Export SCR Riser Analysis Report_Kim Young Tae

Embed Size (px)

Citation preview

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    1/30

    INDEPENDENCE HUB-MC920

    EXPORT GAS SCR DESIGN

    ANLALYSIS REPORT

    GEM

    20120941

    KIM, YOUNG TAE

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    2/30

    Contents1. INTRODUCTION .......................................................................................................................... 4

    1.1 General ..................................................................................................................................... 4

    1.2 Executive Summary.................................................................................................................. 4

    2. PROJECT DOCUMENT AND DESIGN CODES ......................................................................... 4

    2.1 Project Documents ................................................................................................................... 4

    2.2 Design Codes and Standards .................................................................................................... 5

    3. DESIGN DATA (RISER DESIGN BASIS & METHODOLOGY) ............................................... 5

    3.1 Steel Riser data ......................................................................................................................... 5

    3.2 SCR Porch Location & Hang-Off Angles ................................................................................ 6

    3.3 Flex-Joint .................................................................................................................................. 6

    3.4 Strake Properties ....................................................................................................................... 7

    3.5 Hydrodynamic Coefficient for Strength and Interference Analysis ......................................... 8

    3.6 Hydrodynamic Coefficients for Fatigue Analysis .................................................................... 8

    3.7 Internal Fluid Data, Export SCR .............................................................................................. 8

    3.8 Environmental Data .................................................................................................................. 9

    3.8.1 Sea Water Properties ............................................................................................................. 9

    3.8.2 Soil Data ............................................................................................................................... 9

    3.8.3 Current Data .......................................................................................................................... 9

    4. DESIGN METHOD ...................................................................................................................... 11

    4.1 General ................................................................................................................................... 11

    4.2 Static Analysis ........................................................................................................................ 12

    4.3 Dynamic Analysis .................................................................................................................. 12

    4.4 Input Data for Shear7 Software .............................................................................................. 13

    5. ANALYSIS ................................................................................................................................... 14

    5.1 Free Strake (Bare pipe) Riser System [Current Case I] .......................................................... 14

    5.2 Riser System with Strake [Current Case I] & [Nonlinear Stiffness] ...................................... 16

    5.3 Riser System with Strake [Current Case II] & [Nonlinear Stiffness] ..................................... 19

    5.4 Riser System with Strake [Current Case III] & [Nonlinear Stiffness] ................................... 20

    5.5 Riser System with Strake [Current Case I] & [Single Value Stiffness] ................................. 24

    5.5.1 Top vs. Bottom Strakes ....................................................................................................... 24

    5.5.2 Top vs. Separated Strakes ................................................................................................... 25

    5.5.3 Eddy & Hurricane Current (100-Year) Condition .............................................................. 27

    5.5.4 DNV E & DNV C Curve based on Eddy Current ....................................................... 28

    6. Summary ....................................................................................................................................... 29

    7. References ..................................................................................................................................... 30

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    3/30

    Table 1 Strake Design ......................................................................................................... 4

    Table 2 Fatigue Design Life with Strake (years)................................................................. 4Table 3 Current Speed for SEHAR 7 Beam 3 Example Cases ...................................... 10

    Table 4 100 Year Loop Current Eddy Profile (DEEPSTAR IIA Project: "Steel Catenary

    Riser Performance On A Floating Production System, 1996) ................................... 11

    Table 5 100 Year Hurricane Current Profile (DEEPSTAR IIA Project: "Steel Catenary Riser

    Performance On A Floating Production System, 1996) ............................................ 11

    Table 6 Design Basis Recommended Value ...................................................................... 13

    Table 7 SHEAR7 Recommended Value ............................................................................ 14

    Table 8 OMFD & Fatigue Life for Free Straked Riser ..................................................... 16

    Table 9 OMFD & Fatigue Life for Straked Riser [Current Case I & Non-Linear F.J.

    Stiffness] ................................................................................................................... 18

    Table 10 OMFD & Fatigue Life for Straked Riser [Current Case II & Non-Linear F.J.

    Stiffness] ................................................................................................................... 19

    Table 11 OMFD & Fatigue Life for Straked Riser [Current Case III & Non-Linear F.J.

