1
Exploratory unsupervised mapping of CRISM imagery using summary product signatures Elyse Allender ([email protected]) 1 , Tomasz F. Stepinski 1 1 Space Informatics Lab, University of Cincinnati, OH. Methodology: - CRISM CAT pre-processing: PHT + ATM + destriping + summary product creation from PDS image. - Graph-based segmentation into homogeneous superpixels. - DEMUD [4] applied to data. - Number of mineral classes determined. - NN superpixel classication. Optional thresholding. - Output map and interpretation graphs of each class. Fe/Mg phyllosilicate mixed mineralogy kaolinit class three class ve A B C class one class four class two kaolinite montmorillonite Fe/Mg phyllosilicates pyroxene olivine altered olivine montmorillonite pyroxene Fe/Mg phyllosilicates mixed mineralogy Introduction: We develop a novel method of performing unsupervised mineralogical mapping on CRISM imagery which uses summary parameter products as input, rather than the full spectral function. Maps produced using this method may be looked upon as 'super' browse products, and graphs of the content of each class help guide the user to a clearer interpretation of what the class contains relative the the mean content of the image. This method extracts the most 'unique' classes from the image rst, enabling the detection of rare mineralogy. We propose this method be implemented globally for the purposes of scientic discovery. 0.04 0.05 0.06 0.07 0.08 Wavelength (nm) LNORM I/F 1000 1400 1800 2200 2600 Figure 2. Resulting mineral map for the Nili Fossae site. Four classes were detected by DEMUD including the altered olivine class containing the rare mineral magnesite. The interpretation graphs for each class are displayed (A to D), giving the user a better idea of the contents of each class with respect to the mean 'spectrum' of the image. This map can be used to guide futher mineral analysis. For example, the yellow 'olivine' class is visibly enhanced in olivine detection parameters. Figure 3. Comparison with SMACC spectral unmixing results produced by HiiHat software [5]. The spectral results produced using this method are not as easily interpreted with a limited knowledge of spectral functions and their relation to specic minerals, however, these endmembers can be compared to a spectral library for identication. A limitation being that there may be no adequate match. Conclusions: Our method is well suited for large exploratory surveys of CRISM images. Our results are interpretable, and may be used as a guide for the detailed manual analysis of minerals present in the broader classes discovered. Figure 1. Study site within Nili Fossae: Traditional methods of mineralogical analysis include the creation of a suite of RGB maps using spectral bands selected to highlight minerals known a priori (left) as in [1], and the creation of mineral browse products - here, CAR (centre) and HYD (right) - in which spectral parameter products are created to highlight specic mineral classes as in [2]. The advantage of our method is that only one map need be generated for each image, instead of a suite of RGB combinations. Results: References: [1]: Ehlmann et al. (2009), J. Geophys. Res., 114, E00D08 [2]: Carter et al. (2010), Science, 328(5986), 1682-6 [3]: Felzenszwalb & Huttenlocher (2004), Int. J. Comp. Vision, 59(2), 167-181 [4]: Wagstaet al. (2013), Proc. of AAAI-13 [5]: Mandrake et al. (2010), LPSC 2010 Abstract 1441. Figure 4. Results from Stokes crater site (top) and Hale crater site montmorillonite BDI1000IR IRA OLINDEX LCPINDEX HCPINDEX ISLOPE1 BD1435 BD1500 * ICER1 BD1750 BD1900 BDI2000 BD2100 BD2210 BD2290 D2300 SINDEX * ICER2 BDCARB BD3000 BD3100 BD3200 BD3400 BD1270O2 BD1400H2O BD2000CO2 BD2350 BD2600 * IRR2 R2700 BD2700 * IRR3 OLINDEX2 BD1900R BD1980 BD2200 Doub2200 BD2230 BD2500 0.0 0.2 0.4 0.6 0.8 1.0 1.2 altered olivine Fe/Mg phyllosilicates BDI1000IR IRA OLINDEX LCPINDEX HCPINDEX ISLOPE1 BD1435 BD1500 * ICER1 BD1750 BD1900 BDI2000 BD2100 BD2210 BD2290 D2300 SINDEX * ICER2 BDCARB BD3000 BD3100 BD3200 BD3400 BD1270O2 BD1400H2O BD2000CO2 BD2350 BD2600 * IRR2 R2700 BD2700 * IRR3 OLINDEX2 BD1900R BD1980 BD2200 Doub2200 BD2230 BD2500 0.0 0.2 0.4 0.6 0.8 1.0 1.2 pyroxene BDI1000IR IRA OLINDEX LCPINDEX HCPINDEX ISLOPE1 BD1435 BD1500 * ICER1 BD1750 BD1900 BDI2000 BD2100 BD2210 BD2290 D2300 SINDEX * ICER2 BDCARB BD3000 BD3100 BD3200 BD3400 BD1270O2 BD1400H2O BD2000CO2 BD2350 BD2600 * IRR2 R2700 BD2700 * IRR3 OLINDEX2 BD1900R BD1980 BD2200 Doub2200 BD2230 BD2500 0.0 0.2 0.4 0.6 0.8 1.0 1.2 mixed mineralogy BDI1000IR IRA OLINDEX LCPINDEX HCPINDEX ISLOPE1 BD1435 BD1500 * ICER1 BD1750 BD1900 BDI2000 BD2100 BD2210 BD2290 D2300 SINDEX * ICER2 BDCARB BD3000 BD3100 BD3200 BD3400 BD1270O2 BD1400H2O BD2000CO2 BD2350 BD2600 * IRR2 R2700 BD2700 * IRR3 OLINDEX2 BD1900R BD1980 BD2200 Doub2200 BD2230 BD2500 0.0 0.2 0.4 0.6 0.8 1.0 1.2 BDI1000IR IRA OLINDEX LCPINDEX HCPINDEX ISLOPE1 BD1435 BD1500 * ICER1 BD1750 BD1900 BDI2000 BD2100 BD2210 BD2290 D2300 SINDEX * ICER2 BDCARB BD3000 BD3100 BD3200 BD3400 BD1270O2 BD1400H2O BD2000CO2 BD2350 BD2600 * IRR2 R2700 BD2700 * IRR3 OLINDEX2 BD1900R BD1980 BD2200 Doub2200 BD2230 BD2500 0.0 0.2 0.4 0.6 0.8 1.0 1.2 LNORM I/F wavelength (nm) 1000 1430 1860 2290 2710 .05 .055 .06 .065 .07 .075 A B C D E F class one class two class three class four class ve 'background' mineralogy pyroxene carbonate olivine A B C class one class two class three class four LNORM I/F wavelength (nm) 1000 1430 1860 2290 2710 .05 .055 .06 .065 .07 .075 C carbonates 0.0 0.2 0.4 0.6 0.8 1.0 1.2 BDI1000IR IRA OLINDEX LCPINDEX HCPINDEX ISLOPE1 BD1435 BD1500 *ICER1 BD1750 BD1900 BDI2000 BD2100 BD2210 BD2290 D2300 SINDEX *ICER2 BDCARB BD3000 BD3100 BD3200 BD3400 CINDEX BD1270O2 