5
Extraction of Iron (III) from Aqueous Sulfate Solutions by Primene JMT a D. SCHROTTEROVÁ and b P . NEKOVÁŘ a Department of Inorganic Technology, Institute of Chemical Technology, Prague, CZ-166 28 Prague b Department of Chemical Engineering, Institute of Chemical Technology, Prague, CZ-166 28 Prague Received 8 June 1999 The results of the extraction of iron (III) sulfates with primary amine from neutral solutions as well as from solutions containing sulfuric acid are presented. Primene JMT in benzene with octan-l-ol as a modifier of solubility was used as the extractant. The presumed stoichiometry of extraction formulated on the basis of existing literature was compared with calculations for aqueous phase equilibrium compositions and with experimental results for sulfuric acid and iron (III) sulfate extraction. The presumption of extraction of a neutral complex Fe2(OH)2(S04)2 from aqueous phase explains quite well the results of extraction from neutral and moderate acidic solutions. The results of extraction at higher concentrations of sulfuric acid in aqueous phase show that the complexes in organic phase could be more complicated. Sulfuric acid is the most common reagent used for the leaching and decomposition of ores and concen- trates. Iron is usually present in the leaching solu- tion as an impurity. Efficient methods for iron removal from sulfuric acid solution are, therefore, often neces- sary for the recovery of a quality product. Apart from various precipitation methods solvent extraction has long been studied for removing iron from sulfate solu- tions. It is possible to use various types of extraction agents; the amine extraction is very suitable due to the ability of Fe (III) to form various complexes. Primary amine Primene JMT was successfully tested for separation of iron from solution of alu- minium sulfate [1, 2]. Another type of primary amine Primene 81R was used for separation of Fe(III) and Al(III) by solvent extraction treatment of sulfate leach liquors produced by the acid leaching of non- bauxitic ores [3]. A study of extraction mechanism for this process has been made [4]. The compound ex- tracted from the organic phase with Primene 81R sul- fate at 50 °C has been isolated and has been shown to have the stoichiometric formula 3[(RNH 3 ) 2 S04] [Fe(OH)S04]2- It has been shown that the extrac- tion of iron (III) occurs by the adduct formation re- action between primary amine sulfate molecules and the species [Fe(OH)S0 4 ]2. The influence of diluents of different types has been studied for iron (III) extrac- tion by Primene 81R from aluminium sulfate solutions [5]. The best results were obtained with diluents such as toluene and benzene. It was concluded that diluent should have a low dielectric constant, weak hydrogen- CH 3 I СНз— С СНз СНз -сн 2 —С- /Нз NH 2 Primene JMT. bonding capacity, high aromaticity, low surface ac- tivity, permitting the surface-active amine to concen- trate at the interface. These works were followed up by a similar study of Fe (III) extraction by secondary amine di(3,5,5-trimethylhexyl)amine published in [6— 8]. The compound isolated from the organic phase has the formula (R 2 NH 2 )2S0 4 (Fe(OH)S0 4 ) 2 and two structures for the complex have been suggested based on hydroxy and sulfate bridging which explain the as- sociation of the complex in organic phase [8]. Attempts to explain the mechanism of extraction were made by studying IR spectra [9] and the influence of the solvent [10]. The extraction of iron (III) from aqueous sulfate so- lutions by didecylamine has been investigated by Baes [9] who first interpreted his results by assuming ex- traction of partially hydrolyzed species Fe(OH)S04. Another mechanism was suggested by Good et al. [10] who explained their observations by assuming that in the extraction by Primene 81R the following ion- 412 Chem. Papers 53 (6) 412—416 (1999)

Extraction of Iron (III) from Aqueous Sulfate …Extraction of Iron (III) from Aqueous Sulfate Solutions by Primene JMT aD. SCHROTTEROVÁ and bP. NEKOVÁŘ a Department of Inorganic

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Extraction of Iron (III) from Aqueous Sulfate …Extraction of Iron (III) from Aqueous Sulfate Solutions by Primene JMT aD. SCHROTTEROVÁ and bP. NEKOVÁŘ a Department of Inorganic

