22
i FABRICATION AND CHARACTERIZATION OF HYBRID POLYMER SOLAR CELL TOONG WAY YUN DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF PHYSICS FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2012

FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

  • Upload
    duongtu

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

i

FABRICATION AND CHARACTERIZATION OF

HYBRID POLYMER SOLAR CELL

TOONG WAY YUN

DISSERTATION SUBMITTED IN FULFILLMENT OF THE

REQUIREMENT FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF PHYSICS

FACULTY OF SCIENCE

UNIVERSITY OF MALAYA

KUALA LUMPUR

2012

Page 2: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

ii

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Toong Way Yun (I.C/Passport No: 850907-06-5138)

Registration/Matric No: SGR090061

Name of Degree: Master of Science (Dissertation)

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

FABRICATION AND CHARACTERIZATION OF HYBRID POLYMER SOLAR CELL

Field of Study: Organic Electronics

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;

(2) This Work is original;

(3) Any use of any work in which copyright exists was done by way of fair dealing and for

permitted purposes and any excerpt or extract from, or reference to or reproduction of

any copyright work has been disclosed expressly and sufficiently and the title of the

Work and its authorship have been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the making

of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the University of

Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any

reproduction or use in any form or by any means whatsoever is prohibited without the

written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any copyright

whether intentionally or otherwise, I may be subject to legal action or any other action

as may be determined by UM.

Candidate’s Signature: Date:

Subscribed and solemnly declared before,

Witness’s Signature: Date:

Name: Dr. Khaulah Sulaiman

Designation: Senior Lecturer

Page 3: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

iii

ABSTRACT

The easy fabrication method, tunable physical and chemical properties and cost-

effective fabrication process, makes organic solar cells (OSC) very attractive in

photovoltaic application. Nonetheless, the device performance is limited due to the low

charge mobility of the organic semiconductors that results in a less efficient of charge

transport to the respective electrodes. In order to address such problems, hybrid polymer

solar cells based on bulk heterojunction (BHJ) structure, which composed of a

combination of both organic and inorganic semiconductors are employed. However, the

BHJ device performances are strongly dependent on good processing conditions,

especially enhancement of photons absorption as well as the improvement of charge

transport properties. Hence, the involved parameters and properties should be well

optimized.

This dissertation describes the study of effects of blend composition and types of

acceptor materials used on the optical, structural, morphological as well as the electrical

properties of the three different hybrid BHJ systems. The hybrid materials consist of a

blend of p-type conjugated polymer of poly(3-hexylthiophene) (P3HT) and n-type

inorganic metal oxide nanoparticles, namely, zinc oxide (ZnO), titanium dioxide (TiO2)

and yttrium oxide (Y2O3). The optical, structural and morphological characterizations of

the blend thin films using UV-Visible absorption spectroscopy, X-ray diffraction (XRD)

spectroscopy, Atomic Force Microscopy (AFM) and Field-effect Scanning Electron

Microscopy (FESEM) are discussed. Furthermore, the co-relation of the thin film

property with the device performance is presented. The results show that the device

performance has been improved by optimizing the blend composition. This is due to an

enhancement in light absorption in broader wavelength regime and improved charge

transport through the formation of interpenetrating bicontinous pathway for the holes

and electrons to reach the respective electrodes. These results are supported by the

observation of the AFM and FESEM images of the increment in RMS roughness and

formation of phase separation features in the blends. Besides, the well dispersion of

inorganic nanoparticles over P3HT yields a larger interfacial area for charge carrier

generation. Among the three hybrid systems investigated, P3HT:ZnO device performs

the best with an optimal blend composition of 3% of ZnO nanoparticles in blend.

In order to further improve the device performances, ZnO sol-gel synthesis route

has been utilized to produce a better mixing blend of P3HT and ZnO. Additionally,

several approaches have been employed, namely modifying the sol content in blends,

varying the annealing temperature, and inserting an additional ZnO buffer layer between

the active layer and cathode. An optimal annealing treatment offers improved optical

absorption properties and more uniform film surface morphology with eliminated

redundant large pores and grain agglomerations. The role of the ZnO buffer layer in the

blend system can be seen as an agent in facilitating the electron collection from the

active layer to the cathode. The results indicate that the device efficiency has been

improved by about 5 times for P3HT:ZnO sol gel device with optimized sol content

(0.1ml sol), annealed at an optimized temperature of 100°C with additional ZnO buffer

layer, compared to the P3HT:ZnO nanoparticles-based device.

Page 4: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

iv

ABSTRAK

Fabrikasi yang mudah, ciri-ciri fizikal dan kimia bolehlaras dan kos efektif

proses fabrikasi, telah menyebabkan sel suria organik (OSC) amat menarik dalam

bidang penggunaan fotovoltaik. Walau bagaimanapun, prestasi peranti menjadi terbatas

disebabkan oleh kelincahan pembawa cas yang rendah bagi semikonduktor organik

yang mengakibatkan angkutan cas ke elektrod menjadi kurang cekap. Dalam usaha

untuk menangani masalah tersebut, sel suria polimer hibrid berasaskan struktur

simpang-hetero pukal (BHJ) yang terdiri daripada kombinasi semikonduktor organik

dan bukan organic telah digunapakai. Namun demikian, prestasi peranti amat

bergantung kepada keadaan pemprosesan yang baik, terutamnya peningkatan serapan

foton serta penambah-baikan sifat angkutan. Oleh yang demikian, parameter dan sifat

yang terlibat perlu dioptimakan dengan sebaiknya.

