31
f J 1 J 1 NATIONAL ADVISORY CO MMI’M’EE FORAERONAUTICS TECHNICALNOTE 2825 A COMPARATIVE EXAMINATION OF SOME MEASUREMENTS OF AIRFOIL SECTION LIFT AND DRAG AT SUPERCRITICAL SPEEDS ByGeraldE.NitzbergandStewartM. Crandall Ames Aeronautical MoffettField, Laboratory Calif. Washington ..—. November 1952 . ... . . . .. . ... . .. .. . .. . . . . .. . . .. -. -,.. . ... .. . ------ _, ---- https://ntrs.nasa.gov/search.jsp?R=19930083484 2018-07-16T20:16:46+00:00Z

f NATIONALADVISORYCOMMI’M’EE - NASA · NATIONALADVISORYCOMMI’M’EE FORAERONAUTICS ... ZF IwcAm 2825 9 2. ... and0.12).Eachoftheairfoilsectionsoftheabovegrowswas

  • Upload
    lengoc

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

fJ

1

J

1

NATIONALADVISORYCOMMI’M’EEFORAERONAUTICS

TECHNICALNOTE 2825

A COMPARATIVE EXAMINATION OF SOME MEASUREMENTS OF AIRFOIL

SECTION LIFT AND DRAG AT SUPERCRITICAL SPEEDS

By GeraldE. NitzbergandStewartM. Crandall

Ames AeronauticalMoffettField,

LaboratoryCalif.

Washington..—.November 1952

. ... . . . .. . . .. . . . . . . .. . . . . .. . . .. -. -,.. . . .. . . . ------ _, ----

https://ntrs.nasa.gov/search.jsp?R=19930083484 2018-07-16T20:16:46+00:00Z

TECHLIBRARYKAFi,NM

IF

I!lnllllllullllulnlu00b5&ltl

N4zTow mnsoRY cohmtm FORAERONAUmCS

TECHNICALIWI!E2825

A COMPARATIVEEXAM12WTTONOF SOME~S OF‘AIRFOIL

SECTIONLIFTANDDRAGAT SUPERCRITICALSPEEDS

.

By GeraldE. NitzbergandStewartM. Cran@ ‘

SUMMARY

A studywasmadeoftheliftanddragcharacteristics>asdeter-minedfromwind-tunneltests=ofa numberof airfoilsectionsatsupercriticalMachnumbers.

Semiempiricalcorrelationsof supercriticaldragdataweremadefora familyof symmetricalairfoilsandforseveralseriesof camberedairfoilsat smallandmoderateanglesofattack.Thecorrelationsareofpressure-dragriseperunitchordlengthasa functionofMachnumler.Fortheairfoilscomidered,thereisan essenthlJyuniqueshapeofthedrag-risecurvewhentheangleofattackisthatformaximumdrag-divergenceMachnwnber.Theprimaryeffectof changingtheairfoilshapeapparentlyisto changetheMachnumberatwhi’chthedragrisebegins.Nomeanshavebeendevisedforappl@ngtheseresultstothepredictionof ~ercriticaldragcharacteristics.

Theliftstudyconsistedprimarilyof an examinationofthese’pa-ratenormal-forcecomponentsof theupperandlowersurfacesof severalairfoilsections.Oneof themostsignificantobservationstobemadeconcerningtheliftdatastudiedisthat?atmoderatipositiveanglesofattackandintherangeofMachnumbersforwhich’supersonicflowoccurredoveronlytheuppersurface,thereappeareda markedchangeintherateofvariationwith(1- M~-LPof theco~onentofthenormal-forcecoefficientcontribu~dby thelowersurfaceas thedrag-divergenceMachnumberwasexceeded.Thischangewasmostabruptforthickersectionsandistheprimarycauseof thelossofliftat supercritical.speeds.

IN’IRODUC!ITOTJ

Theoreticaltreatmentoftheflowofa compressiblefluidaboutanairfoilsectionat supercritical,stisonicspeedsina rigorousmannerhasmetwithgreatdifficulty.Furthermore,theimportanceof shock-waveboundary-layerinteractionintransonicflow mightinvalidateany

.

...— —.-...————- —— -.— —

—.— -.. —.— .—— -- ..— . . —

2 ,, micAm 2825

theorywhichassumestheexistenceof inviscidflow. Consequently,experimenthasbeentheprincipalsourceof informationconcerningthebehaviorofa-oil sectionsat supercritical.,wibsonicMachnunibers.Sectionforcecoefficientsfora Lxrgenuniberof airfoilsectionshavebeenmeasuredat supercriticslMachnumbers.Thesedataindicatethatbetweenairfoflsectionsthere~e importantdifferencesinthemia-tionwithMachnumber,at constantangleof attack,of liftanddragcoefficients.Fora givenairfoilsectiondifferencesexistbetweenthevariationofforcecharacteristicswithMachnrmiberatvariouaangleeof attack.Onepurposeofthisreportistopointoutsomesystematictrendsinthelift-anddrag-coefficientvariationwithMachmniberfora nwiberoffamiliesofairfoilsectionsat supercriticalfree-streamMachimibers.

Theflowchaugesassociatedwiththedragriseof airfoilsectionsat supercritic&L$subsonicspeedswerestudiedinreference1. Itwasfoundthattheinitialsupercritical.dr6grisewasprimarilyan increaseinpressuredragduetothevariationwithMachnumberoftheairfoilpressuredistributionovertheregionsurroundingthesonicpoint.Ameansforcoqsringthetransonicpotentialflowfieldsaboutthinwingshavingsimil=shapesbutdifferentthickness-chordratioshasbeenpresentedintheformof similsri~rules(e.g.,references2and3). In thisreportoneformof theses~ity rulesieappliedto thesectiondragdatameasuredfora familyofairfoilsat super-critical.,stisonicWch number-..Theshortcomingsof theserulesarediscussedanda semieqdricalcorrelationof&ragdataispresented..

