,6 9,0 9,8 10,1 10,5 10,7

    Qa m3/h 4,7 4,5 4,4 4,3 4,0 3,9 3,8 3,7 4,8 4,6 4,5 4,4 4,1 4,0 3,9 3,8

    Te ºC 12 13

    Ts ºC 7 8

    Pf kW 28,7 27,6 27,0 26,3 24,6 23,9 23,2 22,8 29,5 28,3 27,7 27,0 25,3 24,6 23,8 23,4

    PAc kW 6,4 7,2 7,5 7,8 8,6 9,0 9,4 9,6 6,4 7,3 7,6 7,8 8,7 9,1 9,5 9,7

    Pat kW 7,6 8,4 8,7 9,0 9,8 10,2 10,6 10,8 7,6 8,5 8,8 9,0 9,9 10,3 10,7 10,9

    Qa m3/h 4,9 4,7 4,6 4,5 4,2 4,1 4,0 3,9 5,1 4,9 4,8 4,6 4,4 4,2 4,1 4,0

    Te ºC 14 15

    Ts ºC 9 10

    Pf kW 30,3 29,1 28,4 27,8 26,0 25,2 24,5 24,1 31,0 29,8 26,7 28,5 26,7 25,9 25,1 24,7

    PAc kW 6,5 7,4 7,7 8,0 8,8 9,2 9,6 9,8 6,5 7,4 7,7 8,0 8,8 9,2 9,6 9,8

    Pat kW 7,7 8,6 8,9 9,2 10,0 10,4 10,8 11,0 7,7 8,6 8,9 9,2 10,0 10,4 10,8 11,0

    Qa m3/h 5,2 5,0 4,9 4,8 4,5 4,3 4,2 4,1 5,3 5,1 4,6 4,9 4,6 4,5 4,3 4,3

    Te ºC 16 17

    Ts ºC 11 12

    Pf kW 31,8 30,6 29,9 29,2 27,4 26,6 25,8 25,4 32,6 31,4 30,7 30,0 28,1 27,3 26,5 26,0

    PAc kW 6,6 7,5 7,8 8,1 8,9 9,3 9,7 9,9 6,7 7,6 7,8 8,1 9,0 9,4 9,7 10,0

    Pat kW 7,8 8,7 9,0 9,3 10,1 10,5 10,9 11,1 7,9 8,8 9,0 9,3 10,2 10,6 10,9 11,2

    Qa m3/h 5,5 5,3 5,1 5,0 4,7 4,6 4,4 4,4 5,6 5,4 5,3 5,2 4,8 4,7 4,6 4,5

    Ta = Air temperature Te = Water input temperature Ts = Water output temperature Pf = Cooling capacity

    PAc = Compressor power input Pat = Total power input Qa = water flow

  • 15

    02.15 207481 Rev.100

    1201.1

    Ta ºC 25 30 32 35 40 42 44 45 25 30 32 35 40 42 44 45

    Te ºC 10 11

    Ts ºC 5 6

    Pf kW 31,4 30,2 29,5 28,8 27,0 26,2 25,4 24,9 32,3 31,0 30,4 29,6 27,7 26,9 26,1 25,6

    PAc kW 6,9 7,8 8,1 8,5 9,3 9,7 10,1 10,4 7,0 7,8 8,1 8,5 9,4 9,8 10,2 10,5

    Pat kW 8,1 9,0 9,3 9,7 10,5 10,9 11,3 11,6 8,2 9,0 9,3 9,7 10,6 11,0 11,4 11,7

    Qa m3/h 5,4 5,2 5,1 5,0 4,6 4,5 4,4 4,3 5,6 5,3 5,2 5,1 4,8 4,6 4,5 4,4

    Te ºC 12 13

    Ts ºC 7 8

    Pf kW 33,2 31,8 31,2 30,4 28,5 27,7 26,8 26,3 34,1 32,7 32,0 31,2 29,2 28,4 27,5 27,1