Extraction of Iron (III) from Aqueous Sulfate Solutions by Primene J M T

a D . SCHROTTEROVÁ and b P . NEKOVÁŘ

a Department of Inorganic Technology, Institute of Chemical Technology, Prague, CZ-166 28 Prague

b Department of Chemical Engineering, Institute of Chemical Technology, Prague, CZ-166 28 Prague

Received 8 June 1999

The results of the extraction of iron (III) sulfates with primary amine from neutral solutions as well as from solutions containing sulfuric acid are presented. Primene JMT in benzene with octan-l-ol as a modifier of solubility was used as the extractant. The presumed stoichiometry of extraction formulated on the basis of existing literature was compared with calculations for aqueous phase equilibrium compositions and with experimental results for sulfuric acid and iron (III) sulfate extraction. The presumption of extraction of a neutral complex Fe2(OH)2(S04)2 from aqueous phase explains quite well the results of extraction from neutral and moderate acidic solutions. The results of extraction at higher concentrations of sulfuric acid in aqueous phase show that the complexes in organic phase could be more complicated.

Sulfuric acid is the most common reagent used for the leaching and decomposition of ores and concen­trates. Iron is usually present in the leaching solu­tion as an impurity. Efficient methods for iron removal from sulfuric acid solution are, therefore, often neces­sary for the recovery of a quality product. Apart from various precipitation methods solvent extraction has long been studied for removing iron from sulfate solu­tions. It is possible to use various types of extraction agents; the amine extraction is very suitable due to the ability of Fe (III) to form various complexes.

Primary amine Primene JMT was successfully tested for separation of iron from solution of alu­minium sulfate [1, 2]. Another type of primary amine Primene 81R was used for separation of Fe(III) and Al(III) by solvent extraction treatment of sulfate leach liquors produced by the acid leaching of non-bauxitic ores [3]. A study of extraction mechanism for this process has been made [4]. The compound ex­tracted from the organic phase with Primene 81R sul­fate at 50 °C has been isolated and has been shown to have the stoichiometric formula 3[(RNH3)2S04] • [Fe(OH)S04]2- It has been shown that the extrac­tion of iron (III) occurs by the adduct formation re­action between primary amine sulfate molecules and the species [Fe(OH)S04]2. The influence of diluents of different types has been studied for iron (III) extrac­tion by Primene 81R from aluminium sulfate solutions [5]. The best results were obtained with diluents such as toluene and benzene. It was concluded that diluent should have a low dielectric constant, weak hydrogen-

CH3

I СНз— С —

СНз

СНз

-сн2—С-

/Нз

NH2

Primene JMT.

bonding capacity, high aromaticity, low surface ac­tivity, permitting the surface-active amine to concen­trate at the interface. These works were followed up by a similar study of Fe (III) extraction by secondary amine di(3,5,5-trimethylhexyl)amine published in [6— 8]. The compound isolated from the organic phase has the formula (R 2 NH 2 )2S0 4 • (Fe(OH)S0 4) 2 and two structures for the complex have been suggested based on hydroxy and sulfate bridging which explain the as­sociation of the complex in organic phase [8]. Attempts to explain the mechanism of extraction were made by studying IR spectra [9] and the influence of the solvent [10].

The extraction of iron (III) from aqueous sulfate so­lutions by didecylamine has been investigated by Baes [9] who first interpreted his results by assuming ex­traction of partially hydrolyzed species Fe(OH)S04. Another mechanism was suggested by Good et al. [10] who explained their observations by assuming that in the extraction by Primene 81R the following ion-

412 Chem. Papers 53 (6) 412—416 (1999)

Page 2: Extraction of Iron (III) from Aqueous Sulfate …Extraction of Iron (III) from Aqueous Sulfate Solutions by Primene JMT aD. SCHROTTEROVÁ and bP. NEKOVÁŘ a Department of Inorganic