Disertasi ini menerangkan kesan komposisi campuran dan jenis bahan penerima

yang digunakan terhadap ciri-ciri optik, struktur, morfologi serta sifat elektrik bagi tiga

sistem hybrid BHJ berbeza. Bahan hybrid terdiri daripada campuran bahan jenis-p

polimer berkonjugat (3-hexylthiophene) (P3HT) dan bahan jenis-n nanopartikel oksida

logam bukan organik, iaitu zink oksida (ZnO), titanium dioksida (TiO2) dan yttrium

oksida (Y2O3). Pencirian optik, struktur dan morfologi dibincangkan bagi filem nipis

campuran yang menggunakan spektroskopi serapan ultraungu-cahaya-nampak (UV-

Vis), spektroskopi belauan sinar-X (XRD), mikroskop daya atom (AFM) dan

mikroskopi electron daya imbasan (FESEM). Malahan, hubung-kait antara sifat filem

nipis dengan prestasi peranti juga dibentangkan. Dapatan kajian menunjukkan bahawa

prestasi peranti telah ditingkatkan dengan mengoptimumkan komposisi campuran. Ini

disebabkan oleh peningkatan dalam penyerapan cahaya di rantau gelombang yang lebih

luas dan meningkatnya angkutan cas melalui pembentukan laluan dwi-berterusan

saling-menyusup untuk pergerakan lohong dan electron sampai ke elektrod. Hasil ini

disokong oleh pemerhatian terhadap imej AFM and FESEM yang mana terdapat

kenaikan dalam nilai kekasaran RMS dan pembentukan pemisahan fasa dalam filem

campuran. Selain itu, penyerakan nanopartikel bukan organik yang seragam dalam

P3HT menghasilkan kawasan sempadan antara-fasa yang lebih luas untuk menjana

pembawa cas. Antara tiga jenis sistem hybrid yang dikaji, peranti P3HT:ZnO

memberikan prestasi terbaik dengan 3% nanopartikel ZnO ke dalam komposisi

campuran optimum.

Selanjutnya, sintesis sol-jel ZnO telah dijalankan bagi menghasilkan suatu

campuran P3HT and ZnO yang lebih baik. Tambahan pula, beberapa pendekatan telah

diambil, iaitu dengan mengubah isi kandungan sol dalam campuran, mempelbagaikan

suhu pemanasan, dan memasukkan satu lapisan penampan ZnO di antara lapisan aktif

dan katod. Rawatan pemanasan yang optimum menawarkan ciri-ciri penyerapan optik

yang lebih baik dan permukaan morfologi filem yang lebih seragam dengan

menghapuskan liang dan gumpalan besar. Peranan lapisan penampan ZnO dalam sistem

campuran tersebut boleh dilihat sebagai suatu ejen yang memudahkan kutipan elektron

dari lapisan aktif ke katod. Dapatan kajian ini menunjukkan bahawa prestasi bagi

peranti berasaskan P3HT:sol-jel ZnO yang disediakan pada komposisi campuran (0.1

ml sol) dan suhu pemanasan optimum pada 100°C dan mengandungi satu lapisan

penampan ZnO, telah meningkat sebanyak 5 kali ganda berbanding dengan peranti

berasaskan P3HT:nanopartikel ZnO.

Page 5: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

v

ACKNOWLEDGEMENTS

First and foremost I would like to thank God for the strength He has given to me

that keeps me moving on to accomplish my goal. I would like to thank my family who

have continuously inspired, encouraged and supported me in every trial that come to my

way throughout my life. Also, I thank them for giving me not just financial, but moral

and spiritual support.

I would also like to gratefully acknowledge my supervisor, Dr. Khaulah

Sulaiman for her enthusiastic supervision and valuable guidance to me during this

research work. This work would not have been possible without her support and

assistance. Special thank to my senior, Mr. Fahmi Faraq Muhamad for his precious

encouragement, support, and assistance to me. Besides, I am greatly grateful to all the

officials, staff members and my labmates from Low Dimensional Materials Research

Center, Department of Physics in University of Malaya, for their sincere assistance and

support to me in completing this research work. Special thanks also to all my group

members especially Mr. Lim Lih Wei, Mrs. Zurianti, Mr. Shahino Mah Abdullah, Mr.

Muhamad Saipul and Miss Fadilah for their willingness to share their literature

knowledge and invaluable advice to me.

I would also wish to express my gratitude and thanks to University of Malaya

for providing the sufficient financial support to me in the form of scholarship and

research grants of PS 303/2009C and PS 462/2010B to support my work and to

participate in national and international conferences in different places.

Last but no least, I would like to thank all my friends and housemates for their

understanding, care and encouragement, particularly Miss Nor Khairiah Za’aba, Miss

Siti Hajar, Miss Maisara Othman, Miss Nur Maisarah, Mrs. Noor Hamizah Khanis, and

Mr. Paul Lee Chun Hoong who have continuously given me moral and spiritual support

when it is most required.

Page 6: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

vi

RESEARCH PAPERS AND CONFERENCES

A. Published Full Papers (ISI-cited)

1. Yusli, M. N., Toong, W. Y., & Sulaiman, K. (2009). Solvent Effect on the thin

film formation of polymeric solar cells. Material Letters, 63(30), 2691-2694.