BD1400H2O BD2000CO2 BD2350 BD2600 *IRR2 R2700 BD2700 *IRR3 OLINDEX2 BD1900R BD1980 BD2200 Doub2200 BD2230 BD2500 B pyroxene 0.0 0.2 0.4 0.6 0.8 1.0 1.2 BDI1000IR IRA OLINDEX LCPINDEX HCPINDEX ISLOPE1 BD1435 BD1500 *ICER1 BD1750 BD1900 BDI2000 BD2100 BD2210 BD2290 D2300 SINDEX *ICER2 BDCARB BD3000 BD3100 BD3200 BD3400 CINDEX BD1270O2 BD1400H2O BD2000CO2 BD2350 BD2600 *IRR2 R2700 BD2700 *IRR3 OLINDEX2 BD1900R BD1980 BD2200 Doub2200 BD2230 BD2500 olivine 0.0 0.2 0.4 0.6 0.8 1.0 1.2 A BDI1000IR IRA OLINDEX LCPINDEX HCPINDEX ISLOPE1 BD1435 BD1500 *ICER1 BD1750 BD1900 BDI2000 BD2100 BD2210 BD2290 D2300 SINDEX *ICER2 BDCARB BD3000 BD3100 BD3200 BD3400 CINDEX BD1270O2 BD1400H2O BD2000CO2 BD2350 BD2600 *IRR2 R2700 BD2700 *IRR3 OLINDEX2 BD1900R BD1980 BD2200 Doub2200 BD2230 BD2500 “background”mineralogy BDI1000IR IRA OLINDEX LCPINDEX HCPINDEX ISLOPE1 BD1435 BD1500 *ICER1 BD1750 BD1900 BDI2000 BD2100 BD2210 BD2290 D2300 SINDEX *ICER2 BDCARB BD3000 BD3100 BD3200 BD3400 CINDEX BD1270O2 BD1400H2O BD2000CO2 BD2350 BD2600 *IRR2 R2700 BD2700 *IRR3 OLINDEX2 BD1900R BD1980 BD2200 Doub2200 BD2230 BD2500 0.0 0.2 0.4 0.6 0.8 1.0 1.2 D E class one class two class three class four 0.0 0.2 0.4 0.6 0.8 1.0 1.2 BDI1000IR IRA OLINDEX LCPINDEX HCPINDEX ISLOPE1 BD1435 BD1500 * ICER1 BD1750 BD1900 BDI2000 BD2100 BD2210 BD2290 D2300 SINDEX * ICER2 BDCARB BD3000 BD3100 BD3200 BD3400 BD1270O2 BD1400H2O BD2000CO2 BD2350 BD2600 * IRR2 R2700 BD2700 * IRR3 OLINDEX2 BD1900R BD1980 BD2200 Doub2200 BD2230 BD2500 altered olivine /magnesite 0.0 0.2 0.4 0.6 0.8 1.0 1.2 olivine BDI1000IR IRA OLINDEX LCPINDEX HCPINDEX ISLOPE1 BD1435 BD1500 * ICER1 BD1750 BD1900 BDI2000 BD2100 BD2210 BD2290 D2300 SINDEX * ICER2 BDCARB BD3000 BD3100 BD3200 BD3400 BD1270O2 BD1400H2O BD2000CO2 BD2350 BD2600 * IRR2 R2700 BD2700 * IRR3 OLINDEX2 BD1900R BD1980 BD2200 Doub2200 BD2230 BD2500 0.0 0.2 0.4 0.6 0.8 1.0 1.2 BDI1000IR IRA OLINDEX LCPINDEX HCPINDEX ISLOPE1 BD1435 BD1500 * ICER1 BD1750 BD1900 BDI2000 BD2100 BD2210 BD2290 D2300 SINDEX * ICER2 BDCARB BD3000 BD3100 BD3200 BD3400 BD1270O2 BD1400H2O BD2000CO2 BD2350 BD2600 * IRR2 R2700 BD2700 * IRR3 OLINDEX2 BD1900R BD1980 BD2200 Doub2200 BD2230 BD2500 0.0 0.2 0.4 0.6 0.8 1.0 1.2 hydrated smectites BDI1000IR IRA OLINDEX LCPINDEX HCPINDEX ISLOPE1 BD1435 BD1500 * ICER1 BD1750 BD1900 BDI2000 BD2100 BD2210 BD2290 D2300 SINDEX * ICER2 BDCARB BD3000 BD3100 BD3200 BD3400 BD1270O2 BD1400H2O BD2000CO2 BD2350 BD2600 * IRR2 R2700 BD2700 * IRR3 OLINDEX2 BD1900R BD1980 BD2200 Doub2200 BD2230 BD2500 A B C D olivine/mac mixture SVD on all superpixels (initialize model) From all superpixels, select the one most dissimilar (Euclidean) to initial model Perform SVD on single selected superpixel, creating new model Select the most dissimilar superpixel to the updated model Perform SVD on set of n superpixels (those already seen) Repeat for x iterations