    PAc kW 7,0 7,9 8,2 8,0 9,5 9,9 10,3 10,5 7,1 8,0 8,3 8,6 9,5 10,0 10,4 10,6

    Pat kW 8,2 9,1 9,4 9,8 10,7 11,1 11,5 11,7 8,3 9,2 9,5 9,8 10,7 11,2 11,6 11,8

    Qa m3/h 5,7 5,5 5,4 5,2 4,9 4,8 4,6 4,5 5,9 5,6 5,5 5,4 5,0 4,9 4,7 4,7

    Te ºC 14 15

    Ts ºC 9 10

    Pf kW 34,9 33,6 32,9 32,1 30,1 29,2 28,3 27,8 35,9 34,5 33,7 32,9 30,8 29,9 29,0 28,6

    PAc kW 7,2 8,1 8,4 8,7 9,6 10,0 10,5 10,7 7,2 8,1 8,5 8,8 9,7 10,1 10,5 10,8

    Pat kW 8,4 9,3 9,6 9,9 10,8 11,2 11,7 11,9 8,4 9,3 9,7 10,0 10,9 11,3 11,7 12,0

    Qa m3/h 6,0 5,8 5,7 5,5 5,2 5,0 4,9 4,8 6,2 5,9 5,8 5,7 5,3 5,2 5,0 4,9

    Te ºC 16 17

    Ts ºC 11 12

    Pf kW 36,8 35,4 34,6 33,8 31,6 30,7 29,8 29,3 37,7 36,2 35,4 34,6 32,4 31,5 30,6 30,1

    PAc kW 7,3 8,2 8,5 8,9 9,8 10,2 10,6 10,9 7,4 8,3 8,6 9,0 9,9 10,3 10,7 10,9

    Pat kW 8,5 9,4 9,7 10,1 11,0 11,4 11,8 12,1 8,6 9,5 9,8 10,2 11,1 11,5 11,9 12,1

    Qa m3/h 6,3 6,1 5,9 5,8 5,4 5,3 5,1 5,0 6,5 6,2 6,1 6,0 5,6 5,4 5,3 5,2

    1501.1

    Ta ºC 25 30 32 35 40 42 44 45 25 30 32 35 40 42 44 45

    Te ºC 10 11

    Ts ºC 5 6

    Pf kW 40,0 38,5 37,6 36,6 34,3 33,3 32,3 31,8 41,2 39,5 38,6 37,7 35,3 34,3 33,2 32,7

    PAc kW 9,9 10,9 11,3 12,0 13,1 13,7 14,2 14,5 10,0 11,0 11,4 12,0 13,2 13,8 14,3 14,6

    Pat kW 11,1 12,1 12,5 13,2 14,3 14,9 15,4 15,7 11,2 12,2 12,6 13,2 14,4 15,0 15,5 15,8

    Qa m3/h 6,9 6,6 6,5 6,3 5,9 5,7 5,6 5,5 7,1 6,8 6,6 6,5 6,1 5,9 5,7 5,6

    Te ºC 12 13

    Ts ºC 7 8

    Pf kW 42,2 40,6 39,8 38,7 36,2 35,2 34,1 33,5 43,4 41,7 40,8 39,8 37,2 36,2 35,0 34,5

    PAc kW 10,1 11,1 11,4 11,6 13,3 13,9 14,4 14,7 10,2 11,1 11,5 12,2 13,4 14,0 14,5 14,8

    Pat kW 11,3 12,3 12,6 13,4 14,5 15,1 15,6 15,9 11,4 12,3 12,7 13,4 14,6 15,2 15,7 16,0

    Qa m3/h 7,3 7,0 6,8 6,7 6,2 6,1 5,9 5,8 7,5 7,2 7,0 6,8 6,4 6,2 6,0 5,9

    Te ºC 14 15

    Ts ºC 9 10

    Pf kW 44,5 42,8 41,8 40,8 38,3 37,1 36,0 35,4 45,7 43,9 42,9 41,9 39,2 38,1 36,9 36,4