Inreference1, itwassuggestedthattheliftbreskforairfoilsectionsat supercriticsl,subsonicspeedsandatpositiveanglesofattackmaybe duepr~~ @ pressure~stributionchangesonthe.lowersurface.Thelossinliftisnotproducedbythepressurealtera-tionsintheportionoftheflowfield(uppersurface)inwhichsuper-sonicvelocitiesexist.Theinitiallossinliftresultsfromlower-mrfacepressure+istributionchangeswhichweretentativelyattributedto effectsof thelargewakeaccompanyingthesupercriticaldragrise.If thishypothesisiscorrectthen,inasmuchas suchwakeeffectsarenotincludedinthepotentialtheoryonwhichthetransonicsimilarityrulesarebased,theseruleswouldnotbe expectedtobe usefulas aguidefordirectlycorrelatingsqpercriticallift@hsracteri.sties.Theliftstudyinthisreportconsistsprimarilyofan examinationoftheseparateliftcomponentsof theupperandlowersurfacesof severalairfoilsections.

zwcAm 2825

NoTA.moN

— ——

3

c

Cd

C%r

cdP

Acd

CT

c~

Cnz

Cnu

‘K

Kc~

M

%

%

Mk

.‘P

P.

chordofairfoilsection0

airfoil-sectiondragcoefficient -.

airfoil-sectiondragcoefficientat critic&LMachnuniber

airfoil-sectionpressure-dragcoefficient

incrementofairfoii-sectiondragcoefficient(cd- c~r)

airfoil-sectionliftcoefficient-

airfoil-sectionnormal-forcecoefficient

normal-forcecoefficientof-airfoil-sectionlowersurface

normal-forcecoefficientofairfoil-sectionupper~face

transonic.similsxityparameter

transonicshilarityparameterforcriticalMachnu@er.

free-stresmMachnumber -..

criticalMach’nuuiber

drag-divergenceMachntiber,free-streamMachnuuiberatwhich

dCd—has valueof 0.1m

correlationMachnumber

Machnumberatwhichsonicvelocityisreachedat airfoilcrest(pointon surfaceatwhichtangentto surfacei~infree-streamdirection)

totalpressure

9. free-streamdynamicpressure

. .

.—_ —. —’ — ————.—.. —

. _._— .—. .— —— —-——— --

4 NACAm 2825

t -imum thicknessofairfoilsection

x chordwisedistancefromairfoilleadingedge

Y ordinateof atioti

a airfoil-sectionangleofattack

% angleof attackatwhichairfoilsectionhasthehighestdra-g-divergenceWch number

DATAANDSCOPE“

Thedatausedinthisstudywereobtainedfromreferences475,6, I’, and8. Theairfoilsectionsconsideredarebothcaziberedanduncaniberedandareofthe.NACAfour-digitseries,five-digitseries,* 6 series.NO dataon airfoilsectionswithdeflectedflaPs$amoflsectionsharlngreflexedcsmiberlines,orairfoil.sectionsdesignedforsupersonicapplicationarestudied.Thethiclmess-chOrdratioof theairfoilsectionsconsideredrangesfrom0.06to0.18.

Thedatapresentedinreferences5 and8 are tromtwo-dimensionaltestsmadeintheAmes1-by 3-1/2-foothigh-speedwindtunnelandhavebeencorrectedfortheeffectsof thetunnelwallsby themethodspre-sentedinreference9. FortheMachnwherstobe considered,theReynoldsntier ofthesetestswasabout2 million.Thedataofrefer-ences4,6, and7 wereobtainedfromtestsoffinite-spanmddelsintheD’VL(2.7meterdiameter)high-speedwindtunnel.However,thesemodelswereequippedwithendplatesandtheanglesofattackwerecorrectedto correspondto infinitespan. Correctionswerealsoappliedto converttheexperimentalvaluesto free-airconditions.TheReynoldsn-r forthesetestswasabout6 millionfortheMachnunibersstudiedin thisreport.

Thequestionarisesas to theaccuracyof thetunnelcorrectionswhichwereappliedto thesewind-tunnelmeasurementsmadeathighspeeds,especiallywhentherewashighdrag,flowsep-tion~md a .largewake. AtMachnumberslowerthanthoseatwhichtheabruptsupercriticaldragrisebegan(dragdivergence),onlytiesolidblock%eofthemdels wasimportantandthesmallsizeofthemodelsrelativeto thewind-tunnelcross-sectionareasinsuredthatthetunnel-walJ-correctionsweresmallandpredictablefromtheory.However,athigherMachnumbers,withtherapidincreaseindragcoefficient,thecorrec-tionfortheeffectsofthemodelwakebecamelarge.Theeffectsofcompressibilityonthewake-blockagecorrectionweredeterminedbymeansof thePrandtlrulewhichmaynotbe applicable.Infact,an

.— _—— —.—

— ———.

L

IfflCAm 2825 5\

ew?erimentaJ-studybyFeldman(reference10)showsthatwhenthereisa relativelylargedragcoefficientdqetopressuredragtheconven-tionaltunnel-wallcorrectionssretoosmall.1The.Machnumbersshowninthefiguresofthepresentreportmaybe inerrorby seyeralpercentwhichimposesa limitationontheusefulnessofthesedataforquantita-tiveanalyses.

T!ransonicS3ndlarity”Rule

Thetransonicsixuilari@rules(e.g.,references2 and3) relatithetransonic’potential’flowfieldsaboutthinbodieshayingsimilaraerc@namicshapesbutdifferentthickness-chordratios.Theconditionnecessaryfora seriesofbodiestohave

Y& = f(x/c)t/c

Theflowsabouttwobodieshavingshapessatisfiedaresimilar(i.e.,representedpotential-flowequation)when,according

ismet.(forthe

.

similaraerodynamicshapesis

suchthatequation(1)isbyto

k

Moreover,theSsalevalueof

(1)

thesamenondimensionalreference3, thecondition

= ‘K (2)

pressure+3ragcoefficientsofthetwobodiesK) arethenrelatedby

(t/c)5@. . NM2/gcap .

=(t/c)-

1 2

‘ThetheoreticalblockagecorrectionsappliedbyFeldmanarebasedontheworkofThem(referencen). Lateranalysishasledto somerevisionsofthesetheoreticalcorrections.However,theserevisionsdonotaffectsignificantlytheresultsyresentedbyFeldman.

——-——. —. —.

. . .