    Stiffness] ................................................................................................................... 22

    Table 12 Fatigue Life for Current Case I~III .................................................................... 22

    Table 13 OMFD & Fatigue Life Near TDP for Straked Riser [Current Case III & Non-

    Linear F.J. Stiffness] ................................................................................................. 23

    Table 14 Fatigue Life Near TDP for Current Case I~III ................................................... 23

    Table 15 OMFD & Fatigue life with Different Allocation of Strakes ............................... 26

    Table 16 OMFD & Fatigue Life Extreme GOM Condition [DNV C Curve] ................ 27

    Table 17 Comparative Table DNV "E" vs. DNV "C" ....................................................... 28

    Table 18 S-N curves in seawater with cathodic protection (DNV-RP-C203, 2012) ......... 28

    Figure 1 Current Profile for 5 cases .................................................................................. 10

    Figure 2 Fatigue Life of Free Strkaked Riser .................................................................... 15

    Figure 3 Comparative Table for Current Case I&II .......................................................... 20

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    4/30

    1.INTRODUCTION1.1 General

    This document presents the VIV fatigue analyses required to achieve the fatigue design life for the

    export riser. Steel Catenary Risers (SCRs) is employed for the export lines. The detailed project

    description is provided in the Riser Design Basis & Methodology.

    1.2 Executive Summary SCR with Strakes Strakes type: 16D x 0.25D Strake Coverage: 80 %

    Table 1 Strake Design

    Type Start Stop

    Strake 0ft 2000 ft.

    Riser 2000 ft. 3000 ft.

    Strake 3000 ft. 9000 ft.

    Riser (Flow line) 9000 ft. ~

    Table 2 Fatigue Design Life with Strake (years)

    Current Type 80 % coverage

    Beam 3 example 425.24

    Eddy Current 177.6

    Hurricane Currrent 585.86

    2.PROJECT DOCUMENT AND DESIGN CODES2.1 Project Documents

    The following design document shall govern the design of the export riser for the initial design.

    Riser Design Basis & Method

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    5/30

    2.2 Design Codes and StandardsDet Norske Veritas (DNV )

    DNV-RP-C203 Fatigue Design of Offshore Steel Structures

    3.DESIGN DATA (RISER DESIGN BASIS & METHODOLOGY)3.1 Steel Riser data (p.13)

    Steel Riser Data

    Riser pipe outer diameter (in) 20.000

    Wall Thickness (in) 1.210

    Corrosion Allowance:

    Internal (in) 0.05

    External(in) none

    Wall Thickness Tolerances:

    Wall thickness tolerance range +20~-8%

    Average dry weight (% of Nominal) 108%

    Ovality +0.75%/-0.25%

    Material Properties

    Material Properties API X-65

    Density(lb/ft3) 490

    Minimum yield strength (ksi) 65

    Young's Modulus (ksi) 29700

    Shear Modulus (ksi) 11423

    Tangent Modulus (ksi) 66.3

    Anti-corrosion coating

    Strake / Faring region

    FBE Thickness (in) 0.016

    Density(lbs/ft3) 87

    Touchdown Zone region

    TLPE Thickness (in) 0.1

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    6/30

    Density(lbs/ft3) 87

    Bare Pipe Region

    FBE Thickness (in) 0.016

    Density(lbs/ft3) 87

    S-N Curve (p.40) DNV E curve (single slope)

    SCF (p.40) 1.2

    3.2 SCR Porch Location & Hang-Off Angles (p.14)

    Identification

    Porch Co-ordinates Azimuth

    Angle

    Hang-Off

    Angles

    (deg)X(ft) Y(ft) Z(c)

    Gas Export

    SCR17.50 120.67 15.00 325 12

    3.3 Flex-JointSingle value stiffness for flex-joint will be adjusted for this analysis according to the Riser Design

    Basis & Methodology, but Flex-joint stiffness curve data will be considered for the analysis too.

    The details of data is as following:

    Table-Flex-Joint Stiffness Single Value data for SCR analysis (p.18)

    Riser Type 20-inch SCR

    Fatigue Analysis (small angle) 25 kips-ft.

    Table-Flex-Joint Stiffness Curve data for 20-inch Export SCR Analysis (p.16)

    Alternating F.J. Angle

    (deg)

    Max Design Rotation Stiffness

    (kips-ft./deg)

    Unit

    (kips-ft.)