EXTRACTION OF IRON(III) BY PRIMENE JMT

exchange reaction occurred

(RNH3)2S04 + 2[Fe(S04)2]~ =

= 2{(RNH3)[Fe(S04)2]} + S02-

The importance of the role of water in the extraction processes was stressed for the extraction of Fe (III) by primary amine N1923 and di(2-ethylhexyl)phosphoric acid (HA) [11]. The authors proposed that the extrac­tion of iron (III) from sulfate solutions is carried out through the formation of reverse micelle of water in oil type and that the primary amine works as a cationic surfactant. It was proposed that the mechanism of ex­traction and stripping involves the exchange of H 3 0 +

with Fe(H20)3~ at water/oil interface of the reverse micelle. The IR spectra showed that the sulfuric acid extracted into organic phase was in free form and did not coordinate with iron directly at its low concen­tration. The following extraction reactions were sug­gested

Fe3+ + SO^- + H 2 0 + mHA + n(RNH3)2S04 =

= {[Fe(OH)S04][(RNH3)2S04]n[HA]m} + H+

Fe3+ + SOj" + mHA + n(RNH3)2S04 =

= {[Fe(S04)A][(RNH3)2S04]n[HA]m_1} + H+

Fe3+ + mHA + n(RNH3)2S04 =

= {[FeA3][(RNH3)2S04]n[HA]m_3} + H+

Transmission electron microscopy was used to the study of a loaded organic phase (primary amine N1923 — octane) with ferric iron and H2S04 [12]. It was con­firmed that the iron—extractant complexes formed re­verse micelles under conditions of practical hydromet-allurgical extraction. The extraction of iron (III) by primary amine extractant is not only a simple ion-exchange process at the interface of the water/oil mi-croemulsion droplets, but also a rearrangement of the microstructure of organic phase plays an important role.

The most difficult problem associated with the sol­vents that have been studied for iron removal in sulfate solution is the stripping of iron from the organic phase so that the regenerated solvent could be reused in the process. One approach to this problem is the utiliza­tion of mixed solvent systems. The common feature of these systems is that the iron can be stripped by a dilute sulfuric acid. Several works are devoted to this problem [13—16], dealing mainly with systems con­taining primary amines and neutral donor solvents.

E X P E R I M E N T A L

Primene JMT (Rohm & Haas) was diluted to « 0.25 mol dm"3 solution in benzene with 5 vol. % of octan-l-ol.

The stock solution of iron was prepared by dissolv­ing iron (III) sulfate in sulfuric acid of required concen­tration.

Equal volumes of organic and aqueous phase had been equilibrated in a shaker at temperature (20 ± 2)°C for 10 min (it had been previously established that equilibrium was achieved after this time). The concentration of iron in aqueous phase was determined by complexometric titration or by the method of Reinhardt—Zimmermann. The concentration of sul­fate ions in organic phase was determined by titration with BaC104 (sulfonazo III as indicator) after strip­ping by the mixture 0.8 mol dm"3 NaN03 + 0.8 mol dm"3 HNO3 or gravimetrically in the mixture of or­ganic solution and acetone.

RESULTS A N D DISCUSSION

Presumpt ive Stoichiometry of Extract ion

In the following text only the sulfate medium in aqueous phase will be discussed. The hydrolysis ac­cording to eqn (A) is supposed

Fe2(S04)3 + 2H20 = Fe2(OH)2(S04)2 + H2S04 (A)

and both products of hydrolysis can pass into organic phase. For sulfuric acid the reactions (B) and (C) can be applied

2RNH2 + H2S04 = (RNH3)2S04 (B)

RNH2 + H2S04 = RNH3HS04 (C)

and the presence of free amine, amine sulfate, and amine hydrogensulfate is expected. Then it is sup­posed that only amine sulfate reacts with iron (III) species forming complexes in organic phase

m(RNH3)2S04 + Fe2(OH)2(S04)2 =

= (RNH3)2 mFe2(OH)2(S04)2 + m (D)

m = 2 is usually supposed. In our text these basic presumptions will be com­

pared with calculations for aqueous phase composi­tion and with experimental results for sulfuric acid and iron (III) complexes extraction.