6

Fora familyofsimilarlyshapedisthusglvenbytherelation

M2i3cdp

(t/c)=@

NACA!lN2825

bodiesthepressure4ragcoefficient

= F(K) (3)

Thebasicassumptionsmadeinthederivationofthetransonicsimilarityrulesarethattheflowisinviscidandthatthevelocityat eachpetitinthefluidisnotfardifferentfromthelocalveloci~of sound.Theflowstobe consideredinthisreport(woundairfoilsat supercriticsl,mibsonicspeeds)arenotentirelyinaccordwiththeseassumptions.Theflowaboutairfoilsectionsat supercriticalspeedsisinfluencedby thepresenceof shock-waveboundary-layerinteraction.Buttheapplicabilityofthesimilarityruleismoredrasticallycurtailedbythefactthatthedragriseofairfoilsofmoderatethichess-chordratioorofthinairfoilsatmoderateanQesof attackstartsatfree-streamMachnumberssubstantiallylessthanunity.Moreover,airfoilsectionsdesignedforsubsonicspeedapplica-tionshavelargedisturbances-atthebluntleadingexs whichproducestagnationpoints.Ontheotherhand,theflowfieldisapproximatelypotentialfortheinitis2portionofthesupercriticsd.drag-risecueforwhichtheviscouslossesaregenerallysmallandessentiallyinde-pendentofMachnuuiber.Theinitialsupercriticaldragriseisprimarilyan increaseofpressuredragduetothechangeofpressuredistributionintheregionwheretheflowkelocityisapproximatelysonic;therefore,itcannotbe concludeda priorithatthepresenceofa stagnationregionandof shock-waveboundary-layerinteractionobviatestheusefulnessofthesimZLsri@rules.

OneformofthetransonicsimilsrityrulesW nowbe testedhymeansof someexperimentaldragdatafora familyof symmetricalairfoilsectionsat zeromgle ofattack.

[email protected] Similari~Rules

Ingeneral>airfoil-sectiondragcoefficientsaredeterminerifrumwake-surveyorbalancemeasurementsand,conseqyenkly,includeboth \skinfrictionandpressuredrag.Sincethetransonicshilarityrulesapplytothepressuredragonly,itisnecessaryto subtracttheskin-frictiondragfromthemeasureddrag. Thedragof commonlyusedairfoilsectionsat smsllanglesof attackandat subcriticalMachznmbersisessentiallyindependentofMachnuniberandduealmosteiltirelyto skinfriction.At supercriticalspeeds,theskin-frictiondragmaybe somewhatlowerthanat subcriticalMachnumbersbecau$e“of theincreasedchordwiseextentofthefavorablepressuregradient

—— ..—— —.

mcA m 2825 7

overtheforwsrdportionoftheairfoilandtheincreasedstabilityofthelsadnarboundarylayer(reference12),whichmaycausethetransi-tionpointtomoverearward. However,becauseofthedifficultyinestimatingthevalue(probablysmQl)of‘thedecreaseinskin-frictioncoefficient,itisassumedinthefollowingcorrelationthattheskin-frictiondragcoefficientatallsupercriticalMachnmibersisequalto theexperimentallydeterminedtotalairfoil-sectiondragcoefficientat thecriticalMachnuniber.Theremainingportionofthedragcoeffi-cientat supercriticalMachnumbersisconsideredtobe thepressure-dragcoefficient,thatis,

High-speeddragdataforsymmetricalNACAfour-digit-seriesairfoilsectionsof 6-}9-Y~-z 15-S~ 18-m=nt-chora thic~essj eachat 0°angleofattack,arepresentedinreferenceh. Valuesofthe

M2%Cdparameter— calculatedusingtheexperimentaldataof

(t/c)@N-1encek areplotted(fig.1)againsttheparameter

(M%/c)2is

refer-

as

suggestedby oneformofthetransonicshilari~rule. (Seeequa-tion(3).) Thismethodofplottingthedataprovidesgoodcorrelationexceptforthe6-percent-thicksection,andthemaximumdifferencebetweenthecurveforthissectionandthatfortheg-percent-thicksectioncorrespondstoa possibleerrorin+fachnu?iberofonlyabout2 percentat&pressuredragcoefficientofabout0.02.

Theexcellenceofthiscorrelationmustbe regsrdedas somewhatfortuitousbeca~etheformof the’similarityparameterusedhappensto correlatethecriticalMachnumbersofthisfamilyofairfoilsec-tions. ThisformoftheparameterdoesnotcorrelatethecriticalMachnumbersofellipsesorlow-dragairfoils.Fromtheoreticalcon-siderationsitcanbe arguedthattherearetwo%aturallfformsof thes~larityparameter,thatpresentedinequation(2)withthe M-4/3factoreitherincludedordeleted.ThesetwoformsarisebecauseM2eithercanbe retainedorsetequalto1 inthedifferentialequationfortransonicflow,thebasicparameterbeing(M2- 1). Forthedatapresentedihfigure1,retainingthefactor’M-4@ isessentialtothecorrelationof criticalMachnuuiber;theothernaturalformof thesimilaritypsxameterdoesnotprovidegoodcorrelationof thissuper-critic&Ldragdata.In general,neithernaturalformofthesimil=i~parameterprovidesgoodcorrelationofthecriticallfachnumbersoffamiliesofairfofis.Although-thecriticallfachnmiberisnotthe ‘

. Machnuniberatwhichforcebreaksoccur,it isthelowerlimitofthetrdhsonicrsmge.Thedegreeofcorrelationof criticalMachnwiberisa measureoftheaccuracyofthesimil=ity?mlefora givenfamilyofairfoilsat Machnumbersmilwtantiallybelow1.

. .— ._. ___ —-—— —_—_ ____

-.. —. .. —--- -—.- ——— —— _—-— .——

8 mcA m 2825

Inreference8 thesupercriticaldragdatafor16 camberedairfoilsat zeroangleofattackwerecorrelatedbothempiricallymd accordingtoa modifiedformofthetransonicsimilarityniles.Theairfoilsconsideredhaddifferentthickness-chordratiosbutallhadthessmecamberlineandhencewerenotsimilar.In anattempttoadjustforthedisshilan“@ inshape,thevariableK wasreplacedby K - K&.Sucha substitutionwouldbeconsistentwiththe,transonictheoryifKCr wereconstant;however,asw pointedoutintheprecedingpara-=aph~~r actuallymaynotbe constantforsimilarairfoils.Thismodificationofthesimilari~parameter,Whichledto satisfactory~orrelationofthedataconsidered,wassomewhatarbitrsrybecausetheParsmeter&r (notconstantfortheseairfoils)wasadjustedtotheactualcriticalMachnuubers.Thisapplicationofthesimilarityrulesindicatesthatformsofthesimilari~parameterswhichprovideanaccuratecorrelationof criticalMachnuniber,eveniftheseformsaresynthetic,smeusefulforcorrelatingthesupercriticaldragcharacter-isticsofairfoilsections.