2. Toong, W. Y., & Sulaiman, K. (2011). Fabrication and morphological

characterization of hybrid polymeric solar cells based on P3HT and inorganic

nanocrystal blends. Sains Malaysiana, 40(1), 43-47.

B. Conference Papers (Non-ISI cited)

1. Sulaiman, K., & Toong, W. Y., “Studies of optical and morphological properties

on the ZnPc/Gaq3 mixture thin films”. Paper presented at 24th

Regional

Conference on Solid State Science & Technology (RCSSST 2008) in Port

Dickson, Malaysia.

2. Toong, W. Y., & Sulaiman, K., “Fabrication and morphological characterization

of hybrid polymeric solar cells based on P3HT and inorganic nanocrystal

blends”. Paper presented at National Physics Conference (PERFIK 2009) in

Malacca, Malaysia.

3. Toong, W. Y., & Sulaiman, K., “The fabrication and properties characterization

of hybrid polymeric solar cells based on conjugated polymer/inorganic

nanoparticles”. Paper presented at 3rd

International Conference on Functional

Materials and Devices (ICFMD 2010) in Kuala Terengganu, Malaysia.

4. Toong, W. Y., & Sulaiman, K., “The fabrication and properties characterization

of hybrid solar cells based on conjugated polymer/inorganic compound”. Paper

presented at 5th

International Conference on Technological Advances of Thin

Films & Surface Coatings (Thin films and COMPO 2010) in Harbin, China.

Page 7: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

vii

TABLE OF CONTENTS

TABLE OF CONTENTS………………………………………………………..

LIST OF FIGURES……………………………………………………………..

LIST OF TABLES………………………………………………………………

LIST OF SYMBOLS……………………………………………………………

LIST OF ABBREVIATIONS…………………………………………………...

vii

xi

xviii

xx

xxi

CHAPTER 1: INTRODUCTION……………………………………………..

1.1 Background of the Research Studies………………………………………...

1.2 History of Organic Solar Cells (OSCs)……………………………………...

1.3 The Reasons of Investigation on Hybrid Polymer Solar Cells……………...

1.4 Research Objectives…………………………………………………………

1.5 Dissertation Outline…………………………………………………………

1

1

3

6

9

10

CHAPTER 2: THEORETICAL BACKGROUND…………………………..

2.1 Overview…………………………………………………………………….

2.2 Conjugated Polymers………………………………………………………..

2.3 Charge Transport Characteristics of Conjugated Polymers…………………

2.4 Electronic Properties of Conjugated Polymers……………………………...

2.5 Doping……………………………………………………………………….

2.6 Optical Properties of Conjugated Polymers…………………………………

2.7 Donor Material………………………………………………………………

2.7.1 Poly(thiophene)………………………………………………………….

I) Regioregularity………………………………………………………….

II) Solubility………………………………………………………………..

III) Regioregular Poly (3-hexylthiophene) (P3HT)………………………...

2.8 Acceptor Material……………………………………………………………

2.8.1 Inorganic Nanoparticles………………………………………………...

2.8.2 Physical Properties of Inorganic Nanoparticles………………………...

I) Optical Properties……………………………………………………….

II) Structural and Morphological Properties……………………………….

III) Electrical Properties…………………………………………………….

2.8.3. Types of Inorganic Nanoparticles Used in This Research Work……….

I) Zinc Oxide................................................................................................

II) Titanium Dioxide.....................................................................................

III) Yttrium Oxide…………………………………………………………..

12

12

12

16

17

20

22

24

24

25

25

26

27

27

29

29

30

30

31

31

32

33

Page 8: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

viii

2.9 Sol-Gel Synthesis Route…………………………………………………….

2.10 Hybrid Polymer Solar Cells………………………………………….

2.10.1 Basic Working Principles of Hybrid Solar Cells…………………..

2.10.2 Key Parameters of the Hybrid Solar Cells…………………………….

2.10.3 Types of Device Architectures for Organic Solar Cells……………….

I) Single Layer Organic Solar Cell………………………………………...

II) Bilayer Solar Cell……………………………………………………….

III) Bulk Heteronjunction (BHJ) Solar Cell………………………………...

CHAPTER 3: EXPERIMENTAL METHODOLOGY……………………...

3.1 Overview…………………………………………………………………….

3.2 Chemicals and Materials…………………………………………………….

3.2.1. Chemicals and Solutions Preparation…………………………………..

I) P3HT:As-Purchased Inorganic Nanoparticles Blends…………………..

II) P3HT:As-Synthesized Sol-gel ZnO Blend Solutions…………………..

3.2.2 Substrates and Electrodes Preparation………………………………….

3.2.3 Substrates Patterning and Cleaning……………………………………..

3.3 Thin Films Preparation via Spin Coating Technique………………………..

3.3.1 P3HT:ZnO Sol-Gel Film Preparation via Thermal Annealing

Treatment……………………………………………………………...

3.4 Devices Fabrication………………………………………………………….

3.4.1 Single Layer and Bulk Heterojunction (BHJ) Structures……………….

3.4.2 Aluminum (Al) Electrodes Deposition via Thermal Evaporation……...

3.5 Characterization Techniques………………………………………………...

3.5.1 Ultraviolet-Visible-Near Infrared (UV-VIS-NIR) Spectrophotometer…

3.5.2 X-ray Diffraction (XRD) Technique……………………………………

3.5.3 Atomic Force Microscopy (AFM)……………………………………...

3.5.4 Field-Emission Scanning Electron Microscopy (FESEM)……………..

3.5.5 Surface Profilometer………………………………………………...….

3.5.6 Photovoltaic (PV) Measurement………………………………………..

CHAPTER 4: CHARACTERIZATION OF P3HT:ZNO HYBRID THIN

FILMS AND SOLAR CELL DEVICES……………………..