Equil ibr ium in Aqueous Phase

It can be expected that the products of hydrolysis according to eqn (A) will undergo further conversions

Chem. Papers 53 (6) 412—416 (1999) 413

Page 3: Extraction of Iron (III) from Aqueous Sulfate …Extraction of Iron (III) from Aqueous Sulfate Solutions by Primene JMT aD. SCHROTTEROVÁ and bP. NEKOVÁŘ a Department of Inorganic

D. SCHROTTEROVÁ, P. NEKOVÁŔ

0.80

& 0.60 ^

£ 0.40 Ü

0.20

nnn

_o

~A

$

i

1

1

É

1

i

4

i

1 1

* -

1 0.00 0.50 1.00 1.50 2.00

c0(H2SO4)/(mol dm"3)

Fig. 1. Calculated concentrations of complexes Fe(S04)+ and Fe(S04)" (1) Fe(S04)+: О c°(Fe) = 0.025 mol dm" 3 ; О c°(Fe) = 0.075 mol dm" 3 ; • c°(Fe) = 0.125 mol d m " 3 . (2) Fe(S0 4 )J: A c°(Fe) = 0.025 mol dm" 3 ; Л c°(Fe) = 0.075 mol dm" 3 ; • c°(Fe) = 0.125 mol d m " 3 .

forming complexes of the Fe x (OH) y (S0 4 ) i 3 x y 2 z ) +

type. Even though there are some references to the existence of such complexes in the literature, the only quantitative data they give are stability constants ß for hydroxy and sulfato complexes [17, 18]

[ F e ^ O H ^ - ^ / W F e ^ n O H ľ W

3+1 [Fe(S0 4)rn = /yFed+][SOn (2)

for yx = 11, 21, 31, 41, 22, 43; z = 1, 2 together with the data for solubility of Fe (III) hydrated oxides.

The protonation constants for sulfuric acid

[ H s S O r 2 ] = ^ [ H ^ S O r 3 ] ^ ] (S = i ) 2 ) (3)

and dissociation constant of water

[H+HOH-] = tfw[H20] (4)

are also available. Solving eqns (1—4) together with mass balance

equations for Fe (III) and sulfate groups and equation of electroneutrality in the range c°(Fe) = 0.025—0.125 mol d m " 3 and c°(H 2S0 4) = 0.1—2.0 mol d m " 3 , we have found out that only the presence of two species Fe(S0 4 ) + and Fe(S04)^" is significant. The concentra­tions of all other species were negligible (calculations were carried out with the values of constants presented in work [18]). The fractions of these species are shown in Fig. 1 in dependence on initial concentration of sul­furic acid. It is evident that abundance of both species

E?

(I -Tí

l L—'

2.80

2.40

2.00

1.60

1.20

080

7 '

-

_

7 V

-x -

. .

,

V

I • I ' I ' I

(RNH3)2S04

w V v v V

RNBj.HSQi

I , I , I , I

'

-

-

-

-

-

v -

, 0.00 0.40 0.80 1.20 1.60 2.00

c°(H2S04)aq/(mol dm"3)

Fig. 2. Extraction of sulfuric acid.

does not change within the studied intervals of Fe (III) and sulfuric acid concentrations.

If a neutral molecule has to pass into organic phase, the transfer of a hydrolyzed species formed in accor­dance with eqn (A)

2Fe(S0 4 ) + + 2 0 H - = Fe 2 (OH) 2 (S0 4 ) 2 (E)

or the transfer of a neutral molecule formed from both species can be expected

F e ( S 0 4 ) + + F e ( S 0 4 ) " = Fe 2 (S0 4 ) 3

P r o t o n a t i o n of Amine

(F)

The results of experiments with the extraction of sulfuric acid are shown in Fig. 2. It was mentioned above that according to eqns (B) and (C) free amine RNH 2, amine sulfate (RNH 3 ) 2 S0 4 , and amine hy-drogensulfate RNH3 -HS0 4 can be present in organic phase. The prevailing forms may be estimated from the proportion c'(RNH 2)/c /(S0 4~) (c' denotes con­centration in equilibrium organic phase).

Ext rac t ion of I ron (III)

The equilibrium concentrations (proportions of concentrations) for various initial concentration of sul­furic acid are illustrated in Figs. 3—6. The proportions of concentrations in a loaded organic phase enable us to suggest the composition of formed complex.