Thecritical~ch nunbercanbecalculatedtithreasonableaccuracyby meansofpotentialtheoryplustheK&rm&n-Tsiencompressibilitycorrection.Thusitis-possibleto calculatecriticalMachnumbersandthenselectparticularformsofthesi.milari~parameterwhichareusefulfora givenfsmilyofairfoils.In derivingtransonlcsimihxrityrulestheassumptionismadethatvelocityperturbationsaresmall,whichmeansthattheJ@chnuuibersthroughouttheflowfielddifferonlyslightlyfromunity.Hencefactorssuchas M orM2 are,totheaccuracyofthetheory,equalto1 andcanbe insertedor deletedatwill. Itisthusappsmentthatthereareanunlimitednunherofformsofthesimilarityparametersfromwhichto chooseonewhichcorrelatescriticalMachnuibersofa givenfamilyofairfoils.

SemiempiricalCorrelationofExperimentalDragData

An alternativemethodforcorrelatingdragdatais suggestedbytheanalysisofreference1. In reference1 theinitialsupercriticaldragriseofanairfoilwasrelatedtotwopressure-distributionchanges:

1. Atpointsaheadoftheairfoilcrest(thepointontheairfoilatwhichthesurfaceis~ent tothefree-streamdirection)forfree-streamMachnumbersgreaterthanthedrag-divergenceMachnumber,thelocalMachnuniberwasessentiallyconstantforincreasingfree-stresmMachnuniber.TheseconstantlocalMachnumbersresultinincreasinglypositivelocal.pressurecoefficientsontheforwsxdportionoftheairfoil,andconsequentlyan increaseindragcoefficient,asthefree-streamMachnumberisincreasedbeyondthatfordragdivergence.

.— . .——.—

I ,

ZF IwcAm 2825 9

2. Themipersonicregionbehindtheairfoilcrestincreasesinchordwiseextenta.sthefree-streamMachnumberisincreasedbeyondthatfordragdivergence.Thisresultsina decreaseinpress&ecoef-ficientovertherearportionof theairfoilandhencean increaseindragcoefficient.

\BoththesefactorsdependontheMachnuniberdistributionoverthe

airfoilsection.Thissuggestsrelatingthedragrisetothetotal-pressureof thefreestreamratherthanthedynamicpressure,thatis,A(cd~Po) = (cdq/Po)M- (cdq/Po)%rDAccordingly$thedatapresen~d

infigure1 were~lottedon curvesof A(cdq/p) versusM. Itwas8observedthatthecurvesfortheseveralalrfo s weresWar. h

ordertoillustratethesimilarity,thecurvesweresuperposedbyarbitrarilyshiftingtheMachnumberscalesothattheincrementinMachnumberislueasuredfromthatMachnumberMk atwhichA(cd!l/po).equals0.008(fig.2). Asidefromthesomewhatmorerapidinitial@ag riseofthethickestairfoilsection(possiblydueto sep=ationeffects)thesimilarityismmked. Thecurveswerematched.ata pointcorrespondingtoa relativelylargedragriseinordertominimizeerrorsintroducedby theassumptionthatabovethecriticalMachnmibertheskin-frictioncoefficientis independentofMachnuniber.

FortheEl@ 0015airfoilsection,anothersetofmeasurements(mfemnce’~ iSalsoplottedonfigures1 and2. Thesetitswereobtainedata Reynoldsnumberofabout2 millionas comparedwitha&ynoldsnuniberofabout6 millionforthedatafromreference4. ~differencesinthesetwosetsofdataareprobablyprimarilyduetoMachnumbererrors-(seesectionDataandScope) [email protected] methodofcorrelationusedinfigure2 absorbsMachnumbererrorsinthequantity~.

Dataforotherseriesofsymmetricalairfoilsectionsof similarshapebutclifferentthickness-chordratioswerenotavailable.Inreference8 axepresenteddragdataforlUICA63-2xxP64-2xx,65-2xxPand66+XXairfoilsectionsatvariousanglesofattack.Foreachgrouptherearedataforfourthickness-chordratios(0.06,0.08,0.10,and0.12).Eachoftheairfoilsectionsoftheabovegrowswascamberedwithan a = 1.0 typemeanlinefora designliftcoefficientof0.2. At 0°singleofattackthetheoreticalvaluesforvelocitiesovertheuppersurfaceofan airfoilwithan a = 1.0 typeme= l~eareuniformly~eaterthsmthevelocitiesoverthelowersm’face.It

, isthereforeapparentthatat this-angleofattackthesupercritical-dragriseduetoflowovertheuppersurfacewiJlbeginata lowerMachnunberthanthedragrisecausedby theflowoverthelowersurface.Theangleofattackforwhichthedragrisedueto theflowovereaasurfacebeginsat thesameMachnumber(a= 0°forsymmetricalairfoils)is obviouslythatsingleofattack~ forwhichtheinitialdragrise

.. ——- _______ __ ..—. —— —.——_

——.— .—— .—-_L_ ——. —

10 NACATN 2825

startsatthehighestMachnumber.Fortheafore-mentionedNACA64-65-, and66-seriesairfoilsectionsthisangleofattackisabout+8 ●

(ThedatafortheNACA63 seriesindicatea valueof ~ closerto0°thanto -2°soforthesakeof simplicitythesesectionswillnotbeincludedinthecorrelations.)Itmightbe expectedthatthedatafortheseairfoilsat -2°angleofattackwouldbe comparabletothoseforthesymmetrical~CA OOXXseriesat0°angleofattack.Theresultsof theanalysisarepresentedinfigure3. No significantdifferencebetweenthethreeairfoilgroupsisapparent.Furthermore,thefairedcurvedrawnthroughthesedataisthesameas thatdrawnthroughthedatapresentedinfigure2.

