Factors Affecting the Friction Between Surfaces

Embed Size (px)

Citation preview

  • 7/27/2019 Factors Affecting the Friction Between Surfaces

    1/12

    Factors affecting the friction between surfaces

    Dry surfaces

    1. For low surface pressures the friction is directly proportional to the pressure between thesurfaces. As the pressure rises the friction factor rises slightly. At very high pressure the frictionfactor then quickly increases to seizing

    2. For low surface pressures the coefficient of friction is independent of surface area.3. At low velocities the friction is independent of the relative surface velocity. At higher velocities

    the coefficent of friction decreases.

    Well lubricated surfaces

    1. The friction resistance is almost independent of the specific pressure between the surfaces.2. At low pressures the friction varies directly as the relative surface speed

    3. At high pressures the friction is high at low velocities falling as the velocity increases to aminimum at about 0,6m/s. The friction then rises in proportion the velocity

    2.

    4. The friction is not so dependent of the surface materials

    5. The friction is related to the temperature which affects the viscosity of the lubricant

    Please refer to... Surface Friction Notes

    Static Coefficient of Friction

    The static friction coefficient () between two solid surfaces is defined as the ratio of thetangential force (F) required to produce sliding divided by the normal force between thesurfaces (N)

    = F /N

    For a horizontal surface the horizontal force (F) to move a solid resting on a flat surface

    F= x mass of solid x g.

    If a body rests on an incline plane the body is prevented from sliding down because of thefrictional resistance. If the angle of the plane is increased there will be an angle at whichthe body begins to slide down the plane. This is the angle of repose and the tangent of thisangle is the same as the coefficient of friction.

    .

    Sliding Coefficient of Friction

    When the tangential force F overcomes the frictional force between two surfaces then thesurfaces begins to slide relative to each other. In the case of a body resting on a flatsurface the body starts to move. The sliding frictional resistance is normally different tothe static frictional resistance. The coefficient of sliding friction is expressed using thesame formula as the static coefficient and is generally lower than the static coefficient of

    friction..

    http://www.roymech.co.uk/Useful_Tables/Tribology/class_Friction.htmlhttp://www.roymech.co.uk/Useful_Tables/Tribology/class_Friction.html
  • 7/27/2019 Factors Affecting the Friction Between Surfaces

    2/12

    Friction Coefficients

    A table below shows approximate friction coefficients for various materials. All values areapproximate and are only suitable for guidance only. The sliding/lubricated values mustbe used with extreme care. The only way to determine the accurate coefficient of frictionbetween two materials is to conduct experiments.

    Coefficients of friction are sensitive to atmospheric dust and humidity, oxide films, surfacefinish, velocity of sliding, temperature, vibration, and extent of contamination. In manycases the degree of contamination is perhaps the most important single variable.. LinkTable of Coefficients of Friction

    The friction values provided are obtained by different test methods under different ambientconditions. This factor can also affect the results. LinkTest Methods

    Rolling Friction

    When a cylinder rolls on a surface the force resisting motion is termed rollingfriction. Rolling friction is generally considerably less than sliding friction. If W is theweight of the cylinder converted to force, or the force between the cylinder and the flatsurface, and R is radius of the cylinder and F is the force required to overcome the rollingfriction then.

    center>F = f x W/R

    f is the coefficient of rolling friction and has the same unit of length as the radius R -in theexample below m (metres)

    Typical values for f are listed below

    Note: Values for rolling friction from various sources are not consistent and the followingvalues should only be used for approximate calculations.

    Steel on Steel f = 0,0005m

    Wood on Steel f = 0,0012m

    Wood on Wood f = 0,0015m

    Iron on iron f = 0,00051m

    Iron on granite f = 0,0021m

    Iron on Wood f = 0,0056m

    Polymer on steel f = 0,002m

    http://www.roymech.co.uk/Useful_Tables/Tribology/co_of_frict.htm#coef%23coefhttp://www.roymech.co.uk/Useful_Tables/Tribology/co_of_frict.htm#method%23methodhttp://www.roymech.co.uk/Useful_Tables/Tribology/co_of_frict.htm#coef%23coefhttp://www.roymech.co.uk/Useful_Tables/Tribology/co_of_frict.htm#method%23method
  • 7/27/2019 Factors Affecting the Friction Between Surfaces