4.1 Overview…………………………………………………………………….

4.2 Optical Characterization: Ultraviolet-Visible-Near Infrared (UV-Vis-NIR)

Spectra Analysis…………………………………………………………….

4.3 Structural Characterization: X-ray Diffraction (XRD) Spectra Analysis…...

34

35

37

38

40

40

41

42

44

44

44

45

45

46

48

48

50

52

53

53

54

57

57

60

64

66

69

71

74

74

74

84

Page 9: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

ix

4.4 Morphological Characterization: Atomic Force Microscopy (AFM) and

Field Emission Scanning Electron Microscopy (FESEM) Analysis………..

4.4.1 AFM Characterization…………………………………………………..

4.4.2 FESEM Imaging………………………………………………………...

4.5 Electrical Characterization: Current Density-Voltage (J-V) Curve Analysis.

CHAPTER 5: HYBRID SOLAR CELLS BASED ON INORGANIC

NANOPARTICLES AND P3HT:ZNO ACTIVE

LAYERS PREPARED BY SOL-GEL SYNTHESIS

ROUTE………………………………………………………

5.1 Overview…………………………………………………………………….

5.2 Part I: Investigation of Hybrid Solar Cells Based on Various Inorganic

Nanoparticles………………………………………………………………..

5.2.1. Results on P3HT:TiO2 Blend Films and Their Based Solar Cell

Devices…………………………………………………………………

A. Optical Characterization………………………………………………...

B. Structural Characterization……………………………………………...

C. Morphological Characterization………………………………………...

D. Electrical Characterization……………………………………………...

5.2.2. Results on P3HT:Y2O3 Blend Films and Solar Cell Devices………….

A. Optical Characterization………………………………………………...

B. Structural Characterization……………………………………………...

C. Morphological Characterization………………………………………...

D. Electrical Characterization……………………………………………...

5.2.3 Comparison of Hybrid Systems Based on Three Different Types of

Inorganic Metal Oxide Nanoparticles…………………………………..

A. Optical Characterization………………………………………………..

B. Structural Characterization……………………………………………...

C. Morphological Characterization………………………………………..

D. Electrical Characterization……………………………………………...

5.3 Part II: The Improvement of P3HT:ZnO Devices by Sol-gel Synthesis

Route………………………………………………………………………...

5.3.1 First Approach: Effects of Different Sol Content………………………

A. Optical Characterization………………………………………………...

B. Structural Characterization……………………………………………...

C. Morphological Characterization………………………………………...

89

89

99

102

111

111

111

111

111

113

115

117

119

119

120

122

124

126

126

128

129

133

136

137

137

140

144

Page 10: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

x

D. Electrical Characterization……………………………………………...

5.3.2 Second Approach: Effects of Different Annealing Temperature……….

A. Optical Characterization………………………………………………...

B. Morphological Characterization………………………………………...

C. Electrical Characterization……………………………………………..

5.3.3 Third Approach: Effects of Additional ZnO Buffer Layer……………..

A. Morphological Characterization………………………………………...

B. Electrical Characterization……………………………………………...

CHAPTER 6: CONCLUSIONS AND FUTURE WORKS………………….

6.1 Conclusions………………………………………………………………….

6.2 Future Works………………………………………………………………...

149

152

152

154

156

158

158

160

163

163

168

Page 11: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

xi

LIST OF FIGURES

Page

Figure 1.01: Block diagram of research methodology used in this study…....... 11

Figure 2.01: The examples of 1) non-conjugated polymers: (i) Polypropylene,

(ii) Poly(vinyl alcohol); 2) conjugated polymers: (i)

Polyacetylene, (ii) Polythiophene (Skotheim, et al.,

1998)……………………………………………………………...

14

Figure 2.02: (a) The structure of ethylene comprises of σ bonds which formed

from the three sp2-hybridized orbitals on each carbon atom. (b)

The formation of π bond due to the overlap of the unhybridized

pz orbital. (c) A cutaway view of the whole σ and π system

within the ethylene molecule (Hari Singh Nalwa,

2002)……………………………………………………………...

15

Figure 2.03: The schematic diagram of HOMO and LUMO bands…………...

15

Figure 2.04: Schematic representation of intrachain charge diffusion (left) and

interchain charge diffusion (right) in polyacetylene……………...

16

Figure 2.05: Potential energy as a function of bond length alternation for the

two categories of conjugated polymers are exhibited for (a) a

degenerate ground state conjugated polymer, trans-

polyacetylene; (b) a non-degenerate ground state conjugated

polymer (in the given example is poly-para-phenylene (PPP))…..

18

Figure 2.06: Schematic structure and energy diagram for solitons in

conjugated polymer is shown…………………………………….

19

Figure 2.07: Schematic structure and band diagrams for excitations in non-

degenerate ground state conjugated polymers. Allowed optical

transitions are exhibited by the blue-colored dashed arrows…......

20

Figure 2.08: Removal of two electrons (p-type doping) from a polyacetylene

chain produces two radical cations. The combination of both

radicals forms a spinless di-cation………………………………..

