11
F. S. Alvi [email protected] Examples & Uses of Jets Pitot & Static Probes - Summary EML 4304L

Examples & Uses of Jets Pitot & Static Probes - Summary EML 4304L

  • Upload
    ranee

  • View
    33

  • Download
    4

Embed Size (px)

DESCRIPTION

Examples & Uses of Jets Pitot & Static Probes - Summary EML 4304L. JSF - STOVL Version. Boeing X-32 (CDP) USMC Version*. Lockheed-Martin X-35 (CDP) USMC Version*. * Images obtained from the Official US Government, DOD, JSF Site. Examples & Uses of Jets. - PowerPoint PPT Presentation

Citation preview

Page 1: Examples & Uses of Jets Pitot & Static Probes - Summary EML  4304L

F. S. [email protected]

Examples & Uses of Jets

Pitot & Static Probes - Summary

EML 4304L

Page 2: Examples & Uses of Jets Pitot & Static Probes - Summary EML  4304L

F. S. [email protected]

JSF - STOVL Version

Lockheed-Martin X-35 (CDP)USMC Version*

Boeing X-32 (CDP)USMC Version*

* Images obtained from the Official US Government, DOD, JSF Site

Page 3: Examples & Uses of Jets Pitot & Static Probes - Summary EML  4304L

F. S. [email protected]

Jet Entrainment Flow

Hot Gas Ingestion into inlet

Fountain Upwash Flow

Ground Erosion Region

Ground Plane

Jet Impingement Region

Lifting-Jet Flow

Wall-Jet Flow

Unsteady StructuralLoads and Lift Loss

Jet Entrainment Flow

Hot Gas Ingestion into inlet

Fountain Upwash Flow

Ground Erosion Region

Ground Plane

Jet Impingement Region

Lifting-Jet Flow

Wall-Jet Flow

Unsteady StructuralLoads and Lift Loss

Jet Entrainment Flow

Hot Gas Ingestion into inlet

Fountain Upwash Flow

Ground Erosion Region

Ground Plane

Jet Impingement Region

Lifting-Jet Flow

Wall-Jet Flow

Unsteady StructuralLoads and Lift Loss

Wall-Jet Flow

Unsteady StructuralLoads and Lift Loss

Ground Effect for a STOVL aircraft in hover

Examples & Uses of Jets

Page 4: Examples & Uses of Jets Pitot & Static Probes - Summary EML  4304L

F. S. [email protected]

Examples & Uses of Jets

F22 Raptor

F-18

Page 5: Examples & Uses of Jets Pitot & Static Probes - Summary EML  4304L

F. S. [email protected]

Supersonic Inlets & Diffusers

(http://www.grc.nasa.gov/WWW/K-12/airplane/lowsup.html)

Page 6: Examples & Uses of Jets Pitot & Static Probes - Summary EML  4304L

Micro-nozzles

400 m

200 m

50 m

HumanHair

100 m

Inlet pressure hole

Pressure tap hole

Settling chamber

(Supersonic) Microjets

Converging/Sonic Micro- nozzles C-D Micro-nozzles

F. S. [email protected]

Page 7: Examples & Uses of Jets Pitot & Static Probes - Summary EML  4304L

F. S. [email protected]

400 m ; PO~ 120 Psi

200 m ; PO~ 120 Psi

100 m ; PO~ 100 Psi

Flow Visualization Results

Supersonic Microjets

Page 8: Examples & Uses of Jets Pitot & Static Probes - Summary EML  4304L

F. S. [email protected]

Supersonic JetsMach 2 Rectangular Jets

Sonic Round jet (0.4 mm)

Vectored Rectangular Jets

Mach 2 Round vectored Jet (~30 mm)

Page 9: Examples & Uses of Jets Pitot & Static Probes - Summary EML  4304L

F. S. [email protected]

Jet Properties

Page 10: Examples & Uses of Jets Pitot & Static Probes - Summary EML  4304L

F. S. [email protected]

Summary of (some) Fluids Concepts Learned in 3015C (cont’d)

Conservation of Momentum - If viscosity is neglected:

Euler’s Equation

Integrate Euler’s equation along a streamline to obtain Bernoulli’s Equation It is only valid for : incompressible fluids, steady flow along a streamline, no energy loss due to friction, no heat transfer

Conservation of Energy - If energy is added, removed or lost via pumps turbines, friction, etc.then we use the energy equation or Extended Bernoulli’s Equation:

Constant 22 2

222

1

211 gz

Vpgz

Vp

Flow work + kinetic energy + potential energy = constant

2

222

1

211

22 z

g

Vphhhz

g

VpLEA

Where hA , hE is work done by or on the systems, e.g turbines, pumps, etc. and hL isFrictional Head Loss where

g

V

D

Lf

D

L

gh w

L 2

4 2

Page 11: Examples & Uses of Jets Pitot & Static Probes - Summary EML  4304L

F. S. [email protected]

Pitot probes

Constant 22 2

222

1

211 gz

Vpgz

Vp

At station 1, the fluid is moving: P1 = Pstatic OR simply Ps V1 = V

At station 2, the fluid is rest: P2 = Ppitot OR Ptotal OR Pstognation OR P0 and V2 = 0 (fluid is at rest)

Hence, Bernoulli’s Equation is reduced to:

1 2

Constant 2

2

pitotpVp