4
exp(j) = cos() + j sen() cos() = Re[exp(j)] sen() = Im[exp(j)] v(t) = Vm cos(t + ) = Re[Vm exp(j(t+)] v(t) = Re[Vm exp(j) exp(jt) ] v(t) = Re[V exp(jt) ] V = Vm exp(j) = Vm ang() Identidad de Euler V = Fasor Voltaje FASORES

exp(j f ) = cos( f ) + j sen( f )

Embed Size (px)

DESCRIPTION

FASORES. Identidad de Euler. exp(j f ) = cos( f ) + j sen( f ). sen( f ) = Im[exp(j f )]. cos( f ) = Re[exp(j f )]. v(t) = Vm cos( w t + f ) = Re[Vm exp(j( w t+ f )]. v(t) = Re[Vm exp(j f ) exp(j w t) ]. v(t) = Re[ V exp(j w t) ]. V = Vm exp(j f ) = Vm ang( f ). V = Fasor Voltaje. - PowerPoint PPT Presentation

Citation preview

Page 1: exp(j f )  =  cos( f ) + j sen( f )

exp(j) = cos() + j sen()

cos() = Re[exp(j)] sen() = Im[exp(j)]

v(t) = Vm cos(t + ) = Re[Vm exp(j(t+)]

v(t) = Re[Vm exp(j) exp(jt) ]

v(t) = Re[V exp(jt) ] V = Vm exp(j) = Vm ang()

Identidad de Euler

V = Fasor Voltaje

FASORES

Page 2: exp(j f )  =  cos( f ) + j sen( f )

v(t) = Vm cos(t+) Vm

v(t) = Vm sin(t+) Vm(

dv/dt => jV

Integral (v dt) => V/j

Representación de señales senoidales utilizando fasores

Page 3: exp(j f )  =  cos( f ) + j sen( f )

Ejemplo de operaciones con fasores

Problema 9.16

Utilizando fasores, calcular

a) 3 cos(20t + 10) – 5 cos(20t-30)b) 40 sen(50t) + 30 cos(50t-45)c) 20 sen 400t + 10 cos(400t+60) – 5 sen(400t-20)

(a) 310 5-30 = 2.954 + j0.5209 – 4.33 + j2.5 = -1.376 + j3.021 = 3.32114.49

Therefore, 3 cos(20t + 10 ) – 5 cos(20t – 30 ) = 3.32 cos(20t + 114.49 )

(b) 4-90 + 3-45 = -j40 + 21.21 – j21.21= 21.21 – j61.21= 64.78-70.89

Therefore, 40 sin(50t) + 30 cos(50t – 45 ) = 64.78 cos(50t – 70.89 )

(c) Using sin = cos( 90 ),20-90 + 1060 5-110 = -j20 + 5 + j8.66 + 1.7101 + j4.699

= 6.7101 – j6.641 = 9.44-44.7

Therefore, 20 sin(400t) + 10 cos(400t + 60 ) – 5 sin(400t – 20 )= 9.44 cos(400t – 44.7 )

Page 4: exp(j f )  =  cos( f ) + j sen( f )

Relación voltaje-corriente en elementos pasivos

R

L

C

v t R i t( ) ( )

v t Ldi t

dt( )

( )

v tCi t dt( ) ( ) 1 V I 1

j C

V I j L

V IR Z R

Z j L

Z 1

j C

Time domain frequency domain Impedance

ZN

.

Z

Z Z Z

eq

N

11 1 1

1 2

Element Admitance

Y 1

R

Y 1

j L

Y j C

Y Y Y Yeq N 1 2

Z1 Z2

Zeq

Z Z Z Zeq N 1 2

Z1 Z2 ZNZeq

ZN