21

Figure 2.09: Removal of two electrons (p-type doping) from a polythiophene

chain produces bipolaron. Bipolaron moves as a unit up and

down the polymer chain, which is responsible to the electrical

properties of conjugated polymers……………………………….

22

Figure 2.10: A coplanar π-orbitals polythiophene (top); a twisted substituted

polythiophene (bottom) (Skotheim, et al., 1998)………………...

23

Figure 2.11: The chemical structure of monomer repeating unit of PTs……....

24

Figure 2.12:

The differences between regiorandom and regioregular PTs in

aspect of chain structure and charge transport characteristics…....

25

Page 12: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

xii

Figure 2.13: The chemical structure of P3HT………………………………….

27

Figure 2.14: The structures and shapes of the inorganic nanoparticles that are

widely used in hybrid polymer solar cells………………………..

29

Figure 2.15: Energy dispersion for the (a) bulk semiconductor compared with

that of (b) the nanoparticles (Dhlamini, et al., 2008)……………..

31

Figure 2.16: The chemical structure of ZnO……………………………….......

32

Figure 2.17: The chemical structure of TiO2……………………………….......

33

Figure 2.18: The chemical structure of Y2O3…………………………………..

34

Figure 2.19: Schematic structure of hybrid solar cell………………………….

36

Figure 2.20: The working principle of hybrid polymer solar cell consisting of

an electron donor and acceptor pair………………………...........

38

Figure 2.21: The current density-voltage curve (J-V curve) of a hybrid solar

cell under illuminated condition (dash line)

……………………………………………………………………

39

Figure 2.22: (a) The basic structure of a single layer solar cell. (b) Schematic

of a single layer solar cell with a Schottky contact at the lower

function electrode B contact. Photogenerated excitons can only

be dissociated within a narrow deplection layer, and thus the

device is exciton diffusion limited……….....................................

41

Figure 2.23: The basic structure of a bilayer solar cell. (b) Schematic of a

bilayer heterojunction solar cell. The donor (D) contacts the

higher work function electrode A and the acceptor (A) contacts

the lower work function electrode B, in order to achieve charge

carrier collection, respectively. Excitons can only be dissociated

within the region at the D/A interface…………………………....

42

Figure 2.24: (a) The basic structure of a bulk heterojunction solar cell. (b)

Schematic of a bulk heterojunction solar cell device. The

excitons can be dissociated throughout the volume of material as

the D is well blended with A……………………………………..

43

Figure 3.01: Pristine solutions and the P3HT:inorganic nanoparticles blend

solutions…………………………………………………………..

46

Figure 3.02: P3HT:sol-gel ZnO blend solutions.................................................

47

Figure 3.03: ITO substrates patterning………………………………………....

49

Figure 3.04: The spin coating machine which is used for thin films

deposition…………………………………………………………

51

Page 13: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

xiii

Figure 3.05: Schematic representation of the spin coating technique………….

51

Figure 3.06: The flow chart for the preparation of the P3HT:sol-gel ZnO

films……………………………………………………………....

52

Figure 3.07: The device construction of solar cells based on different devices

geometry and hybrid systems…………………………………….

54

Figure 3.08: Thermal evaporation system for Al electrode deposition. The

inset shows the designed shadow mask used in this work……….

55

Figure 3.09: The schematic diagram of the evaporation system arrangement

within the vacuum chamber………………………………………

55

Figure 3.10: Possible electronic transitions of π, σ or n electrons……………..

58

Figure 3.11: Photograph of Jasco V-570 UV-VIS-NIR Spectrophotometer…..

59

Figure 3.12: Schematic diagram of the components of a UV-VIS-NIR

spectrophotometer………………………………………………..

60

Figure 3.13: The diffraction pattern of X-rays by planes of atoms…………….

61

Figure 3.14: (a) Photograph of the XRD instrument (Bruker AXS). (b) The

basic components of a X-ray diffractometer……………………..

62

Figure 3.15: Schematic diagram of an atomic force microscope………………

64

Figure 3.16: Photograph of Veeco Dimension 3000 AFM instrument………...

66

Figure 3.17: Field-emission scanning electron microscope (FESEM)………...

67

Figure 3.18: Principle features of a SEM instrument…………………………..

68

Figure 3.19: (a) The schematic diagram of a contact profilometer. (b)

Resultant surface profile that is generated based on the tip

deflection…………………………………………………………

70

Figure 3.20: KLA Tensor P-6 surface profilometer for film thickness

measurement……………………………………………………...

70

Figure 3.21: (a) An Oriel 67005 solar simulator. (b) The internal structure of

the Oriel solar simulator………………………………………….

72

Figure 3.22: (a) A Keithley 236 SMU instrument. (b) A solar cell device

connected to its appropriate terminals under I-V measurement….

73

Figure 4.01: Absorption coefficient of pristine P3HT, ZnO and P3HT:ZnO

blend films with different contents of ZnO nanoparticles. The

inset shows the variation of maximum absorption coefficient

peak values, αmax and film thickness, t as a function of blend

composition……………………………………………………….

74

Page 14: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

xiv

Figure 4.02: The pre-estimated Eg of the pristine (a) P3HT film and (b) ZnO

nanoparticles film using plots of dln(αhν)/dhν versus hν………...