    0.01 436.411 4.36411

    0.02 358.097 7.16194

    0.03 318.974 9.56922

    0.04 293.836 11.75344

    0.05 275.711 13.78555

    0.06 261.734 15.70404

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    7/30

    0.07 250.471 17.53297

    0.08 241.108 19.28864

    0.09 233.139 20.98251

    0.1 226.234 22.6234

    0.2 185.637 37.1274

    0.3 165.355 49.6065

    0.4 152.324 60.9296

    0.5 142.928 71.464

    0.6 135.682 81.4092

    0.7 129.844 90.8908

    0.8 124.990 99.992

    0.9 120.859 108.7731

    1 117.280 117.28

    1.5 104.466 156.699

    2 96.234 192.468

    3 85.720 257.16

    4 78.965 315.86

    5 74.094 370.47

    6 70.338 422.0288 64.794 518.352

    10 60.797 607.97

    15 54.155 812.325

    20 49.887 997.74

    25 46.810 1170.25

    3.4 Strake Properties (p.19)The strake type for achieving the VIV suppression is adopted for export riser. The data is presented

    as following:

    Strake Properties

    Section weight in air (lbs. /ft.) 48.4

    Section weight in water (lbs. /ft.) 5.3

    Barrel Outside diameter (in) 22.362

    Barrel thickness 0.098

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    8/30

    Strake Height (0.25D) (in) 5.591

    Strake Pitch (16D) (in) 357.8

    3.5 Hydrodynamic Coefficient for Strength and Interference Analysis (p.20)

    parameter

    strength and interference analysis

    Bare pipe Straked section

    Normal drag 1.2 2.6

    Tangential drag 0.0 0.05

    Normal inertia 2.0 2.5

    Normal added mass 1.0 1.5

    Tangential added

    mass0.0 0.05

    3.6 Hydrodynamic Coefficients for Fatigue Analysis (p.20)

    parameter

    Fatigue load cases

    Bare pipe Straked section

    Normal drag 0.7 2.6

    Tangential drag 0.0 0.05

    Normal inertia 2.0 2.5

    Normal added mass 1.0 1.5

    Tangential added

    mass0.0 0.05

    3.7 Internal Fluid Data, Export SCR (p.21)Load case & parameter

    shut-in condition

    pressure (psig) 3250

    density (lb./ft3) 12.5

    normal operating conditions for fatigue assessment

    pressure (psig) 3250

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    9/30

    density (lb./ft3) 12.5

    hydrotest conditions

    pressure (psig) 4875

    density (lb./ft3) 64

    installation conditions

    pressure (psig) ambient

    density (lb./ft3) void

    3.8 Environmental Data3.8.1 Sea Water Properties (p.23)

    Water depth 8000 ft.

    Sea water density 64 lbs./ft3

    3.8.2 Soil Data (p.26)undrained shear strength 50 lbs./ft2

    submerged unit weight 20 lbs./ft3

    Friction coefficients

    Longitudinal 0.5

    Transverse 1

    Soil Stiffness (lbs./ft./ft.)

    Vertical 23500 lbs./ft./ft.

    Lateral (VIV purposes) 16215 lbs./ft./ft.

    3.8.3 Current DataCurrent data was assumed based on the data of SHEAR 7 Beam 3 example. Five current cases

    were prepared to perform SCR analysis because current profile in Beam 3 example cant be

    convinced to represent GOM current.

    Case I: Uniform current below half of the water depth with 1.0 ft. /s

    Case II: Uniform current below half of the water depth with 0.8 ft. /s

    Case III: Sheared current below from the top of the sea level

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    10/30

    Table 3 Current Speed for SEHAR 7 Beam 3 Example Cases

    Case I Case II Case III

    depth(ft.) current speed (ft./s)

    -160 4.3 4.3 4.3

    -532 4.29 4.29 3.892

    -1068 2.42 2.42 2.42

    -2000 1.49 1.49 1.39

    -3892 1.01 1.01 1.49

    -4000 1 1 1.49

    -4800 1 0.8 1.35

    -8000 1 0.8 1

    Figure 1 Current Profile for 5 cases

    Including the example current study, the additional case study with 100-year loop current eddy

    profile and Hurricane current profile current data were performed to check for practical purpose.