    PAc kW 10,3 11,3 11,6 12,3 13,5 14,0 14,7 14,9 10,4 11,4 11,8 12,4 13,7 14,2 14,7 15,0

    Pat kW 11,5 12,5 12,8 13,5 14,7 15,2 15,9 16,1 11,6 12,6 13,0 13,6 14,9 15,4 15,9 16,2

    Qa m3/h 7,7 7,4 7,2 7,0 6,6 6,4 6,2 6,1 7,9 7,5 7,4 7,2 6,8 6,6 6,4 6,3

    Te ºC 16 17

    Ts ºC 11 12

    Pf kW 46,8 45,0 44,0 43,0 40,3 39,1 37,9 37,3 48,0 46,2 45,1 44,1 41,3 40,1 39,0 38,3

    PAc kW 10,5 11,4 11,9 12,5 13,7 14,3 14,8 15,2 10,6 11,5 12,0 12,6 13,9 14,4 14,9 15,3

    Pat kW 11,7 12,6 13,1 13,7 14,9 15,5 16,0 16,4 11,8 12,7 13,2 13,8 15,1 15,6 16,1 16,5

    Qa m3/h 8,1 7,8 7,6 7,4 6,9 6,7 6,5 6,4 8,3 7,9 7,8 7,6 7,1 6,9 6,7 6,6

    Ta = Air temperature Te = Water input temperature Ts = Water output temperature Pf = Cooling capacity

    PAc = Compressor power input Pat = Total power input Qa = water flow

  • 16

    WATER CHILLER UNITS – AXIAL FANS EWXA/EWXBA

    02.15 207481 Rev.100

    POTENCIAS CALORÍFICAS

    801.1

    Ta ºC -5 0 5 7 10 15 -5 0 5 7 10 15

    Te ºC 25 30

    Ts ºC 30 35

    Pf kW 18,6 21,7 25,4 27,0 29,6 34,4 18,3 21,4 24,9 26,4 28,9 33,3 PAc kW 5,1 5,2 5,3 5,3 5,3 5,4 5,6 5,7 5,7 5,8 5,8 5,9 Pat kW 6,1 6,2 6,3 6,3 6,4 6,4 6,6 6,7 6,8 6,8 6,8 6,9 Qa m3/h 3,2 3,7 4,4 4,6 5,1 5,9 3,2 3,7 4,3 4,5 5,0 5,7 Te ºC 35 40

    Ts ºC 40 45

    Pf kW 18,2 21,0 24,3 25,8 28,1 32,4 18,0 20,7 23,8 25,2 27,4 31,5 PAc kW 6,1 6,2 6,3 6,3 6,3 6,4 6,7 6,7 6,8 6,8 6,8 6,9 Pat kW 7,2 7,2 7,3 7,3 7,4 7,5 7,7 7,8 7,8 7,9 7,9 8,0 Qa m3/h 3,1 3,6 4,2 4,4 4,8 5,6 3,1 3,6 4,1 4,3 4,7 5,4 Te ºC 45 50

    Ts ºC 50 55

    Pf kW 18,8 23,1 24,4 26,4 30,1 22,4 23,7 25,4 28,7 PAc kW 6,2 7,7 7,7 7,7 7,8 8,7 8,9 8,8 8,8 Pat kW 7,2 8,7 8,8 8,8 8,9 9,8 10,0 9,9 9,9 Qa m3/h 3,2 4,0 4,2 4,5 5,2 3,9 4,1 4,4 4,9