    3/12

    Hardrubber on Steel f = 0,0077m

    Hardrubber on Concrete f = 0,01 -0,02m

    Rubber on Concrete f = 0,015 -0,035m

    Plain Bearing Friction factors

    For values of rolling bearing frictionPlain Bearing Friction Values

    Rolling Bearing Friction

    For values of rolling bearing frictionRolling Bearing Friction Values

    Clutch - Brake Friction Values

    The coefficient of friction value is important in the design and brakes and clutches.Various values are provided on the following linked page Clutch/Brake Materials

    Friction coefficient Bolted Joints

    The coefficient of friction is required in calculating tightening torques and resulting bolttensile forces and stress and in calculating the resulting friction between the connectedsurfaces. Below are provided a small number of values showing approximate values offriction coefficients to be used for steel screw fastened connections. The values are onlyrepresentative values and should be confirmed against other sources of information andpreferably testing.

    Coefficient of Friction for screw threads

    Female Thread -Nut or Tapped Hole insteel(untreated)

    Male screwFriction

    Coefficient (Dry)Friction

    Coefficient (lub)

    Untreated Steel 0,12 - 0,18 0,10 - 0,17

    Phosphated Steel 0,12 - 0,18 0,10 - 0,17

    Cadmium PlatedSteel

    0,09 - 0,14 0,08 -0,23

    Galvanised steel 0,14 - 0,23 0,12 - 0,2

    Degreased steel 0,19 - 0,25

    Female Thread -Nut or Tapped Hole insteel(Galvanised)

    Male screwFriction Coeffient

    (Dry)Friction

    Coefficient(Lub.)

    Untreated Steel 0,14 - 0,2 0,12 - 0,18

    Phosphated Steel 0,14 - 0,2 0,12 - 0,18

    Cadmium PlatedSteel

    0,1 - 0,16 0,09 - 0,15

    Galvanised steel 0,14 - 0,25 0,12 - 0,2

    Degreased steel 0,19 - 0,25

    Coefficient of Friction Nut/Bolt Face against Clamped surface

    Clamped Surface = Steel

    Bolt/Nut Mat'lFriction Coeffient

    (Dry)Friction

    Coefficient(Lub.)

    http://www.roymech.co.uk/Useful_Tables/Tribology/Plain_Bearing%20Friction.htmlhttp://www.roymech.co.uk/Useful_Tables/Tribology/Plain_Bearing%20Friction.htmlhttp://www.roymech.co.uk/Useful_Tables/Tribology/Bearing%20Friction.htmlhttp://www.roymech.co.uk/Useful_Tables/Tribology/Bearing%20Friction.htmlhttp://www.roymech.co.uk/Useful_Tables/Drive/Brake_Clutch_mat.htmlhttp://www.roymech.co.uk/Useful_Tables/Drive/Brake_Clutch_mat.htmlhttp://www.roymech.co.uk/Useful_Tables/Tribology/Plain_Bearing%20Friction.htmlhttp://www.roymech.co.uk/Useful_Tables/Tribology/Bearing%20Friction.htmlhttp://www.roymech.co.uk/Useful_Tables/Drive/Brake_Clutch_mat.html
  • 7/27/2019 Factors Affecting the Friction Between Surfaces

    4/12

    Untreated Steel 0,10 - 0,18 0,08 - 0.15

    Phosphated Steel 0,10 - 0,18 0,08 - 0,15

    Galvanised steel 0,10 - 0,2 0,09 - 0,18

    Clamped Surface -Galvanised Steel

    Bolt/Nut Mat'lFriction

    Coefficient (Dry)Friction

    Coefficient (lub)

    Untreated Steel 0,10 - 0,18 0,08 - 0,15Phosphated Steel 0,10 - 0,18 0,08 - 0,15

    Galvanised steel 0,16 - 0,22 0,09 - 0,18

    Coefficient of friction between surfaces clamped by bolts /screws.These values allow calculation of the shear force necessary to cause slip between surfaceswhen clamped by bolts.