    These data shown below table have been taken from the Deepstar JIP. (INTEC, 2006)

    -8000

    -7000

    -6000

    -5000

    -4000

    -3000

    -2000

    -1000

    00 2 4 6 8

    depth

    current speed (ft./s)

    Current Profile

    Case I

    Case II

    Case III

    100-Year Loop Current

    EDDY Profile (ft./s)

    100-Year Hurricane Current

    Profile (ft./s)

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    11/30

    Table 4 100 Year Loop Current Eddy Profile (DEEPSTAR IIA Project: "Steel Catenary Riser

    Performance On A Floating Production System, 1996)

    Depth (ft.)Case IV. 100-Year Loop Current EDDY

    Profile (ft./s)

    0 6.76

    300 6.25

    500 2.54

    1000 2.37

    1500 0.85

    2000 0.34

    3000 0.34

    6000 0

    Table 5 100 Year Hurricane Current Profile (DEEPSTAR IIA Project: "Steel Catenary Riser

    Performance On A Floating Production System, 1996)

    Depth (ft.)CASE V. 100-Year Hurricane Current

    Profile (ft./s)

    0 4.2

    190 4.2

    272 0

    6000 0

    4.DESIGN METHOD4.1 General

    The VIV analysis of the Independence Hub SCRs shall be performed to assess the fatigue

    performance of the SCRs to different five types of current events.

    Fatigue analysis are performed considering the purpose of the report. Shear7 is applicable program

    to analysis fatigue design. Shear7 however needs a third party software because it does not an

    internal routine for computing the natural frequencies and mode shaped of a general SCR, Flexible

    riser and Umbilical with significant bending stiffness or complex configuration.

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    12/30

    The solution for that is to import the natural frequencies and mode shapes through a FEA software

    such like an OrcaFlex, Flexcom. Natural frequencies and mode shapes should be written with file

    *.mds file name for input Shear7. OrcaFlex has the function to generate the *.dat file and *.mds

    file from the result of the static analysis, then which will be used for run Shear7 software.

    (Introduction to VIV and SHEAR7, 2013)

    Analysis FEM Software

    Static Analysis OrcaFlex 9.6c

    Modal Analysis OrcaFlex 9.6c

    Dynamic Analysis Shear7

    4.2 Static AnalysisThe main purpose of the static analysis is to generate the equilibrium profile of riser under the

    combined effects of self-weight, buoyancy, inner fluid, VIV suppression devices weight and

    current. The result is presented by calculating modal analysis.

    The undamped natural modes of the SCR line is generated from the modal analysis using the

    OrcaFlex. From the modal analysis generate the modes table with mode types, periods and mode

    shape with respect to each mode. For convenience 200 number of modes are considered and

    transverse types among these are used to the input for dynamic analysis

    OrcaFlex calculates the natural modes of the discretized model, not those of the real continuous

    system. However the discretized modes are close to the continuous ones and for a mode number

    the accuracy improves with increasing elements.

    4.3 Dynamic AnalysisShear7 performs dynamic analysis with the result of the modal analysis that mean to calculate

    fatigue damage using VIV analysis. The procedure of dynamic analysis is as following.

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    13/30

    4.4 Input Data for Shear7 Software

    Table 6 Design Basis Recommended Value

    No. of elements 2000

    Mode cut-off value 0.7

    Structural Damping 0.003

    Strouhal No.1 0.18

    BandwidthSingle 0.4

    Multi 0.2

    1 Design basis recommend the value of Strouhal code with 200 curve has Strouhal numbers of

    0.24 for Reynolds numbers above 90,000, 0.17 for Reynolds numbers below 20,000, and

    intermediate numbers in between. Strouhal code 200 however has been disabled in the Shear7 v4.7

    and then the recommend value from Shear7 v4.7 user guide is adopted. (VandiverKim, 2012)

    Shear7 User Guide Recommended Value

    Strake and bare pipe riser have different value of St, Cl table, Band width, etc. The values table 7

    is recommended from Shear7 User Guide.

    natural frequencyand mode shape

    Findingpotentially

    excited modes

    Input power foreach mode

    Modes abovecutoff

    Excitation lengthcalculation

    initial lift anddrag coefficients

    Calculatingmodal input

    power & outputpower

    Modal power

    balance: A/D

    Adjust CL if notconverging

    RMS displacement

    and acceleration

    RMS stress andfatigue life

    Program output

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    14/30

    Table 7 SHEAR7 Recommended Value

    Type Strake Bare

    Ca 2 1

    St 0.1 0.18

    Cl table 5 1

    Damp Coefficient 0.4, 0.5, 0.2 0.2, 0.18, 0.2

    5.ANALYSIS5.1 Free Strake (Bare pipe) Riser System [Current Case I]

    An initial analysis for riser pipe with no strakes is performed to study the fatigue life and stress at

    the location of flexible joint and touchdown point. The seabed properties are presented in the

    design basis. Linear model with stiffness is sued, so stiffness of the flexible joint will effects the

    fatigue life of the system.