Someadditionaldata(reference6)forcmiberedairfoilsattheangleofattack(forwtously~ . -2°again)formssdmumdrag-divergenceMachnumberarepresentedinfigurek. EachsectionhadanNACA230meanlineandthesamethicknessdistributionasanNACAfour-digit-seriesairfoil,ofequalthickness-chordratio.Forthesecamberedairfoilsat theangleof incidence~ thepressuredistribu-tionontheupperandlowersurfacesdifferedmarkedlyfromeachother;nevertheless,thesedataareinreasonableageementwiththefairedcurveobtainedfortheuncamberedMCA fou-digit-seriesairfoilsat0°angleofattack.

Inreference1, itwasshownthattheMachnumberatwhichtheabruptsupercriticddragrisebeginsisassociatedwiththatMachnumberMP forwhichsonicvelocityisreachedattheairfoilcrest.Valuesof MB calculatedby appl@ngthePrandtl-Glauertruletothetheoreticalpressuredistributionsobtainedframreference13arecom-paredwithvaluesof Mk inthefollowingtable.Ifa systematicvariationof l& -Mp withairfoilshapeorthickness-chordratiocouldbe establisheditwouldbe possibletopredictthesupercriticaldragriseofotherrelatedairfoils.ThetabulatedvaluessuggestthatthisMachnumberincrementvarieswiththickness-chordratioandairfoilfslnily.However,sincethisvariationisof theexperimentaluncertain~inthedeterminationofnumberinthesetests,itisnotpossibletousea basisforpredicting~.

samemagnitude asthe IthecorrelationMachthesedataindevising

I?ACA‘%

MP% - ‘~ ReferenceF=,airfoilsection(deg) calculated

00060009oo12001500150018

0.888 0.845 0.043 4 2.863 ;7“; .065.820 .055..805 .742 .063.795 .742 .053

‘1.774 .702 .072 ;

—_—— —-——.

NACAT$J2825

NACA % QM~ Mk -l@ R_—-

airfoilsection(deg) calculated ceFigure——&l-206641-208641-210641-2X2

6~-208651-2106y2r2

6~-206661-208661-210

230092301223015

0.885.861.841.830

.867

.853

.828

.888

.867

.855

0.790.770● 7%.730

.769● 755.730

.8X

.785

.768

0.095.091●091.100

.098. .098

.098

.076

.082

.087

.868 .796 .072

h

4.839 ● 757 .082.804 .727 .077

Thesupercriticaldragriseofan airfoilsectionat anyangleofattackdifferingsignificantlyfrom.% mightbe ~ected to%e lessrapidthanthatat ~ sincethesupersonicregionson theupperand

, lowersurfacesdonotdevelopsimultaneous~.Dataforthepreviouslyconsideredgroupsofairfoilsectionsat anglesof attackgreaterthanq arepresentedinfigures5, 6~ 7,and8. In eachfigurethedataforthevariousthickness-chordratiosappeartodefinea singlecurveForallmoderateanglesofattackthecurvesfortheNACA00XXatifoilsectionsares=lar tothosefortheNilCA230series.In ordertoillustratethissimilari@thesamecurve(differingslightlyfromthecurvein fig.5)hasbeenplottedInfigures6 and8. ThedatafortheNACA6-seriesairfoilsforthetwomoderatesinglesof attackdefineonecurvewhichdiffersfromthatfortheNACA00XXandNACA2+30-seriesairfoilsections.

Valuesof Mk chosenonthebasisof thee~erimentsldataare~resentedinthefollowingtable:

0006 2 0.860 0.763 0.097 - 4 60009

!

.853 ‘ J:: .120oo12 .804 .098 IC015 .804 .685 .llg0015 ●777 .685 .092

‘1”5

0018 .773 .66Q .113 k

———.— —-. —. —— .— —

—. —— -.. ——. .—.-. . ..— ————.—.-

12 NACATN2825

WA % %MB ~ -Mp ~~ F=.

afioilsection(deg) calculated——00090012001500150018

2300923032?230152300923(X.223015230092301.223015230092301223015

6kl-2066~-2086~-21064~-2126~-2086~-ao6 -m261-206

661-20864-210

641-206641-208641-ao64&126~-2066~-2086~-ao6 -=%6 -206

661-208661-210661-2X2

0.769.754.767.727.744

.836

.8u

.783●775.762.737.718.703.676

:%.615

.885

.859

.832

.814

.859

.835

.813

.895

.869

.854

.817

.&)3

.779

.762

.829

.8I2

.789

.789

.884

.826

.807

.800

0.665.648.632.632.616

.7h2.n5.700.677.655.650.615.598● %5.560.560.540

.794

.770

.-m.

.727

.769

.752

.7P

.ti8-.786.766

.75Q

.736

.73-5

.698●755.735.725.710.776.755●735.720

0.104.106.135.095.128

.094

.096

.083

.098

.107

.087

.103

.105

.091

.082

.084

.075

.091

.089

.081

.087

.090

.083

.081

.087

.083

.087

.067

.067,064.064.074.077.064.079.068.oil.072.080

4

J54

6

v

8

.

.

——

13

NACAa~oil section

6kI-20864@lo641-2X26~-2086~-2Lo6 -u361-210661-212

Mp% - ‘P Reference~~(:g) % c~cutea.— — — —

4 0.746

I

0.690 0.056 , 8 7.723 .680 ‘ .045973.7 .670 .047.760 .695 .065.747 .690 .057.736 .670 .066 “.764 .700 .064.753 .688 -.065 . 1]

In thistable,as intheprecedingone,possiblesystematictrends~% - MB aremaskedby theexperimental.n’certaintginthedeter-minationofthewind-tunnelMachnumberat @. Inparticular,notethatthedifferencein l& -M~ forthel?ACA0015airfoil.as deter-minedintwowindtunnelsisas greatas thevariationin ~ -M~fortheNACAOOXX-seriesaixfojlsasdeterminedinoneofth&e &dtunnels.