    Contact Surfacesslip

    coefficient

    Steel On Steel- No treatment 0,15- 0,25

    Steel On Cast Iron- No treatment 0,18 - 0,3

    Steel On Steel- Machined (Degreased) 0,12- 0,18

    Steel On Cast Iron- Machined (Degreased) 0,15 - 0,25

    Grit -Sandblasted surfaces 0,48 - 0,55

    Friction Factors for Power Screws

    The following factors are typical friction factors for power screw torque and efficiencycalculations..

    1) Screw Thread Friction values (s)

    (Friction factors apply mainly for screw thread friction (s) - can be applied to collar

    friction(c)

    Screw Material

    Nut Material

    Steel Brass Bronze

    Cast

    Iron

    Steel(Dry)0,15-0,25

    0,15-0,23

    0,15-0,19

    0,15-0,25

    Steel (Lubricated)0,11-0,17

    0,10-0,16

    0,10-0,15

    0,11-0,17

    Bronze (Lubricated)0,08-0,12

    0,04-0,06

    -0,06-0,09

    2) Thrust collar Friction values (c)

    Surface Combinations Moving Starting

    Soft Steel on Cast Iron 0,12 0,17

    Hard Steel on Cast Iron 0,09 0,15

    Soft Steel on Bronze 0,08 0,10

    Hard Steel on Bronze 0,06 0,08

    Press Fit Mechanical Joints

    In mechanical engineering rotary motion can be transferred by mechanical connectionsbetween a shaft and hub using only a tight fit. Methods of achieving this type ofconnection include the engineered interference fit, the taper lock bush and hydraulic fitbush. These keyless shaft/hub connections all transfer torque by friction.

    The coefficient of friction used for designing these types of connections is dependent on theinterface pressure, materials, surface condition, surface coatings etc. The coefficient offriction is also dependent on the method of installation. A different value result if the shaftis forced into the hub (force fit) compared to the value if the assemble is completed by

  • 7/27/2019 Factors Affecting the Friction Between Surfaces

    5/12

    heating the hub or freezing the shaft prior to assembly (shrink fit)...

    Various values of relevant coefficients of friction are provided below;

    Steel Hub , Steel Shaft unlubricated - force fit ...C. of Friction = 0,07 to 0,16

    Steel Hub , Steel Shaft greased - force fit ...C. of Friction = 0,05 to 0,12

    Steel Hub , Steel Shaft unlubricated - Shrink fit ...C. of Friction = 0,15 to 0,25

    Steel Hub , Steel Shaft greased - Shrink fit ...C. of Friction = 0,08 to 0,16

    The manufacturers of the proprietary keyless hub/shaft systems indicate that their productsare based on a coefficient of friction of 0,12 for lightly oiled connections and 0,15 for dryassemblies. These companies can provide surface coating fluids containing particles toincrease the coefficient of friction i.e. coefficient of friction to 0,25 to 0,3. (ref links 1 below)

    The American Gear Manufactures Association (AGMA) recommends a value of between0,12-0,15 for hydraulically expanded hubs and 0,15-0,20 for shrink or press fit hubs.

    When calculated the torque to be transmitted it is generally sufficient to use the simple

    equation

    T= ..d2.L.Pc/2

    d= the shaft diameterL is the length of the interference joint.The surface pressure Pc is calculated typically using lame's equation.

    Calculators are available for obtaining the transmitted toque very conveniently.Tribology -abcEngineers edge - press fit calculatgor

    Testing Methods

    There are a number of test methods for coefficient of frictions as some of which are listedbelow

    Flat block pressed against a OD of rotating ring (FOR)

    Flat block against another flat block (FOF)

    Flat block sliding down an inclined runway(IS)

    Pin pressed against a OD of rotating ring (POR

    Reciprocating loaded spherical end pin pressed on a flat surface(RSOF)

    It is clear that the different test methods provide different friction results..

    Coefficient of Friction

    Extreme care is needed in using friction coefficients and additional independent referencesshould be used. For any specific application the ideal method of determining thecoefficient of friction is by trials. A short table is included above the main table to illustratehow the coefficient of friction is affected by surface films. When a metal surface is perfectlyclean in a vacuum , the friction is much higher than the normal accepted value and seizurecan easily occur.