79

Figure 4.03: Plots of ln(αhν) versus ln(hν − Eg) to determine the n value for

(a) P3HT and (b) ZnO nanoparticles films, respectively…………

80

Figure 4.04: Plots of (αhν)2 against hν for (a) P3HT and (b) ZnO films………

81

Figure 4.05: The typical energy band diagram of (a) P3HT and (b) ZnO

nanoparticles films where the conduction band of ZnO is tunable

due to the variation in nanoparticles size…………………………

82

Figure 4.06: Plots of dln(αhν)/dhν versus hν to pre-estimate the Eg of the

P3HT:ZnO blend films with different contents of ZnO………….

83

Figure 4.07: Plots of of (αhv)2 against hν for P3HT:ZnO blend films with

different contents of ZnO………………………………………....

84

Figure 4.08: The XRD pattern of ZnO nanoparticles in powder form………....

85

Figure 4.09: Williamson-Hall plots to determine the microstrain of ZnO……..

87

Figure 4.10: The XRD spectra of pristine P3HT and P3HT:ZnO blend films.

The inset illustrates the orientation of P3HT crystallites with

respect to the substrate……………………………………………

87

Figure 4.11: Three-dimensional AFM images by 10 × 10 μm2 scan for (a)

pristine P3HT and the blend films in different compositions with

(b) 1%, (c) 2%, (d) 3%, (e) 4%, (f) 5%, and (g) 10% ZnO………

93

Figure 4.12: 2-dimensional AFM images of the (a) pristine P3HT and its

blends with (b) 1%, (c) 2%, (d) 3%, (e) 4%, (f) 5%, and (g) 10%

ZnO……………………………………………………………….

97

Figure 4.13: The schematic illustration of some possible morphologies that

most likely have been achieved for the P3HT:ZnO blends

incorporated with different amount of ZnO contents…………….

99

Figure 4.14: FESEM images of (a) P3HT and its blends with (b) 1%, (c) 3%,

(d) 5% and (e) 10% ZnO ((e(ii) shows the focused zone area of

image (e))………………………………………………………....

101

Figure 4.15: The FESEM images of pristine ZnO nanoparticles film…………

101

Figure 4.16: The current density–voltage (J-V) characteristics of solar cell

devices based on pristine P3HT and P3HT:ZnO blends in

different blend compositions under dark condition………………

102

Figure 4.17: Current density-voltage (J-V) characteristic curves of the solar

cell devices under light illumination. The inset displays an

equivalent circuit diagram of solar cells which consists of series

Page 15: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

xv

resistance, Rs and shunt resistance, Rsh…………………………..

103

Figure 4.18: The schematic energy band diagram of

ITO/PEDOT:PSS/P3HT:ZnO/Al devices………………………...

105

Figure 4.19:

The variation of (i) Jsc and Voc, (ii) FF and η with the blend

composition……………………………………………………….

106

Figure 4.20: The variation of Rsh and Rs with the blend composition………....

109

Figure 5.01: Absorption coefficient of P3HT:TiO2 blend films with different

contents of TiO2 nanoparticles. The inset shows the variation of

maxmimum absorption coefficient peak values, αmax and film

thickness, t as a function of TiO2 contents…………………….....

112

Figure 5.02: The XRD patterns of (i) TiO2 in powder form; (ii) pristine P3HT

and P3HT:TiO2 blend films……………………………...............

113

Figure 5.03: AFM images in 2D and 3D views for (a) pristine P3HT and

P3HT:TiO2 blend films with (b) 1%, (c) 2%, (d) 3%, (e) 4%, (f)

5%, and (g) 10% TiO2....................................................................

116

Figure 5.04: The J-V plots for P3HT:TiO2 solar cells with different blend

compositions under light illumination……………………………

117

Figure 5.05: Variations in the device parameters for (i) Jsc and Voc, (ii) Rs and

Rsh, (iii) FF and η as a function of blend composition…………...

118

Figure 5.06: The optical spectra for the P3HT:Y2O3 blend films. The inset

indicates the variation of αmax and film thickness as a function of

Y2O3 content in P3HT:Y2O3 blends………………………………

119

Figure 5.07: The XRD spectra of (i) Y2O3 nanopowder; (ii) P3HT:Y2O3 blend

films………………………………………………………………

120

Figure 5.08: The AFM images for (a) pristine P3HT and the blend films with

(b) 1%, (c) 2%, (d) 3%, (e) 4%, (f) 5%, and (g) 10% Y2O3...........

123

Figure 5.09: The J-V plots for pristine P3HT and P3HT:Y2O3 blend devices....

124

Figure 5.10: Variations in the device parameters for (i) Jsc and Voc, (ii) Rs and

Rsh, (iii) FF and η as a function of blend composition…………...

125

Figure 5.11: (i) Plots of (αhν)2 against hν for ZnO, TiO2 and Y2O3 films, the

inset shows the plots of ln(αhν) versus ln(hν − Eg) to determine

the type of electronic transition for the nanoparticles. (ii)

Absorption coefficient spectra of the P3HT:nanoparticles blends;

the inset shows the estimated Eg of the blends………...................

126

Figure 5.12: The XRD spectra of P3HT:nanoparticles blend films……………

128

Page 16: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

xvi

Figure 5.13: The AFM images of P3HT:nanoparticles blend films in 3D and

2D views for (i) P3HT:ZnO, (ii) P3HT:TiO2, and (iii)

P3HT:Y2O3 film…………………………………………………..

129

Figure 5.14: FESEM images of the (a) pristine inorganic metal oxide

nanoparticles, and (b) P3HT:nanoparticles blend films with ZnO

(I), TiO2 (II) and Y2O3 (III)……………………………………….