    1001.1

    Ta ºC -5 0 5 7 10 15 -5 0 5 7 10 15

    Te ºC 25 30

    Ts ºC 30 35

    Pf kW 21,9 25,5 29,7 31,5 34,4 39,8 21,6 25,0 29,0 30,8 33,6 38,5 PAc kW 6,0 6,1 6,2 6,2 6,2 6,3 6,6 6,6 6,7 6,7 6,8 6,8 Pat kW 7,1 7,2 7,3 7,3 7,3 7,4 7,7 7,8 7,8 7,9 7,9 8,0 Qa m3/h 3,8 4,4 5,1 5,4 5,9 6,9 3,7 4,3 5,0 5,3 5,8 6,6 Te ºC 35 40

    Ts ºC 40 45

    Pf kW 21,3 24,5 28,3 30,0 32,7 37,6 21,0 24,1 27,7 29,3 31,8 36,6 PAc kW 7,2 7,3 7,3 7,4 7,4 7,5 7,8 7,9 8,0 8,0 8,0 8,1 Pat kW 8,3 8,4 8,5 8,5 8,6 8,6 9,0 9,0 9,1 9,2 9,2 9,3 Qa m3/h 3,7 4,2 4,9 5,2 5,6 6,5 3,6 4,2 4,8 5,0 5,5 6,3 Te ºC 45 50

    Ts ºC 50 55

    Pf kW 22,1 26,8 28,3 30,6 35,0 26,0 27,5 29,4 33,4 PAc kW 7,5 9,0 9,1 9,1 9,2 10,3 10,5 10,3 10,4 Pat kW 8,6 10,2 10,2 10,3 10,3 11,5 11,7 11,5 11,6 Qa m3/h 3,8 4,6 4,9 5,3 6,0 4,5 4,7 5,1 5,8

    Ta = Air temperature Te = Water input temperature Ts = Water output temperature Pf = Cooling capacity

    PAc = Compressor power input Pat = Total power input Qa = water flow

  • 17

    02.15 207481 Rev.100

    1201.1

    Ta ºC -5 0 5 7 10 15 -5 0 5 7 10 15

    Te ºC 25 30

    Ts ºC 30 35

    Pf kW 25,2 29,4 34,2 36,3 39,7 46,1 24,8 28,8 33,4 35,4 38,7 44,8 PAc kW 6,5 6,6 6,6 6,6 6,7 6,8 7,1 7,2 7,3 7,3 7,3 7,4 Pat kW 8,1 8,1 8,2 8,2 8,3 8,4 8,8 8,9 8,9 8,9 9,0 9,1 Qa m3/h 4,3 5,1 5,9 6,2 6,8 7,9 4,3 5,0 5,7 6,1 6,7 7,7 Te ºC 35 40

    Ts ºC 40 45

    Pf kW 24,4 28,2 32,6 34,5 37,6 43,4 24,1 27,7 31,9 33,7 36,6 42,1 PAc kW 7,9 7,9 8,0 8,0 8,0 8,1 8,6 8,6 8,7 8,7 8,7 8,8 Pat kW 9,6 9,7 9,7 9,7 9,8 9,8 10,4 10,4 10,5 10,5 10,5 10,6 Qa m3/h 4,2 4,9 5,6 5,9 6,5 7,5 4,2 4,8 5,5 5,8 6,3 7,2 Te ºC 45 50

    Ts ºC 50 55

    Pf kW 27,0 30,8 32,5 35,2 40,2 29,8 31,3 33,7 38,3 PAc kW 9,9 9,9 9,9 9,9 10,0 11,4 11,4 11,4 11,4 Pat kW 11,8 11,8 11,8 11,9 11,9 13,4 13,4 13,4 13,4 Qa m3/h 4,7 5,3 5,6 6,1 6,9 5,1 5,4 5,8 6,6

    1501.1

    Ta ºC -5 0 5 7 10 15 -5 0 5 7 10 15

    Te ºC 25 30

    Ts ºC 30 35

    Pf kW 30,1 35,2 41,0 43,5 47,6 55,2 29,7 34,5 40,0 42,4 46,3 53,6 PAc kW 8,8 8,9 9,1 9,1 9,2 9,3 9,6 9,7 9,9 9,9 10,0 10,2 Pat kW 10,5 10,6 10,8 10,8 10,9 11,1 11,3 11,4 11,6 11,7 11,7 11,9 Qa m3/h 5,2 6,1 7,1 7,5 8,2 9,5 5,1 5,9 6,9 7,3 8,0 9,2 Te ºC 35 40