    ......The links below the tables provide further information.

    http://www.tribology-abc.com/calculators/e6_2.htmhttp://www.engineersedge.com/calculators/machine-design/press-fit/press-fit-calculator.htmhttp://www.tribology-abc.com/calculators/e6_2.htmhttp://www.engineersedge.com/calculators/machine-design/press-fit/press-fit-calculator.htm
  • 7/27/2019 Factors Affecting the Friction Between Surfaces

    6/12

    Effect of oxide film etc on coefficient of static friction

    MaterialCleanDry

    ThickOxideFilm

    SulfideFilm

    Steel-Steel 0,78 0,27 0,39

    Copper-Copper 1,21 0,76 0,74

    The level of uncertainty of the information below is indicated by using steel on steel as anexample. Various reference sources provide values similar to the values below.(0,74 Static-0,42 sliding) Gieck( 7th ed) provides values of (0,15...0,30 Static - 0,10...0,30 sliding).Concise Metals Data Handbook by J.R. Davis (table 14,1) includes values (0,31 static -0,23sliding - for steel 1032? on steel 1032?).. The same table includes a value for mild steel onmild steel of 0,62 sliding.

    Material 1 Material 2

    Coefficient Of Friction

    TestmethodDRY Greasy

    Static Sliding Static Sliding

    Aluminum Aluminum1,05-1,35

    1,4 0,3

    Aluminum Mild Steel 0,61 0,47

    Brake Material Cast Iron 0,4

    Brake Material Cast Iron (Wet) 0,2

    Brass Cast Iron 0,3

    Brick Wood 0,6

    Bronze Cast Iron 0,22

    Bronze Steel 0,16

    Cadmium Cadmium 0,5 0,05

    Cadmium Mild Steel 0,46

    Cast Iron Cast Iron 1,1 0,15 0,07

    Cast Iron Oak 0,49 0,075

    Chromium Chromium 0,41 0,34

    Copper Cast Iron 1,05 0,29

    Copper Copper 1,0 0,08

    Copper Mild Steel 0,53 0,36 0,18

    Copper Steel 0,8 SPOF

    Copper Steel (304 stainless) 0,23 0,21 FOFCopper-Lead Alloy Steel 0,22 -

    Diamond Diamond 0,10,05 -0,1

    Diamond Metal 0,1 -0,15 0,1

    Glass Glass 0,9 - 1,0 0,4 0,1 - 0,60,09-0,12

    Glass Metal 0,5 - 0,7 0,2 - 0,3

  • 7/27/2019 Factors Affecting the Friction Between Surfaces

    7/12

    Glass Nickel 0,78 0,56

    Graphite Graphite 0,1 0,1

    Graphite Steel 0,1 0,1

    Graphite (In vacuum) Graphite (In vacuum) 0,5 - 0,8

    Hard Carbon Hard Carbon 0,160,12 -

    0,14

    Hard Carbon Steel 0,140,11 -0,14

    Iron Iron 1,00,15 -0,2

    Lead Cast Iron 0,43

    Lead Steel 1,4 SPOF

    Leather Wood 0,3 - 0,4

    Leather Metal(Clean) 0,6 0,2

    Leather Metal(Wet) 0,4

    Leather Oak (Parallel grain) 0,61 0,52

    Magnesium Magnesium 0,6 0,08

    Nickel Nickel 0,7-1,1 0,53 0,28 0,12

    Nickel Mild Steel 0,64; 0,178

    Nylon Nylon0,15 -0,25

    Oak Oak (parallel grain) 0,62 0,48

    Oak Oak (cross grain) 0,54 0,32 0,072

    Platinum Platinum 1,2 0,25

    Plexiglas Plexiglas 0,8 0,8

    Plexiglas Steel 0,4 - 0,5 0,4 - 0,5

    Polystyrene Polystyrene 0,5 0,5