131

Figure 5.15: Comparison of the J-V characteristics of the solar cells based on

three different types of P3HT:metal oxide nanoparticles hybrid

systems under white light illumination…………………………...

133

Figure 5.16: An inferred schematic energy band diagram for the

P3HT:inorganic nanoparticles hybrid systems, placed between

anode ITO and cathode Al………………………………………..

135

Figure 5.17: Absorption coefficient spectra of pristine P3HT, sol-gel derived

ZnO and P3HT:sol gel ZnO blend films with different sol

contents. The inset indicates the variation of αmax and film

thickness as a function of sol content. Also, the comparison

between P3HT:ZnO NPs and P3HT:sol-gel ZnO films is

shown……………………………………………………………..

137

Figure 5.18: The plots of (αhν)2 against hν for P3HT:sol gel ZnO blend films

with different sol contents………………………………..............

138

Figure 5.19: The XRD patterns of P3HT:sol-gel ZnO blend films with

different sol contents as well as XRD patterns of bared ZnO NPs

deposited film and sol-gel derived ZnO films…………………....

140

Figure 5.20: XRD parameters of blend films as a function of different sol

contents, namely: (i) FWHM, (ii) crystallite size and (iii)

dislocation density corresponding to (100), (002), and (110)

planes……………………………………………………………..

141

Figure 5.21: The AFM images of P3HT:sol-gel ZnO blend films with (a) 0.05

ml, (b) 0.1 ml, (c) 0.2 ml, and (d) 0.3 ml sol content…….………

144

Figure 5.22: AFM images by 10 × 10 µm2 scan in both 2D and 3D views of

(i) P3HT:ZnO NPs and (ii) P3HT:sol gel ZnO blend films………

144

Figure 5.23: The FESEM images of P3HT:sol-gel ZnO films with (a) 0.05 ml,

(b) 0.1 ml, (c) 0.2 ml, and (d) 0.3 ml sol…………………………

144

Figure 5.24: The comparison of FESEM images between (i) P3HT:ZnO NPs

film and (ii) P3HT:sol-gel ZnO film. The inset shows the surface

micrograph of (i) bare ZnO NPs film and (ii) bare sol-gel derived

ZnO film………………………………………………………….

147

Figure 5.25: The J-V plots for P3HT:sol-gel ZnO solar cells with different sol

contents in blends………………………………………………...

147

Page 17: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

xvii

Figure 5.26:

Variations in the device parameters for (i) Jsc and Voc, (ii) Rs and

Rsh, (iii) FF and η as a function of sol content in blends………....

149

Figure 5.27: Photovoltaic comparison for P3HT:sol gel ZnO and P3HT:ZnO

NPs films………………………………………………………....

151

Figure 5.28: The optical spectra of P3HT:sol-gel ZnO films annealed at

different temperatures, Ta. The inset indicates the variation of

αmax and film thickness as a function of Ta……………………….

153

Figure 5.29: The plots of (αhν)2 against hν for P3HT:sol gel ZnO blend films

annealed at different Ta…………………………………………...

153

Figure 5.30: The AFM images in 2D and 3D of P3HT:sol gel ZnO films

annealed at different Ta of (a) 75 °С, (b) 100 °С, (c) 150 °С, (d)

175 °С…………………………………………………….............

155

Figure 5.31: The J-V plots for P3HT:sol gel ZnO solar cells fabricated from

active layers annealed at different Ta……………………………..

156

Figure 5.32: Variation in the device parameters for (i) Jsc and Voc, (ii) Rs and

Rsh, (iii) FF and η as a function of annealing temperature………..

157

Figure 5.33: Morphological characteristics of the P3HT:sol-gel ZnO film (i)

without and (ii) with an additional ZnO buffer layer (BL) via

AFM imaging…………………………………………………......

159

Figure 5.34: The comparison of the J-V characteristics of the solar cell

devices without and with an additional ZnO buffer layer……......

160

Page 18: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

xviii

LIST OF TABLES

Page

Table 1.1: A list of development in the organic solar cells………………. 5

Table 3.1: Blend compositions and the respectively masses of

P3HT:inorganic nanoparticles blends………………………….

45

Table 3.2: Blend compositions of P3HT:sol-gel ZnO…………………….

47

Table 3.3: The deposition parameters of Al electrodes…………………...

56

Table 3.4: Parameters of UV-VIS-NIR spectrum…………………………

60

Table 3.5: Scanning parameters of XRD measurement…………………...

63

Table 3.6: Parameters of the AFM measurement…………………………

66

Table 3.7: Scanning parameters of film thickness measurement………….

71

Table 4.1: The comparison of the absorption coefficient peak values and

the corresponding wavelength positions for pristine P3HT and

P3HT:ZnO blends……………………………………………...

76

Table 4.2: The values of average thickness for pristine P3HT, ZnO and

P3HT:ZnO blend films…………………………………………

76

Table 4.3: The values of Eg for pristine P3HT, ZnO and P3HT:ZnO blend

films based on two different types of functions, in which the

later one gives a more precise estimation value of Eg………….

84

Table 4.4: Summary of the XRD properties of the P3HT:ZnO

nanoparticles blend films with different ZnO content………....

89

Table 4.5: The mean surface roughness and root-mean-square roughness

of the films obtained from AFM for Figure 4.11……………....

94

Table 4.6: The comparison of device characteristics parameters for

pristine P3HT and P3HT:ZnO solar cells with different ZnO

concentration…………………………………………………...