AIWX’SISOFlIXPERIMENIMLIJTTDATA

thevariationwithMachnumberofthenormal-forceInfigure9,coefficientforthefamilyof symmetricalairfoilsofreference7 atan angleofattackof4° ispresented.TheMachnuuiberscaleusedinfigwe 9 issuchthata linearmriationwould.meanthat en ispro-portions&to (l-l@-l/% Theseairfo,il.sat thiseagleofattacksxeofparticularinterestlecauseoftheunusualcoincidencethatthedrag-divergenceMachnuikr ofeachisaboutthesame.Thecmesof cdversusM arealsonearlyidentical.However,thereh con-siderabledifferenceinthevariationofliftcoefficientwithMachnumber.Largerlossesinliftoccurat supercriticalspeetiforthethickersections.

Ittightbe expectedthattheinitialsupercriticdlossinlift(shockstall)isa directresultof thepressurechangesbroughtaloutby thedevebpmentota localsupersonicregionontheuppr surface‘oftheairfoil.However,inreference1, it isti~catedthatthelossinliftisdueprimarilyto changesinthepressuredistributionoverthelowersurface.

!In figure10,a%reakdownof theno--force coefficientfortie

. airfoilsectionsoffigure9 intothenormal-forcecoefficientsoftheupperandlowersurfaces’ispresented.TheseMues ofsi@e-surf~enormal-forcecoefficientsweredeterminedfrominte~ationsofthe

. pressuredistributionsofreference7.

-..__—. ..— — — —. .— —.

___ —-—————

14 NACA~ 2825

A numberOf trendsareappsrentfromthedataforthenormal-forcecoefficientsfortheindividualsurfaces.Thedevelopmentofa super-sonicrdgionontheuppersurfaceoftheairfoilsectionsyroduceslittlechangeinthemannerinwhfchtheupper-surfacenormal-forcecoefficientvarieswtthMachnuniberuntila Mch numberwellbeyondthatfordragd.ivergericeisattained.Mom thecurvesforthelowersurfacesinfigue 10,itmaybe seenthatataboutthedrag~ivergenceMachnumberthereisa changeintheslopeofthelower-surfacenormsl-force+oefficientvariationwith(1-1@-1/2.Theslopeofthecurves,after~ hasbeenexceeded,variesconsiderablytiththickness-chordratio.

Thevariationwithfichnumberoftheupper-andlower-surfacenormal-forcecoefficientsforthreeNACAairfoilsectionsat severalanglesofattackispresentedinfi~e D. Theairfoilsectionsme:thelUICA0015,a symnetricsd.conventionalairfoil.;theI?ACA23015,afo~d-camiberedconventionala~dlj andtheNACA672-215,a = 0.5,a car(ibered.low-dragairfoil.Indiscussingthesedata,obtainedfromreference5,itisconvenienttodividethecm?vesintothreegroups:(1)Curvesforwhich ~ %%, in%?hZchcasessupersonicregionsdevelopalmosts@mltaneouslyonbothairfoilsurfaces;(2)curves “fortheuppersurfacewith ~<~ orforthelowersurfacewith~>~, onwhichsurfaces,hereintermed“subsonic,”thevelocitiesremainsubsonicfora considerableMachnumberincrementaftersuper-sonicregionsdevelopontheoppositesurface;and (3) curvesfortbeuppersurfacewith ~>~ orforthelowersurfacewith ~<~ onwhichsurfaces,hereintermed‘supersonic,”anextensivesupersonicregiondevelopsbeforesupersonicvelocitiesarereachedontheopposite(subsonic)surfaceoftheairfoil.

Forthesubsonicsurfaces,thevariationofnormal-forcecoeffi-cientwithMachnumberchangedmarkedlyinthevicinityofthedrag-divergenceMachnwiber.Therateofchangeoftheabsolutevalueof cn with(1-M2)-1!2atMachnumbersgreaterthanthosefordragdivergencewasapproximatelythesameforallthreeairfoils.Fortheexamplestreatedinthisreport,thisvariationofnormsl-forcecoef-ficientwasbroughtaboutby analmostuniformchangeofpressurecoef-ficientoverthestisonicsurface.It ispossiblethatthesesubsonic-surfacepres-e changeswerecausedbyvelocityincrementsinducedbythelargewakewhichistheconcomitantoftherapiddragrise.

Foranglesofattackdifferingfrom ~ by 2°ormore,thenormal-forcecoefficientsforthesupersonicsurfacevariedapproxim-ately inaccordancewiththePrandtl-GlauertruleforMachnunibersUP tothosefordragdivergence.AtMachnumbersgreaterthanthosefordragdivergencetherewasconsiderablechange,withbothairfoilsectionandangleofattack,inthecharacterofthe-Zation withMachnumberofthenormal-force-coefficientcomponentforthesupersonicsurface.

.—.— -— —

.

.

NACA~ 2825 ‘ 15

.An examinationofthesedataindicatesthattherearefundamental

differencesbetweenthevariationwith(1-@)-1’2oftheliftcontribu-tionsofthesubsonicandsupersonicsurfacesofmoderatelythickati-foilsat supercriticalMachnumbers.Toa firstapproximation,theliftcontributionofthesubsonicsurfaceappearstobeprimarilya functionofthickness-chordratio;whereasthecontributionofthesupersonicsurfacedependsonairfoilshapeandangleofattack.Thus,ina theo-reticalanalysisofthesupercriticalliftcharacteristicsofmoderatelythickairfoilsitmightbe advantageousto treatthesubsonicandsuper-sonicsuxfacesseparately.ForthefiveNACA00XXairfoil.sections,atequalangleofattackandwithessentiallyidenticalvariationsofdragcoefficientwithMachnumber,themagnitude”oftheadverseeffectoftheliftvariationonthesubsonicsurfacedecreaseswithdecreasingthickness-chordratio.Hence,forsufficientlythinsectionstheinfluenceoftheairfoilsubsonicsurfaceonsupercriticalliftcharacteristicsmaybecameof onlysecondaryimportancesothattransonicsimilarityrulescouldbeexpectedto apply.