    Polystyrene Steel 0,3-0,35 0,3-0,35

    Polythene Steel 0,2 0,2

    Rubber Asphalt (Dry) 0,5-0,8

    Rubber Asphalt (Wet)0,25-0,75

    Rubber Concrete (Dry) 0,6-0,85

    Rubber Concrete (Wet)0,45-0,75

    Saphire Saphire 0,2 0,2

    Silver Silver 1,4 0,55

    Sintered Bronze Steel - 0,13

    Solids Rubber 1,0 - 4,0 --

    Steel Aluminium Bros 0,45

    Steel Brass 0,35 0,19

    Steel(Mild) Brass 0,51 0,44

    Steel (Mild) Cast Iron 0,23 0,183 0,133

    Steel Cast Iron 0,4 0,21

  • 7/27/2019 Factors Affecting the Friction Between Surfaces

    8/12

    Steel Copper Lead Alloy 0,22 0,16 0,145

    Steel (Hard) Graphite 0,21 0,09

    Steel Graphite 0,1 0,1

    Steel (Mild) Lead 0,95 0,95 0,5 0,3

    Steel (Mild) Phos. Bros 0,34 0,173

    Steel Phos Bros 0,35

    Steel(Hard) Polythened 0,2 0,2

    Steel(Hard) Polystyrene 0,3-0,35 0,3-0,35

    Steel (Mild) Steel (Mild) 0,74 0,570,09-0,19

    Steel (Mild) Steel (Mild) - 0,62 FOR

    Steel(Hard) Steel (Hard) 0,78 0,420,05-0,11

    0,029-,12

    Steel Zinc (Plated on steel) 0,5 0,45 - -

    Teflon Steel 0,04 0,04 0,04

    Teflon Teflon 0,04 0,04 0,04

    Tin Cast Iron ,32

    Titanium Alloy Ti-6Al-4V(Grade 5)

    Aluminium Alloy 6061-T6 0,41 0,38 FOF

    Titanium Alloy Ti-6Al-4V(Grade 5)

    Titanium Alloy Ti-6Al-4V(Grade 5)

    0,36 0,30 FOF

    Titanium Alloy Ti-6Al-4V(Grade 5)

    Bronze 0,36 0,27 FOF

    Tungsten Carbide Tungsten Carbide 0,2-0,25 0,12

    Tungsten Carbide Steel 0,4 - 0,60,08 -0,2

    Tungsten Carbide Copper 0,35

    Tungsten Carbide Iron 0,8

    Wood Wood(clean)0,25 -0,5

    Wood Wood (Wet) 0,2

    Wood Metals(Clean) 0,2-0,6

    Wood Metals (Wet) 0,2

    Wood Brick 0,6

    Wood Concrete 0,62

    Zinc Zinc 0,6 0,04

    Zinc Cast Iron 0,85 0,21

    Material 1 Material 2

    Coefficient Of FrictionTest

    methodDRY LUBRICATED

    Static Sliding Static Sliding

    FOR = Flat against rotating Cylinder, FOF = Flat against flat, POF = Pin on flat, IS = inclinedsurface,SPOF Spherical end pin on flat.

    Source of above values.... The values are checked against a variety of internet andliterature sources including the links below eg Link 6-Page 16. I have referred to booksincluding Machinerys Handbook Eighteenth edition, Kempes Engineers Year Book 1980,

  • 7/27/2019 Factors Affecting the Friction Between Surfaces

    9/12

    Concise Metals Handbook by J.R.Davis ASM - (Good source of referenced data) and KurtGiecks Engineering Formulas 7th Edition.. 1980, etc etc

    Table of friction Values for elements

    I provide the table below as a consistent set of values for simple elements using thesimplest of test methods. It can be seen that values are generally different to the values in

    the table above...

    Friction tests in air at room temperature. (50% relative humidity)