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    0.00 2.00 4.00 6.00

    DEPTH

    RMS Stress

    Free stiffness Infinity stiffness

    Nonlinear

    Stiffness

    Simple Value

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    0.00 2.00 4.00 6.00

    DEPTH

    RMS Stress near Top

    Free stiffness Infinity stiffness

    Nonlinear

    Stiffness

    Simple Value

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    15/30

    Figure 2 Fatigue Life of Free Strkaked Riser

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    0.00 0.50 1.00 1.50 2.00

    DEPTH

    Damage Rate (1/yr)

    Free stiffness Infinity stiffness

    Nonlinear

    Stiffness

    Simple Value

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    0.00 1.00 2.00

    DEPTH

    Damage Rate Near Top

    (1/yr)

    Free stiffness Infinity stiffness

    Nonlinear

    Stiffness

    Simple Value

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Fatigue Life (yr)

    Free stiffness Infinity stiffness Nonlinear

    Stiffness

    Simple Value

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    16/30

    Table 8 OMFD & Fatigue Life for Free Straked Riser

    F.J Type OFMD x/L occurred OMFD Fatigue Life

    Free stiffness 0.960 0.992 1.042

    Infinity

    stiffness29.400 0.000 0.034

    Nonlinear

    Stiffness2.888 0.000 0.346

    Simple Value 0.961 0.992 1.041

    The result shows the effect of the stiffness of the flexible joint on the hang-off region. Free stiffness

    condition give the largest fatigue life with both of top and touch down point. Infinity stiffness has

    the worst result regarding the fatigue life, furthermore the damage rate of the top point is larger

    than the touch down point. Accordingly flexible joint to reduce bend stiffness should be designed.

    The non-linear stiffness case with having various value responding the angle has also the negative

    effect to the fatigue life.

    5.2 Riser System with Strake [Current Case I] & [Nonlinear Stiffness]The analysis shows the effect of the VIV suppression device according to the length of the coverage

    with strake. The analysis is performed with current case I and nonlinear stiffness.

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    0 2000 4000 6000 8000 10000

    RMS Stress

    Strake10 Strake30 Strake50 Strake70 Strake90

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    17/30

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.70

    0.80

    0.90

    1.00

    0 100 200 300 400 500 600 700 800 900 1000

    RMS Stress Near Top

    Strake10 Strake30 Strake50 Strake70 Strake90

    0.00

    0.50

    1.00

    1.50

    2.00

    2.50

    8000 8500 9000 9500 10000

    RMS Stress Near TDP

    Strake10 Strake30 Strake50 Strake70 Strake90

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    18/30

    Table 9 OMFD & Fatigue Life for Straked Riser [Current Case I & Non-Linear F.J. Stiffness]

    Strake

    CoverageStrake10 Strake30 Strake50 Strake70 Strake90

    OMFD 0.38835 0.32208 0.25515 0.11839 0.0008025

    x/L

    occurred

    OMFD

    9925.3 9955 9974.8 9984.7 0

    Fatigue

    Life2.57 3.1 3.92 8.45 1246.18

    This result shows that more coverage with strake enhance the fatigue life. The fatigue life however

    is not satisfy the design life considering safety factor (400 yr.) except the case of 90 percent

    coverage. It can be explained that constant current speed of 1ft/sec below the half of the water

    0

    2000

    4000

    6000

    8000

    10000

    0.00E+00 5.00E-03 1.00E-02 1.50E-02 2.00E-02

    Damage Rate (1/yr)

    Strake10

    Strake20

    Strake50

    Strake85

    Strake90

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    19/30

    depth gives constant shedding frequency. Single shedding frequency would increase RMS stress

    in the focused power-in region.