Exploratory unsupervised mapping of CRISM imagery …sil.uc.edu/cms/data/uploads/pdf/posters/marsintconf2014.pdf · Exploratory unsupervised mapping of CRISM imagery using summary

Embed Size (px)

Citation preview

Exploratory unsupervised mapping of CRISM imagery using summary product signatures

Elyse Allender ([email protected])1, Tomasz F. Stepinski1

1Space Informatics Lab, University of Cincinnati, OH.

Conclusions Yo.

Methodology:

- CRISM CAT pre-processing: PHT + ATM + destriping + summary product creation from PDS image.

- Graph-based segmentation into homogeneous superpixels.

- DEMUD [4] applied to data.

- Number of mineral classes determined.

- NN superpixel classification. Optional thresholding.

- Output map and interpretation graphs of each class.

- Graph-based segmentation into homogeneous superpixels.

- Number of mineral classes determined.- Number of mineral classes determined.

- NN superpixel classification. Optional thresholding.

- Output map and interpretation graphs of each class.

Fe/Mg phyllosilicate

mixed mineralogy

kaolinit

class threeclass five

A B C

class oneclass four

class two

kaolinitemontmorilloniteFe/Mg phyllosilicates

pyroxene

olivine

altered olivinemontmorillonite

pyroxene

Fe/Mg phyllosilicates

mixed mineralogy

Introduction:We develop a novel method of performing unsupervised mineralogical mapping on CRISM imagery which uses summary parameter products as input, rather than the full spectral function. Maps produced using this method may be looked upon as 'super' browse products, and graphs of the content of each class help guide the user to a clearer interpretation of what the class contains relative the the mean content of the image. This method extracts the most 'unique' classes from the image first, enabling the detection of rare mineralogy. We propose this method be implemented globally for the purposes of scientific discovery.

0.04

0.05

0.06

0.07

0.08

Wavelength (nm)

LNO

RM

I/F

1000

1400

1800

2200

2600

Figure 2. Resulting mineral map for the Nili Fossae site. Four classes were detected by DEMUD including the altered olivine class containing the rare mineral magnesite. The interpretation graphs for each class are displayed (A to D), giving the user a better idea of the contents of each class with respect to the mean 'spectrum' of the image. This map can be used to guide futher mineral analysis. For example, the yellow 'olivine' class is visibly enhanced in olivine detection parameters.

Figure 3. Comparison with SMACC spectral unmixing results produced by HiiHat software [5]. The spectral results produced using this method are not as easily interpreted with a limited knowledge of spectral functions and their relation to specific minerals, however, these endmembers can be compared to a spectral library for identification. A limitation being that there may be no adequate match. Conclusions:

Our method is well suited for large exploratory surveys of CRISM images. Our results are interpretable, and may be used as a guide for the detailed manual analysis of minerals present in the broader classes discovered.

Figure 1. Study site within Nili Fossae: Traditional methods of mineralogical analysis include the creation of a suite of RGB maps using spectral bands selected to highlight minerals known a priori (left) as in [1], and the creation of mineral browse products - here, CAR (centre) and HYD (right) - in which spectral parameter products are created to highlight specific mineral classes as in [2]. The advantage of our method is that only one map need be generated for each image, instead of a suite of RGB combinations.

Results:

References:[1]: Ehlmann et al. (2009), J. Geophys. Res., 114, E00D08 [2]: Carter et al. (2010), Science, 328(5986), 1682-6 [3]: Felzenszwalb & Huttenlocher (2004), Int. J. Comp. Vision, 59(2), 167-181 [4]: Wagstaff et al. (2013), Proc. of AAAI-13 [5]: Mandrake et al. (2010), LPSC 2010 Abstract 1441.