    Fixed Surface Moving BlockFrictioncoefficie

    nt

    TestMethod

    StaticSlidin

    g

    Silver (Ag) Silver (Ag) 0,5InclinePlane

    Gold(Au) 0,53InclinePlane

    Copper(Cu) 0,48 InclinePlane

    Iron(Fe) 0,49InclinePlane

    Aluminium(Al) Aluminium(Al) 0,57InclinePlane

    Titanium (Ti) 0,54InclinePlane

    Gold(au) Silver (Ag) 0,53InclinePlane

    Gold(Au) 0,49InclinePlane

    Cadmium(Cd) Cadmium(Cd) 0,79

    Incline

    Plane

    Iron(Fe) 0,52InclinePlane

    Cobalt(Co) Cobalt(Co) 0,56InclinePlane

    Chromium(Cr) 0,41InclinePlane

    Chromium(Cr) Cobalt(Co) 0,41InclinePlane

    Chromium(Cr) 0,46InclinePlane

    Copper(Cu) Cobalt(Co) 0,44Incline

    Plane

    Chromium(Cr) 0,46InclinePlane

    Copper(Cu) 0,55InclinePlane

    Iron(Fe) 0,50InclinePlane

    Nickel(Ni) 0,49InclinePlane

  • 7/27/2019 Factors Affecting the Friction Between Surfaces

    10/12

    Zinc(Zn) 0,56InclinePlane

    Iron(Fe) Cobalt(Co) 0,41InclinePlane

    Chromium(Cr) 0,48InclinePlane

    Iron(Fe) 0,51InclinePlane

    Maganese(Mg) 0,51InclinePlane

    Molybdenum(Mo) 0,46InclinePlane

    Titanium(Ti) 0,49InclinePlane

    Tungsten(W) 0,47InclinePlane

    Zinc(Zn) 0,55InclinePlane

    Indium(In) Indium(In) 1,46 InclinePlane

    Maganese(Mg) Maganese(Mg) 0,69InclinePlane

    Molybdenum(Mo) Iron(Fe) 0,46InclinePlane

    Molybdenum(Mo) 0,44InclinePlane

    Niobium(Nb) Niobium(Nb) 0,46InclinePlane

    Nickel(Ni) Chromium(Cr) 0,59InclinePlane

    Nickel(Ni) 0,50

    Incline

    Plane

    Platinum(Pt) 0,64InclinePlane

    Lead(Pb) Silver (Ag) 0,73InclinePlane

    Gold(Au) 0,61InclinePlane

    Copper(Cu) 0,55InclinePlane

    Chromium(Cr) 0,53InclinePlane

    Iron(Fe) 0,54Incline

    Plane

    Lead(Pb) 0,90InclinePlane

    Platinum(Pt) Nickel(Ni) 0,64InclinePlane

    Platinum(Pt) 0,55InclinePlane

    Tin(Sn) Iron(Fe) 0,55InclinePlane

  • 7/27/2019 Factors Affecting the Friction Between Surfaces

    11/12

    Tin(Sn) 0,74InclinePlane

    Titanium(Ti) Aluminium(Al) 0,54InclinePlane

    Titanium(Ti) 0,55FlatSliding

    Tungsten(W) Copper(Cu) 0,41InclinePlane

    Iron(Fe) 0,47InclinePlane

    Tungsten(W) 0,51InclinePlane

    Zinc(Zn) Copper(Cu) 0,56InclinePlane

    Iron(Fe) 0,55InclinePlane

    Zinc(Zn) 0,75InclinePlane

    Table of friction Values associated with civils and structures

    Notes : Friction is lower when one of the materials is wet

    Experimental results in the published literature show that at low normal stresses, asinvolved in civils design,the shear stress required to slide one rock over another varieswidely between experiments. This is because at low stress rock friction is stronglydependent on surface roughness.ref. link to "Friction of Rocks" below

    Material 1 Material 2Friction

    coefficientSliding

    Rubber Paving 0,7 -0,9

    Masonry Masonry 0,7 -0,9

    Masonry Earth 0,5

    Earth on Earth 0,25 -1,0

    Concrete Soil / Rock 0.3

    Concrete Steel 0.45

    Brick Moist clay 0.33

    Brick Dry clay 0.5

    Brick Sand 0.4

    Brick Gravel 0.6Brick Brick 0.7

    Brick Rock 0.75

    Granite Granite 0.6

    LimestoneLimestone onLimestone

    0.75

    Cement Cement Blocks 0.65

    Cement Dry Clay 0.4

  • 7/27/2019 Factors Affecting the Friction Between Surfaces

    12/12

    Cement Wet Clay 0.2

    Cement Wet Sand 0.4

    Cement Dry Sand 0.50 - 0.60

    Cement Dry Gravel 0.50 - 0.60

    Cement Dry Rock 0.60 - 0.70

    Cement Wet Rock 0.5

    Brick on Brick Brick 0.65

    Wood on Wood Wood 0.48