    5.3

    Riser System with Strake [Current Case II] & [Nonlinear Stiffness]

    Table 10 OMFD & Fatigue Life for Straked Riser [Current Case II & Non-Linear F.J. Stiffness]

    Strake

    CoverageStrake30 Strake50 Strake70 Strake90

    OMFD 0.084774 0.063352 0.012645 0.000806

    x/L

    occurred

    OMFD

    9955 9974.8 9984.7 0

    Fatigue

    Life 11.79607 15.78482 79.08264 1241.465

    0

    2000

    4000

    6000

    8000

    10000

    0.00E+00 2.00E-03

    Damage Rate

    (1/yr)

    Strake30 Strake50

    Strake70 Strake90

    0

    40

    80

    120

    160

    200

    0.00E+00 2.00E-03

    Damage Rate

    Near Top (1/yr)

    Strake30 Strake50

    Strake70 Strake90

    8000

    8500

    9000

    9500

    10000

    10500

    0.00E+00 2.00E-03

    Damage Rate

    Near Bottom

    (1/yr)

    Strake30 Strake50

    Strake70 Strake90

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    20/30

    Figure 3 Comparative Table for Current Case I&II

    Figure 3 present that less uniform current speed would increase the fatigue life of the riser system,

    but still coverage strake less than 70 % is not enough large to satisfy the requirement of the design

    life. But installation of the 90 % coverage of the strake could be solution to prevent the fatigue

    damage from VIV.

    5.4 Riser System with Strake [Current Case III] & [Nonlinear Stiffness]

    Case I Current

    Case II Current

    -100

    400

    Strake30 Strake50 Strake70 Strake90Fatigue

    Life

    (yr)

    Fatigue Life Current Case I & II

    Case I Current Case II Current

    0

    2000

    4000

    6000

    8000

    10000

    -1.00E-03 1.00E-03 3.00E-03 5.00E-03 7.00E-03 9.00E-03 1.10E-02 1.30E-02 1.50E-02

    Damage Rate (1/yr)

    Strake30

    Strake50

    Strake70

    Strake90

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    21/30

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    -1.00E-03 1.00E-03 3.00E-03 5.00E-03 7.00E-03 9.00E-03 1.10E-02 1.30E-02 1.50E-02

    Damage Rate Near Top (1/yr)

    Strake30

    Strake50

    Strake70

    Strake90

    8000

    8500

    9000

    9500

    10000

    10500

    -1.00E-03 1.00E-03 3.00E-03 5.00E-03 7.00E-03 9.00E-03 1.10E-02 1.30E-02 1.50E-02

    Damage Rate Near Bottom (1/yr)

    Strake30

    Strake50

    Strake70

    Strake90

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    22/30

    Table 11 OMFD & Fatigue Life for Straked Riser [Current Case III & Non-Linear F.J. Stiffness]

    Strake

    CoverageStrake30 Strake50 Strake70 Strake90

    OMFD 0.017647 0.0055057 0.0057614 0.0059242

    x/L

    occurred

    OMFD

    0 0 0 0

    Fatigue

    Life

    56.66 181.63 173.57 168.80

    Table 12 Fatigue Life for Current Case I~III

    Strake

    CoverageStrake30 Strake50 Strake70 Strake90

    Current I 3.10 3.92 8.45 1246.18

    Current II 11.80 15.78 79.08 1241.46

    Current III 56.67 181.63 173.57 168.80

    In case of sheared current the fatigue life is noticeably increased compared to the case I and II. It

    is should be noted that the OMFD of current case III occurred at the location of flexible joint, not

    touch down point. The vulnerable point of the fatigue is changed into the flexible joint location.

    0.00 200.00 400.00 600.00 800.00 1000.00 1200.00 1400.00

    Strake30

    Strake50

    Strake70

    Strake90

    Fatigue Life Current Case I ~III

    Case III Current Case II Current Case I Current

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    23/30

    Although the sheared current reduced the fatigue damage rate of the touch down point but did not

    so significantly on the flexible joint location.

    Table 13 OMFD & Fatigue Life Near TDP for Straked Riser [Current Case III & Non-Linear F.J.