According to eqn (D) the limiting proportions are

c'(RNH2)/c'(Fe) = m

414 Chem. Papers 53 (6) 412—416 (1999)

Page 4: Extraction of Iron (III) from Aqueous Sulfate …Extraction of Iron (III) from Aqueous Sulfate Solutions by Primene JMT aD. SCHROTTEROVÁ and bP. NEKOVÁŘ a Department of Inorganic

EXTRACTION OF IRON(III) BY PRIMENE JMT

12.00

^ 8.00-o

V 4.00

N>

t

I

I

о

I

oo •

I

o o •

I

-

-

Я.

I

Fig .

0.00 0.00 _ 0.20 0.40

c(Fe)aq/(mol dm"3)

3. Extraction of Fe(III) from neutral solution.

0[c(RNH 2 )/c(Fe)]or g ; • [c(S0 4 )/c(Fe)] 0 r g .

0.60

12.00

^ 10.00 k

о 8.00

^ 6.00^

4.00

2.00

I

о

о _ •

-

I

я

I

Я

l

Я

I

t

I

#

I

#

I

#

-

-

#

0.00 0.05 0.10 0.15

c(Fe)aq/(mol dm'3)

0.20

Fig. 5. Extraction of Fe(III) from acidic solution (c°(H2SC>4)

= 0.5 mol d m " 3 ) . О [c(RNH 2 )/c(Fe)] 0 r g ; • [c(S0 4 )/

c(Fe)]org.

О

10.00

8.00 -

6.00

У 4.00

2.00 -

0.00

I

- о

- Я

i

i

• о

I

• о

I

• о

I

• о

I

-

-

• o -

-

0.00 0.02 0.04

c(Fe)aq/(mol dm"3)

0.06

Fig . 4. Extraction of Fe(III) from moderate acidic solution

( c 0 ( H 2 S O 4 ) = 0.1 mol d m " 3 ) . О [c(RNH2)/c(Fe)]org;

• [c(S0 4)/c(Fe)]or g.

c'(SO*-)/c'(Fe) = (2 + m)/2

c'(RNH2)/c'(SC>4~) = 2 W ( 2 + rn)

(5)

If we suppose the transfer of a neutral molecule ac­cording to eqn (F) as well as

n ( R N H 3 ) 2 S 0 4 + Fe 2 (S0 4 ) 3 =

= ( R N H 3 ) 2 n F e 2 ( S 0 4 ) 3 + n (G)

then the corresponding limiting proportions are

c ' (RNH 2 )/c ' (Fe)=n

c ,(SO^-)/c ,(Fe) = (3 + n)/2 (6)

c'(RNR2)/c'(SOl-) = 2n/(3 + n)

Extract ion from N e u t r a l Solutions

Acid needed for amine salt formation is released by hydrolysis according to eqn (A). If all the amount of Fe (III) complex was passing into organic phase, then according to eqn (D) (together with (A) and (B)) the only value of m could be m = 1. This corresponds to the first points on the left in Fig. 3. If, considering the products of hydrolysis (eqn (A)), more sulfuric acid than Fe(III) complex is passing into organic phase, then the complex in organic phase can correspond to m = 2. Experimental values at higher iron concen­trations in Fig. 3 are in a good agreement with this assumption. A change of colour of the organic phase was observed for Fe(III) concentration up to c(Fe) = 0.04 mol d m - 3 . This indicated a transformation of the complex in organic phase. A precipitate in aqueous phase was observed within a narrow range of Fe (III) concentration around the above-mentioned value.

Extract ion from Acidic Solutions

The results in Fig. 4 (moderate acidic solution) show that the limiting proportions of concentrations approximately correspond to the complex according to

Chem. Papers 53 (6) 412—416 (1999) 415

Page 5: Extraction of Iron (III) from Aqueous Sulfate …Extraction of Iron (III) from Aqueous Sulfate Solutions by Primene JMT aD. SCHROTTEROVÁ and bP. NEKOVÁŘ a Department of Inorganic

D. SCHROTTEROVÁ, P. NEKOVÁŔ

b

3 00

40.00

3 0 . 0 0 -

2 0 . 0 0 -

Fig.