104

Table 4.7: The variation of Rsh and Rs with the blend composition………..

109

Table 5.1: Summaries of the αmax values together with the corresponding

wavelength positions, λ, film thickness, t and estimated Eg for

pristine P3HT and P3HT:TiO2 blends………………………….

112

Table 5.2: Summaries of the Bragg diffraction angles and film

roughnesses (obtained from AFM images) of pristine P3HT

and P3HT:TiO2 blends…………………………………………

113

Table 5.3: The comparison of device characteristics parameters for

P3HT:TiO2 solar cells………………………………………….

117

Page 19: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

xix

Table 5.4: Summaries of the αmax values together with the corresponding

wavelength positions, λ, film thickness, t and estimated Eg for

pristine P3HT and P3HT:Y2O3 blends…………………………

119

Table 5.5: Summaries of the Bragg diffraction angles and film

roughnesses of pristine P3HT and P3HT:Y2O3 blends………...

121

Table 5.6: The comparison of device characteristics parameters for P3HT

and P3HT:Y2O3 solar cells……………………………………..

124

Table 5.7: Variation in the J-V characteristics of P3HT: metal oxide

nanoparticles hybrid solar cells………………………………...

133

Table 5.8: The comparison of αmax values, the corresponding wavelength

positions, average film thicknesses and estimated Eg for

P3HT:sol gel ZnO blends with different sol contents………….

139

Table 5.9

(i) & (ii):

Summaries of the XRD parameters of P3HT:sol gel ZnO blend

films with different sol contents……………………………….

140

Table 5.10: Surface roughness values of the blend films obtained from

AFM……………………………………………………………

145

Table 5.11: The comparison of device characteristics parameters for

P3HT:sol-gel ZnO solar cells…………………………………..

149

Table 5.12: The comparison of the αmax values, the corresponding

wavelength positions, average film thicknesses and estimated

Eg for the P3HT:sol gel ZnO films annealed at different Ta…...

153

Table 5.13: Surface roughness values of P3HT:sol gel ZnO films annealed

at different Ta…………………………………………………..

156

Table 5.14: The comparison of device characteristics parameters for

P3HT:sol gel ZnO solar cells…………………………………..

156

Table 5.15: Surface roughness values of the films obtained from AFM……

160

Table 5.16: Device characteristics parameters of P3HT:sol gel ZnO solar

cells with ZnO buffer layer spun at different spin speed………

160

Table 5.17: Device characteristics parameters of P3HT:sol gel ZnO solar

cells……………………………………………………………..

161

Page 20: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

xx

LIST OF SYMBOLS

> Less than

< More than

π Pi

σ Sigma

T Transmittance

A Absorbance

Io Light intensities

E Energy

λ Wavelength

d Interatomic spacing distance

θ Diffraction angle

Eg Energy gap

Δr Bond length alternation

ISC Short-circuit current

VOC Open circuit voltage

Pmax Maximum power

Pout Output power

Vmax Voltage at maximum power

Imax Current at maximum power

Pin Input power

FF Fill factor

η Power conversion efficiency

α Absorption coefficient

t Film thickness

B Full width at half maximum

tc Crystallite size

C Scherrer constant

ε Strain

ΛE Exciton diffusion length

DE Exciton diffusion coefficient

τE Exciton lifetime

Ra Mean surface roughness

Von Turn-on voltage

Jsc Short-circuit current density

Rsh Shunt resistance

Rs Series resistance

D/A Donor/Acceptor

J-V Current density-voltage

δ Dislocation density

Ta Annealing temperature

Page 21: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

xxi

LISTS OF ABBREVIATIONS

BHJ Bulk heterojunction

1-D One dimensional

AFM Atomic force microscopy

Ag Silver

Al Aluminum

AM 1.5 Air mass 1.5

Au Gold

BL Buffer layer

C60 Buckminsterfullerene

Ca Calcium

CB Conduction band

CdSe Cadmium selenide

CHCl3 Chloroform

Cu Copper

DEA Diethanolamine

EDX X-ray spectroscopy

FESEM Field-effect scanning electron microscopy

FWHM Full width at half maximum

HCl Hydrochloric acid

HE High energy

HOMO Highest occupied molecular orbital

ITO Indium tin oxide

JCPDS Joint committee on powder diffraction standards

LE Low energy

LUMO Lowest unoccupied molecular orbital

MEH-PPV Poly[2-methoxy-5-(2’-ethylhexyloxy)-p-phenylene vinylene]

MgPh Magnesium phthalocyanine

NPs Nanoparticles

OSCs Organic solar cells

P3HT Poly(3-hexylthiophene)

PbS Plumbum sulfide

PCBM. [6,6]-phenyl-C61-butyric acid methyl ester

PCE Power conversion efficiency

PEDOT:PSS Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)

PPP Poly-para-phenylene

PT Poly(thiophene)

PV Photovoltaic

RMS Root-mean-square

rpm Rotations per minute

SMU Source measuring unit

STC Standard test condition

TiO2 Titanium dioxide

UV-VIS-NIR Ultraviolet-visible-near-infrared

VB valence band

XRD X-ray diffraction

ZnO Zinc oxide

Page 22: FABRICATION AND CHARACTERIZATION OF HYBRID …studentsrepo.um.edu.my/3969/1/Title_page,_abstract,_table_of...iii ABSTRACT The easy fabrication method, tunable physical and chemical

xxii