CONCLUDINGREMARKS

By theuseofa formofthetransonicsimilarityparameterwhichcorrelatedthecriticalMachnumbersoflJACA00XXairfoilsectionsatzeroangle,itwaspossibleto correlatethesupercriticaldragdataforthisfamilytowithintheexpertientalaccuracy.TheexcellenceofthiscorrelationofthedragdatawasattributedtothefactthatthecriticalMachnumberswerecorrelated;however,foramarbitrgfamilyofairfoils,thikwouldnotgenerallybe thecaseunlesssyntheticformsofthesimilarityparameterswereused. Theothertypeof correla-tionexaminedinthisreportis,inessence,drag(ratherthandragcoef-ficient)riseasa functionofsupercriticalMachnumberincrement.Themajorexperimentaluncertaintyin suchdataobtainedina windtunnelisintheMachnumberincrementintroducedby thepresenceofthewakewhich,fora fixedratioofairfoilchordtowind-tunneldepth,2s dependentondrag. (Seereference9.) Thusinsofarasthepresentcorrelationcom-paresequalvaluesofdrag,,itmaycircumventa majorsourceof errorinthesewind-tunneldata.Fortheairfoilsconsidered,thereisan essen-.,tiallyuniqueshapeofthedrag-risecurvewhentheangleofattackisthatformaximumdrag-divergenceMachnumber.Theprimaryeffectofchangingtheairfoilshapeapparentlyisto changetheMachnumberatwhichthedragrisebegins.

Theportionofthestudydevotedtolift-coefficientvariationwithMachnumberwaslimitedtoa considerationofseveralairfoilsectionsforwhichhigh-speed-pressuredistributionswereavailable.Oneofthemostsignificantobservationstobemaderegsrdimgthesedataisthat,atmoderateanglesofattackandintherangeofMachnumbersforwhichsupersonicflowoccurredoveronlyonesurfaceoftheairfoil,there

-—. . . . . ... —.___ —___ ._ —. — —

.—. . _____ —.——.._—..- —.-—

16 mcA m 2825

appearaia markedchangeintherateofvariationwith(1-~)‘1’2ofnormal-forcecoefficientoftheoppositesurfacesoonafterthetiag-tivergenceMachnumberwasexceeded.T’MSchangewasmostabruptforthethickerairfoilsectionsstudiedandwastheprimsrycauseoflossinliftat supercriticalspeeds.Insofarasthistrendisrelatedtopressurechangesinducedby thewake,applicationto airfoilliftchar-acteristicsofa transonictheorywhichneglectsviscositywouldbeexpectedtobe successfulonlyforrelativelytltlnairfoilsections.

AmesAeronauticalLaboratoryl@tionalAdvisoryCommittee

Moffett’Field,Cal-if.,forAeronauticsApril10,1952

.

1. ~itzberg,”GeraldE.,and

REFERENCES

Crandall,Stewaxt:A StudyofF1OWChangesAssociatedwithAirfofl-SectionDragRiseatS@er-criticalSpeeds.ItACATM1813,1949.

.2. vonK&m&n,Theodore:TheSimilari@Lawof ‘l@msonicFlow.

Jour.Math.andPhysics,vol.26,no.3,Ott.1947,PP.182-19o.

3. Busemann,Adolf:ApplicationofTransonicSimilarity.NACA~ 2687,1952.

4. G6thert,B.: ProfilmessungenW DVLHochgeschwindigkeits+indkanol(2.7M) Zentralefi WissenschtitlichesBerichtswesenderLuft-fahrtforschung,(Berlin-Adlershof)FB 1490. (AvailableasHat.Res.Iab.Tech.ham. ‘IT-Xl,Ottim,Cmati,Sept.6?1947.)

5. Graham,DonaldJ.,Nitzberg,GeraldE.,andOlson,Robert~.:A ~tewtic InvestigationofPressureDistributionsatHighSpeedsOverFiveRepresentativeNACALow-DragandConventionalAirfoilSections.ltACARep.832,1945. (FormerlyllACARM A7B04andMRA~Oa)

.

6. G6thert,B.: HochgeschwindigkeitsmessWenanl?rofilenderReiheNACA230mitverschiedenenDickenverhdtnissen,~n~~e ~WissenschaftlichesBerichtswesenderLuftfahrtforschung,UM 1259/1-3.(Berlin-Adlershof),194-4.(AvailableasBritishtrans.,~istry ofAircraftProduction.Volkenroti.Repts.~dTrans.40>, 409b,and409C.High-SpeedMeasurementsonSectionsofSeriesIVACA230withDifferentThi@knessRatios.May,1946.)

—— —

I

mcA m 2625

7. G6thert,B.: Druckverteilungs- und

17

hmmlsverlustschatiilderfidasfiofilEACAOCRX-l.lO-beihohen&terschallgeschwindigkeiten7Zentralef%rWissenschsftlichesBerichtswesenderLuftfahrt-forschung,FBNr.1505/1-5.(I!.erl.in-Adlershof)~ 1941. (Availableas Canadianta?ans.,Nat.Res.Labs.,Div.ofMech.Eng.,Tech.b-. TII-252Tr-26, IJ?r-27,m-28, mi !rr-29. PressureDistribu-tionandMomentumLossDiagramsfortheNACAProfileO M XX [email protected], 194’7.)

,8. VanDyke$lUton D.: High-SpeedSUbsonicChara&eristicsof16

NACA6-Seriesldrfoils.NACATN 2670,1951..

9. Allen,H. Julian?andVincenti,WalterG.: WallInterferenceina Two-Dimensional-FlowWindTunnel,withConsiderationoftheEffectof Compressibility.NACARep.782,194-4.(FormerlyNACAARRkK03)

10. Feldman,F.: UntersuchungvonSynm&rischenTragflugelprofilenheihohenUnterschallgeschwindigkeitenineimm GealhlossenenWindkanal. Mitteilungenausd.emInstitutfi.irAerodynamic,HeftNr.14,Zurich1948.

u. Thorn,A.: BlockageCorrectionsR&MNo.2033British,A.R.C.,

12. Allen,H. Julianjandl?itzberg,CompressibilityontheGrowthonIow-DragWbgs andBodies.

ina ClosedHigh-SpeedTunnel.1943.

GeraldE.: TheEffectofof theLaminarBoundaryLayerNACA‘TN3.255,1947.

13. Abbott,IraH.,vonDoenhoff,AlbertE.,andStivers}IouisS.yJr.:summaryofAirfomllata.NACARep.824,1945. (FormerlyNACAACRL5C05)

— ..-. ——. . . .—..——. — — . —

,

18

#

NM-ATN2825

.