10.00

0.00 0.04 0.08 0.12 0.16 0.20 c(Fe)aq/(mol dm"3)

6. Extraction of Fe(III) from strong acidic solution (c°(H2S04) = 1.8 mol dm" 3 ) . O [c(RNH2)/c(Fe)]org; • [c(S04)/c(Fe)]org.

eqn (D) for m = 2 and are approaching the concentra­tions in Fig. 3. Higher concentration of SO^ - groups could indicate partial formation of complex according to eqn (G) for n = 2.

The results in Fig. 5 (higher concentration of acid) show that the limiting proportions of concentrations could correspond with the complex according to eqn (D) for m = 2 supposing that the amine hydrogen-sulfate is present as well, or the limiting proportions correspond with the complex according to eqn (G) for n = 3, or of a more complicated complex than in eqns (D), (G) is formed. The same conclusions can be done from the results in Fig. 6 (high concentration of sulfuric acid).

C O N C L U S I O N

The results of experiments proved that it is con­venient to extract Fe(III) from the moderate acidic solution (if the free amine is used as an extraction agent) or from the neutral solutions (if the amine sul­fate is used). Under such conditions the proportion of molar concentrations of amine and Fe (III) in a loaded

organic phase is low and is approaching the value 2. The presumed stoichiometry of extraction, formu­

lated on the basis of existing literature, explains quite well the extraction from neutral and moderate acidic solutions. The complexes in organic phase, formed at higher concentration of sulfuric acid in aqueous phase, could be more complicated and need not be in agree­ment with our presumptions.

R E F E R E N C E S

1. Schultze, L. E., Eisele, J. A., Morimoto, M. Т., and Bauer, D. J. U.S. Bur. Mines, Rep. Invest. 8358, 1— 23 (1979).

2. Chou, K. S. and Lin, С. C , Hydrometallurgy 15, 391 (1986).

3. Alguacil, F. J., Amer, S., and Luis, A., Hydrometallurgy 18, 75 (1987).

4. Alguacil, F. J., Amer, S., and Luis, A., Hydrometallurgy 15, 337 (1986).

5. Alguacil, F. J., Amer, S., and Luis, A., Hydrometallurgy 18, 65 (1987).

6. Cattrall, R. W. and West, B. O., J. Inorg. Nucl. Chem. 28, 3035 (1966).

7. Cattrall, R. W. and West, B. O., Aust. J. Chem. 20, 669 (1967).

8. Cattrall, R. W. and West, B. O., Aust. J. Chem. 21, 2865 (1968).

9. Baes, С F., U.S.A. E.C. Report, ORNL-1930 (1955). 10. Good, M. L., Bryan, S. E., and Juge, F., Inorg. Chem.

2, 963 (1963). 11. Liu Huizhou, Yu Shuqiu, and Chen Jiayong, Se­

lected Papers of Engineering Chemistry and Metallurgy (China) 4, 67 (1993).

12. Liu Huizhou, Li Wenguang, and Chen Jiayong, Se­lected Papers of Engineering Chemistry and Metallurgy (China) 7, 81 (1996).

13. Chen Jiayong, Yu Shuqiu, Liu Huizhou, Meng Xiquan, and Wu Zhichun, Hydrometallurgy 30, 401 (1992).

14. Meng Michael X., Yu Shuqiu, and Chen Jiayong, Hy­drometallurgy 41, 55 (1996).

15. Yu Shuqiu and Chen Jiayong, Hydrometallurgy 22, 183 (1989).

16. Ismael, M. R. C. and Carvalho, J. M. R., Proc. ISEC '96, Vol. 1, 599 (1996).

17. Baes, C. F. and Mesmer, R. E., The Hydrolysis of Cations. Wiley, New York, 1976.

18. Kotrlý, S. and Šúcha, L., Handbook of Chemical Equi­libria in Analytical Chemistry. Wiley, New York, 1985.

416 Chem. Papers 53 (6) 412—416 (1999)