    Stiffness]

    Strake

    CoverageStrake30 Strake50 Strake70 Strake90

    OMFD 0.014274 0.00047415 0.000146850.00002712

    4

    x/L

    occurred

    OMFD

    9955.00 9974.80 9984.70 9960.50

    Fatigue Life 70.06 2109.04 6809.67 36867.72

    Table 14 Fatigue Life Near TDP for Current Case I~III

    Strake

    Coverage Strake30 Strake50 Strake70 Strake90

    Case I

    Current3.10 3.92 8.45 135233.00

    Case II

    Current11.80 15.78 79.08 56293.00

    Case III

    Current70.06 2109.04 6809.67 36867.72

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    24/30

    As a result of this parametric study it is severely conservative to use the non-linear data of flexible

    joint for fatigue analysis. According to the design basis single value stiffness shall be used for VIV

    analysis. The analysis with simple value of flexible joint is performed and present the result as

    follows.

    5.5 Riser System with Strake [Current Case I] & [Single Value Stiffness]Top Strakes vs. Bottom Strakes with 70% coverage The Single value stiffness of the flexible joint

    will reduce the fatigue damage rate. From this result of study most harsh current profile (Case I)is adopted for VIV design and this chapter will present several parametric study.

    For designing the VIV suppression device it is most important to decide the length and location of

    strakes considering both of safety and economic sense.

    5.5.1 Top vs. Bottom StrakesStrakes installed from top give the considerably different result with bottom strakes. In this current

    case bottom strakes could reduce the fatigue damage at the touch down zone, but the fatigue

    damage rate at near flexible joint still remain large compared to the top strakes.

    0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 3500.00 4000.00

    Strake30

    Strake50

    Strake70

    Fatigue Life Near TDP

    Case III Current Case II Current Case I Current

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    25/30

    5.5.2 Top vs. Separated StrakesTop section covered 40% Strakes and bottom section with 30% strakes design is compared to the

    continuous top section strakes with 70%. Top strakes design does not cover the uniform currentprofile area fully, it thus is not good for the fatigue life in touch down area. To suppress VIV

    effectively the installation of strakes in the constant current area would be considered.

    Adjustment of the strakes allocation along with riser system

    As appears by below parametric study the design allocated more strakes in the bottom area enhance

    the fatigue life than vice versa. From the result it is reasonable to design of strakes in the constant

    current area including top strakes.

    0

    2000

    4000

    6000

    8000

    10000

    0.00E+005.00E-021.00E-011.50E-012.00E-012.50E-01

    FATIGUE DAMAGE RATE

    Top vs. Bottom Strakes

    Strake70Top Strake70Bottom

    0

    2000

    4000

    6000

    8000

    10000

    0.00E+00 1.00E-03 2.00E-03 3.00E-03

    Top vs. Seperated

    Strakes

    Stake40Strake30 Strake70Top

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    26/30

    Table 15 OMFD & Fatigue life with Different Allocation of Strakes

    Strake

    Coverage

    Stake40

    Strake30

    Strake70

    Top

    Stake30

    Strake40

    Strake70

    Bottom

    Stake30

    Strake50

    Strake20

    Strake60

    OMFD 0.01739 0.11841 0.01333 0.20152 0.00321 0.00235

    x/L 9939.60 9984.70 9935.20 514.80 9945.10 9945.10

    Fatigue

    Life57.49 8.45 75.00 4.96 311.12 425.24

    As the result of the study the design with 20% and 60% each top and bottom separately of strakes

    is the best solution. To confirm the design and compare as-built value of strakes for Independence

    Hub additional check is performed based on the practical data with GOM current profile in harsh

    environmental study. Examples of current

    8000

    8500

    9000

    9500

    10000

    10500

    0.00E+00 1.00E-03 2.00E-03 3.00E-03

    Seperated Strakes

    with 80% Coverage

    Stake30Strake50

    Strake20Strake60

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    0.00 0.20 0.40

    RMS Stress

    Stake30Strake50

    Strake20Strake60

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    27/30

    5.5.3 Eddy & Hurricane Current (100-Year) ConditionTable 16 OMFD & Fatigue Life Extreme GOM Condition [DNV C Curve]

    Strake Coverage Stake30Strake50Eddy Current

    Stake20Strake60

    Eddy Current

    Stake30Strake50

    Hurricane

    OMFD 0.0060283 0.0056307 0.0017069

    x/L 9945.10 9945.10 9945.10

    Fatigue Life 165.88 177.60 585.86

    As the result of the study with extreme condition of eddy and hurricane current, fatigue life is not

    satisfied to the case of 100-year eddy current. To satisfy the eddy current condition the design of

    strake would become very conservative.