,

.

NACA‘IN2825 19

o\

1.6//

IVACA Referenceairfoilsection

I.20 0006 4❑ 0009 4 f ‘

/.

0 0012 4

.8 A 0015 4v 00/5 ‘5 {

b 00/8 4>

.4

n=3.0 -2.6 -2.2 -1.8 -1.4 J

M2-/-

2

(v@ ~figure 1- Corre/otionof pressure-drag coefficient in terms

of tronsonic-similarity-r uA9pyrometers for severalNAGAOOXX uirfoil sections. Angle of offuck, OO.

.

—-

——. .——. ——.—..—-————

20 ~cA ~ 2825

A(bd

.0/6

.0/4

.0/2

.0/0

/VACAoirlbilsectim

o 0006 4n 0009 40 m12 4A 00/5 4v 00/5 5 EA Anlo A

.008 “ Uuto v 1

.006

.004A

.002 +

o:/2

h+Mk

.

Rgure2.- CWrehtionof pressure-dragcoefficientforseveralNAGA4 -d’’glt series d.foil sections.Angleof otiaci, O“.

MCA TN 2825 21

.

.0[6

.0/4 “

T?.0/2-

NACAoirfojlsectjon

o 64,-206 ba

,010 n 6~-208Q 6$-2100 6+-212v 6~-208b /

.008 65,-2/04 65,-2/2v 6~-206..\ 6~-208

.006& 6+2/0

Curvehom figure 2.004‘ \.

4.002 n

b

9 Q

o+2 o .04

/tf-Mk

Figure3.- Correlationof pressure-o’rogcoefficient forseverol NACA.6-series ulrfoil sections.Angle ofuttock, - 2“.

.

.— —..—..—— .. .—. — ~ .— —. — . ..—

— —-.

22

.0/4

.0/2

.0/0

A(cdqj!e) .008

.006

.004

.002

0

AiACAairfoil section

o 23009IJ 230/2o 230/5

Curvefromf~ure 2I

.

03A

H

,NACATN2825

-.08 -.04 0 .04M-#”

Figure 4.- Correhtion of pressure-drag coefficient forseveralNAGA 230-series oirfoil sections. Angle of

~ottock, -2°.

.

,.

——- ---——. —

23

.

.

.0/2NAGA

oirfoil section

. 0/0

.0?78

H

.006

.004

.002

0

tl

on❑

ov

D4v

v

6+-2066+20864,-2/06+-212W, -2086~-2t06~-21264-20664-208

7/2 -.08 -.04 0 .04M-Mk

. Figure 5.- Gorreh~ion of pressure-dreg coeff}clen~for severalNAGA6-series airfoil secflons. Angle of off ack, O*.

9

—— — .— -—. —.——— .—

24

— —.——

.02

o

~ffiA Retie bairfoilsection

0006 40009 400/2 400/5 ,~00/5 : b /00/8

7! o ./ -./ o .1M-Mk M-Af

(0) 0, 2“ (b)a, 4“

Figure6.- Gorref..tionof pressure-dragcoefficientfor severalNAGA00XX oirfoil sectionsat vor~ousanglesof attack.

‘q/P.)

.0/

NAGA

.03 oirfd secthn64,-20664,-208 El6~-210 %Q 6~-212

.02 r 6S-206qv =, -208 %1

n“

6~-210 I65.-2/2 I I aI 1

TI 6i+206 I [yll I

7--I 6&208 w I I“6G-240 l’

r 6&2/2 $ I

- -./ o ./ -./ o ./M-Mb M-M*

FigureZ- Correlationof pressure-dragcoefficientfor several NAGA6-series alrfojl sectionsoivoriousanglesof uttock.

,

.

F NACATN.

2825 25

.

.a3

.02

A(CdQ/jg)

.0/

o

.03

.02

Ah’94e)

.0/

o

-./ o ./ -./ o ./M-Mk M-Mk

[0)Q, 0° (b) u, 2°.

D

M-Mk M- Mk

(c) a, 4“ (d)Q, 6“

Figure8.- Gorrelotionof pressure-dragcoefficientfor severulA!ALU230- seriesoirfoil sectionsot vorlousunglesof ottock.

b

. —.—— .—

— .—...— — ..— —

26 NACAm 2825

/

.8

&

.6

.4

.2

0

II

I II I

NACAakfollsectionI

0006\0009,00/2\

--- -—— .- \

-- /00/5‘ T

\ N

00/8i ‘\ \\\

\ J

\\

\

/

m 1 I 1 !

.4 .5 .6 .7 .75 .8Free-s freom Mach number, M

with free -stream MachFigure 9.- Variationnumber of section normal-force coefficientfor severol NAGAOOXX airfoil sec~ionsof 40 ungle of atfock.

.

,

.—— —-—

27

.

I

.8

.6

.4

.2

0

-.2

74

-.6

[ Uppersurface I I

W— — 0009--------- 0012—.— 00/5—--— 00/8

.

I

9

!—

\I-. ._ ‘ -\- -- - \

- \ -+-.,

- \\

/\ \

/%.

/ \Mcr bfd \ \

\\ \ \

Lowersurface

.4 .5 .6 .7 .75 .8free-stream Mach number,M

FigureIO.- VorMionnumberof upper-force coefficientsoirfoll sectionsof

=E=with free-streffm IWchand tower-surfacenormol-

for severalIVACAOOXX40 angleof attock.

.. —.——. -—-– .——.. - — .——— ——— ——- —————

(d Ahfolf 8ectk)n, MWA 0015. B

Fi@re 11.-!2

Variation with free -etreom Mach number of upper- and Iower-surfoce normaf - uforce coefficients for several 16-percent - thick NAGA airfoil 8ections at sov;ral mangle8 of attack.

gU

.

r

10

&Q

$’.8~

!!!

~

g

t

&

00 .4.5 .6 .7 75 .8Free -streum Mu& ntunbq ‘M

@per surfme

Free -streum Mdch numbe~ M

LOWr surftme

(b) Airfoil section, NACA p3@5,

Figure //. - Gontinued,

Upper surface

(d Airfoil section,

Rgure Il. - Conclu&d.

*