Figure 4. Results from Stokes crater site (top) and Hale crater site

montmorillonite

BDI1

000I

RIR

AO

LIN

DEX

LCPI

ND

EXH

CPIN

DEX

ISLO

PE1

BD14

35BD

1500

* ICE

R1BD

1750

BD19

00BD

I200

0BD

2100

BD22

10BD

2290

D23

00SI

ND

EX* IC

ER2

BDCA

RBBD

3000

BD31

00BD

3200

BD34

00BD

1270

O2

BD14

00H

2OBD

2000

CO2

BD23

50BD

2600

* IR

R2R2

700

BD27

00* IR

R3O

LIN

DEX

2BD

1900

RBD

1980

BD22

00D

oub2

200

BD22

30BD

2500

0.0

0.2

0.4

0.6

0.8

1.0

1.2 altered olivine

Fe/Mg phyllosilicates

BDI1

000I

RIR

AO

LIN

DEX

LCPI

ND

EXH

CPIN

DEX

ISLO

PE1

BD14

35BD

1500

* ICE

R1BD

1750

BD19

00BD

I200

0BD

2100

BD22

10BD

2290

D23

00SI

ND

EX* IC

ER2

BDCA

RBBD

3000

BD31

00BD

3200

BD34

00BD

1270

O2

BD14

00H

2OBD

2000

CO2

BD23

50BD

2600

* IR

R2R2

700

BD27

00* IR

R3O

LIN

DEX

2BD

1900

RBD

1980

BD22

00D

oub2

200

BD22

30BD

2500

0.0

0.2

0.4

0.6

0.8

1.0

1.2pyroxene

BDI1

000I

RIR

AO

LIN

DEX

LCPI

ND

EXH

CPIN

DEX

ISLO

PE1

BD14

35BD

1500

* ICE

R1BD

1750

BD19

00BD

I200

0BD

2100

BD22

10BD

2290

D23

00SI

ND

EX* IC

ER2

BDCA

RBBD

3000

BD31

00BD

3200

BD34

00BD

1270

O2

BD14

00H

2OBD

2000

CO2

BD23

50BD

2600

* IR

R2R2

700

BD27

00* IR

R3O

LIN

DEX

2BD

1900

RBD

1980

BD22

00D

oub2

200

BD22

30BD

2500

0.0

0.2

0.4

0.6

0.8

1.0

1.2

mixed mineralogy

BDI1

000I

RIR

AO

LIN

DEX

LCPI

ND

EXH

CPIN

DEX

ISLO

PE1

BD14

35BD

1500

* ICE

R1BD

1750

BD19

00BD

I200

0BD

2100

BD22

10BD

2290

D23

00SI

ND

EX* IC

ER2

BDCA

RBBD

3000

BD31

00BD

3200

BD34

00BD

1270

O2

BD14

00H

2OBD

2000

CO2

BD23

50BD

2600

* IR

R2R2

700

BD27

00* IR

R3O

LIN

DEX

2BD

1900

RBD

1980

BD22

00D

oub2

200

BD22

30BD

2500

0.0

0.2

0.4

0.6

0.8

1.0

1.2

BDI1

000I

RIR

AO

LIN

DEX

LCPI

ND

EXH

CPIN

DEX

ISLO

PE1

BD14

35BD

1500

* ICE

R1BD

1750

BD19

00BD

I200

0BD

2100

BD22

10BD

2290

D23

00SI

ND

EX* IC

ER2

BDCA

RBBD

3000

BD31

00BD

3200

BD34

00BD

1270

O2

BD14

00H

2OBD

2000

CO2

BD23

50BD

2600

* IR

R2R2

700

BD27

00* IR

R3O

LIN

DEX

2BD

1900

RBD

1980

BD22

00D

oub2

200

BD22

30BD

2500

0.0

0.2

0.4

0.6

0.8

1.0

1.2

LNO

RM I/

F

wavelength (nm)1000 1430 1860 2290 2710

.05

.055

.06

.065

.07

.075

A

B

C

D

E

F

class one class two

class three class fourclass five

'background' mineralogy

pyroxene

carbonate

olivine

A B C

class one class two

class three class four

LNO

RM I/

F

wavelength (nm)1000 1430 1860 2290 2710

.05

.055

.06

.065

.07

.075

Ccarbonates

0.0

0.2

0.4

0.6

0.8

1.0

1.2

BDI1

000I

RIR

AO

LIN

DEX

LCPI

ND

EXHC

PIN

DEX

ISLO

PE1

BD14

35BD

1500

*ICER

1BD

1750

BD19

00BD

I200

0BD

2100

BD22

10BD

2290

D23

00SI

ND

EX*IC

ER2

BDCA

RBBD

3000

BD31

00BD

3200

BD34

00CI

ND

EXBD

1270

O2

BD14

00H2

OBD

2000

CO2

BD23

50BD

2600

*IRR2

R270

0BD

2700

*IRR3

OLI

ND

EX2

BD19

00R

BD19

80BD

2200

Dou

b220

0BD

2230

BD25

00

Bpyroxene

0.0

0.2

0.4

0.6

0.8

1.0

1.2

BDI1

000I

RIR

AO

LIN

DEX

LCPI

ND

EXHC

PIN

DEX

ISLO

PE1

BD14

35BD

1500

*ICER

1BD

1750

BD19

00BD

I200

0BD

2100

BD22

10BD

2290

D23

00SI

ND

EX*IC

ER2

BDCA

RBBD