    0

    2000

    4000

    6000

    8000

    10000

    0.000 0.002 0.004 0.006

    Fatigue Damage in Eddy

    & Hurricane

    Stake30Strake50Eddy

    Stake30Strake50Hurr

    Stake20Strake60EddyDNVE

    0

    2000

    4000

    6000

    8000

    10000

    0.00 0.10 0.20 0.30 0.40

    RMS Stress

    in Eddy & Hurricane

    Stake30Strake50Eddy

    Stake30Strake50Hurr

    Stake20Strake60EddyDNVE

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    28/30

    5.5.4 DNV E & DNV C Curve based on Eddy CurrentTable 17 Comparative Table DNV "E" vs. DNV "C"

    Strake Coverage Stake20Strake60EddyDNV E Stake20Strake60EddyDNV C

    OMFD 0.0056307 0.0015106

    x/L occurred

    OMFD9945.1 9945.1

    Fatigue Life 177.59 661.98

    RMS stress is calculated from the VIV analysis with Shear7, fatigue damage is then calculated based

    on the specified S-N curve. When calculate the damage using the S-N curve, the stress range shouldbe defined. Stress Concentration Factor (SCF) scales the stress ranges, so SCF and S-N curve type

    give significant effects the fatigue life. In this parametric study fatigue life calculated by S-N Curve

    C are increased more three times than E curve. The DNV S-N curve is as follow figure.

    Table 18 S-N curves in seawater with cathodic protection (DNV-RP-C203, 2012)

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    29/30

    6.SummaryAnalyses were performed for different cases of bared and Straked riser on several profile of current.

    Hang-off region and touch down zone are vulnerable the fatigue damage from the analyses. Besides

    fatigue life is very sensitive to the current profile. More accurate design data would be needed for

    VIV suppression design from the result of this study. According to the as-built design the strake

    coverage on the SCR of 8300 ft., which is about 80% of suspended catenary length, 10340 ft. (Conor

    Galvin, 2007) As noted that current data give the effect to the fatigue life considerably, which current

    data set is used for design very important.

    30 current profiles were used to assess SCR VIV performance in FEED for the project. The result

    of the FEED study is that the dataset was not sufficiently refined, yielding spurious damage

    prediction. Therefor the dataset was refined further using filtered current data from a sample of

    monitored data, recorded hourly for two years. And then large current profile dataset was used for

    detailed design of the gas export SCR. The detail design gave the result that about 9,100 ft. of strakes

    0

    2000

    4000

    6000

    8000

    10000

    -1.00E-031.00E-03 3.00E-03 5.00E-03 7.00E-03

    Fatigue Damage with

    DNV "E"& DNV "C"

    Stake20Strake60EddyDNVE

    Stake20Strake60EddyDNVC

    0

    2000

    4000

    6000

    8000

    10000

    0.00E+001.00E-012.00E-013.00E-014.00E-01

    RMS Stress

    DNV "E"& DNV "C"

    Stake20Strake60EddyDNVE

    Stake20Strake60EddyDNVC

  • 7/29/2019 Export SCR Riser Analysis Report_Kim Young Tae

    30/30

    to achieve a satisfactory VIV fatigue life in the critical touchdown region. But during the project,

    the strake coverage on the SCR was reduced slightly to a final as built design of 8,300 ft. by using

    the welding procedure and S-N curve approaching a C curve with an SCF 1.1.

    As a result applying the same DNV S-N curve the strake design also could satisfy all extreme cases

    such as eddy current with high speed. For practical application real current profile which

    investigated for I-Hub project and soil data would be required, then sensitivity study with soil could

    be performed.

    7.ReferencesConor Galvin, R. H. (2007). Independence Trail-Steel Catenray Riser Design and Materials. OTC.

    (1996).

    DEEPSTAR IIA Project: "Steel Catenary Riser Performance On A Floating Production System.

    DNV-RP-C203. (2012). Fatigue Design of Offshore Steel Structures. DET NORSKE VERITAS.

    INTEC. (2006). SCR Integrity Study. MMS.

    Introduction to VIV and SHEAR7. AMOG.

    RISER DESIGN BASIS & METHODOLOGY.

    Vandiver, K. (2012). SHEAR7 USER GUIDE Version 4.7. AMOG.