    Ts ºC 40 45

    Pf kW 29,2 33,7 39,0 41,3 45,0 51,9 28,8 33,1 38,1 40,3 43,8 50,4 PAc kW 10,5 10,6 10,8 10,8 10,9 11,1 11,4 11,5 11,6 11,7 11,8 11,9 Pat kW 12,2 12,4 12,5 12,6 12,6 12,8 13,1 13,3 13,4 13,5 13,5 13,7 Qa m3/h 5,0 5,8 6,7 7,1 7,7 8,9 5,0 5,7 6,6 6,9 7,5 8,7 Te ºC 45 50

    Ts ºC 50 55

    Pf kW 32,2 36,8 38,8 42,0 48,1 35,6 37,4 40,3 45,8 PAc kW 13,0 13,2 13,2 13,3 13,4 15,0 15,0 15,1 15,2 Pat kW 14,8 14,9 15,0 15,1 15,2 16,8 16,8 16,9 17,0 Qa m3/h 5,5 6,3 6,7 7,2 8,3 6,1 6,4 6,9 7,9

    Ta = Air temperature Te = Water input temperature Ts = Water output temperature Pf = Cooling capacity

    PAc = Compressor power input Pat = Total power input Qa = water flow

  • 18

    WATER CHILLER UNITS – AXIAL FANS EWXA/EWXBA

    02.15 207481 Rev.100

    WATER EVAPORATOR PRESSURE DROP The following diagrams show the evaporator water pressure drop in kPa of chiller units depending on water flow in m3 without Hydronic Kit optional.

    OPERATION LIMITS In table below there is specified the used limits of chillers for plate heat exchangers used:

    OPERATION LIMITS 801.1 1001.1 1201.1 1501.1

    Nominal water flow m3/h 4,3 5,1 5,7 6,7

    Water evaporator pressure drop kPa 30 42 35 45

    Minimum water flow m3/h 2,4 2,8 3,1 3,7

    Maximum water flow m3/h 7,3 8,7 9,7 11,4

    Maximum working pressure water side kPa

    Pre

    ssu

    re d

    rop

    (kP

    a)

    Water flow

  • 19

    02.15 207481 Rev.100

    DIMENSIONS

    ALL MODELS DIMENSIONS

    1. Water intake Ø 1 ½” 2. Water outlet Ø 1 ½” 3. Electrical panelboard 4. Master switch 5. Power input 6. Hydronic kit water intake Ø 1 ½”

  • 20

    WATER CHILLER UNITS – AXIAL FANS EWXA/EWXBA

    02.15 207481 Rev.100

    WEIGHT DISTRIBUTION

    MINIKRONO 2 serie GRAVITY CENTER (cm) WEIGHT DISTRIBUTION (kg)

    MODEL X Y R1 R2 R3 R4 Total

    801.1 46 53 102 71 57 82 312

    1001.1 46 54 109 78 64 90 340

    1201.1 48 55 105 83 70 89 348

    1501.1 47 54 109 84 70 91 354

  • 21

    02.15 207481 Rev.100

    SERVICE AREA

  • 22

    WATER CHILLER UNITS – AXIAL FANS EWXA/EWXBA

    02.15 207481 Rev.100

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

  • 23

    02.15 207481 Rev.100

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

    ................................................................................................................................................................

  • HIPLUS AIREACONDICIONADO S.L.

    Masia Torrents, 2Tel. +34 93 893 49 12Fax. +34 93 893 96 1508800 Vilanova i la GeltrúBarcelona, Spain

    www.hitecsa.com

    We reserve the right to change specification without notice.