3000

BD31

00BD

3200

BD34

00CI

ND

EXBD

1270

O2

BD14

00H2

OBD

2000

CO2

BD23

50BD

2600

*IRR2

R270

0BD

2700

*IRR3

OLI

ND

EX2

BD19

00R

BD19

80BD

2200

Dou

b220

0BD

2230

BD25

00

olivine

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A

BDI1

000I

RIR

AO

LIN

DEX

LCPI

ND

EXHC

PIN

DEX

ISLO

PE1

BD14

35BD

1500

*ICER

1BD

1750

BD19

00BD

I200

0BD

2100

BD22

10BD

2290

D23

00SI

ND

EX*IC

ER2

BDCA

RBBD

3000

BD31

00BD

3200

BD34

00CI

ND

EXBD

1270

O2

BD14

00H2

OBD

2000

CO2

BD23

50BD

2600

*IRR2

R270

0BD

2700

*IRR3

OLI

ND

EX2

BD19

00R

BD19

80BD

2200

Dou

b220

0BD

2230

BD25

00

“background” mineralogy

BDI1

000I

RIR

AO

LIN

DEX

LCPI

ND

EXHC

PIN

DEX

ISLO

PE1

BD14

35BD

1500

*ICER

1BD

1750

BD19

00BD

I200

0BD

2100

BD22

10BD

2290

D23

00SI

ND

EX*IC

ER2

BDCA

RBBD

3000

BD31

00BD

3200

BD34

00CI

ND

EXBD

1270

O2

BD14

00H2

OBD

2000

CO2

BD23

50BD

2600

*IRR2

R270

0BD

2700

*IRR3

OLI

ND

EX2

BD19

00R

BD19

80BD

2200

Dou

b220

0BD

2230

BD25

00

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D

E

class one class two

class three class four

0.0

0.2

0.4

0.6

0.8

1.0

1.2

BDI1

000I

RIR

AO

LIN

DEX

LCPI

ND

EXH

CPIN

DEX

ISLO

PE1

BD14

35BD

1500

* ICE

R1BD

1750

BD19

00BD

I200

0BD

2100

BD22

10BD

2290

D23

00SI

ND

EX* I

CER2

BDCA

RBBD

3000

BD31

00BD

3200

BD34

00BD

1270

O2

BD14

00H

2OBD

2000

CO2

BD23

50BD

2600

* IRR

2R2

700

BD27

00* I

RR3

OLI

ND

EX2

BD19

00R

BD19

80BD

2200

Dou

b220

0BD

2230

BD25

00

altered olivine /magnesite

0.0

0.2

0.4

0.6

0.8

1.0

1.2 olivine

BDI1

000I

RIR

AO

LIN

DEX

LCPI

ND

EXH

CPIN

DEX

ISLO

PE1

BD14

35BD

1500

* ICE

R1BD

1750

BD19

00BD

I200

0BD

2100

BD22

10BD

2290

D23

00SI

ND

EX* I

CER2

BDCA

RBBD

3000

BD31

00BD

3200

BD34

00BD

1270

O2

BD14

00H

2OBD

2000

CO2

BD23

50BD

2600

* IRR

2R2

700

BD27

00* I

RR3

OLI

ND

EX2

BD19

00R

BD19

80BD

2200

Dou

b220

0BD

2230

BD25

00

0.0

0.2

0.4

0.6

0.8

1.0

1.2

BDI1

000I

RIR

AO

LIN

DEX

LCPI

ND

EXH

CPIN

DEX

ISLO

PE1

BD14

35BD

1500

* ICE

R1BD

1750

BD19

00BD

I200

0BD

2100

BD22

10BD

2290

D23

00SI

ND

EX* I

CER2

BDCA

RBBD

3000

BD31

00BD

3200

BD34

00BD

1270

O2

BD14

00H

2OBD

2000

CO2

BD23

50BD

2600

* IRR

2R2

700

BD27

00* I

RR3

OLI

ND

EX2

BD19

00R

BD19

80BD

2200

Dou

b220

0BD

2230

BD25

00

0.0

0.2

0.4

0.6

0.8

1.0

1.2 hydrated smectites

BDI1

000I

RIR

AO

LIN

DEX

LCPI

ND

EXH

CPIN

DEX

ISLO

PE1

BD14

35BD

1500

* ICE

R1BD

1750

BD19

00BD

I200

0BD

2100

BD22

10BD

2290

D23

00SI

ND

EX* I

CER2

BDCA

RBBD

3000

BD31

00BD

3200

BD34

00BD

1270

O2

BD14

00H

2OBD

2000

CO2

BD23

50BD

2600

* IRR

2R2

700

BD27

00* I

RR3

OLI

ND

EX2

BD19

00R

BD19

80BD

2200

Dou

b220

0BD

2230

BD25

00

A B

C D

olivine/mafic mixture

SVD on all superpixels (initialize model)

From all superpixels, select the one most dissimilar (Euclidean) to initial model

Perform SVD on single selected superpixel, creating new model

Select the most dissimilar superpixel to the updated model

Perform SVD on set of n superpixels (those already seen)

Repeat for x iterations