Failure Analysis of Boiler Damages

  • Upload
    lazyt

  • View
    225

  • Download
    0

Embed Size (px)

Citation preview

  • 8/20/2019 Failure Analysis of Boiler Damages

    1/18

     

    TÜV Industrie Service GmbHTÜV SÜD GroupWestendstrasse 19980686 München Page 1 Germany 

    Failure Analysis of Waterside Boiler Damages and

    Risk from Insuff icient Maintenance & Inspection

    Ludwig Höhenberger, TÜV SÜD, IS-ATW1, Munich E-mail: [email protected]

    Waterside damages on steam generators e.g. on condensate or feedwater pre-heater,economiser, evaporator, super-heater and re-heater are mostly caused by

    •  Deposit ion (Scaling) and•  Corrosion or combinations of both effects.

    Possible, but more rare are damages due to•  Operational Faults and•  Design Defects 

    Deposit ion or Scaling is a common problem on steam generators and may lead to

    •  Lack in material cooling due to reduced heat transfer and/or reduced mass flow•  Material overheating and consequently loss of material strength•  Damage

    - due to rapid overheating, characterised by thin-lipped ruptures  Photo 1and complete micro-structural transformation at temperatures > 720 °C.

    - due to long-term overheating, characterised by thick-lipped ruptures Photo 2

    and carbide speroidisation or grain growth at temperatures > ca. 480 °C.

    Attention: –  Scaling appears first at spots with high heat transfer (heat flux) and high steamproduction –  Silicate scale has ≈10 x lower heat transfer than common carbonate or phosphate scale –  Porous scale with its steam content is more dangerous than compact and dense scale

    Causes and Risks:∗  Insufficient Boiler Feedwater (BFW) treatment that includes

    - Make up water treatment,- Condensate polishing,∗  Inadequate chemical dosing and conditioning of BFW and Boiler Water (BW) Fig. 1- 3 ∗  Coordinated phosphate dosing is not anymore recommended,  Fig 4 ∗  All Volatile Treatment (AVT) is permitted only with demineralised BFW!∗  Contaminated BFW as injection water for desuperheating leads to scale in super-heater&

    turbines or caustic stress corrosion cracking in super-heater Photo 3 – 6 or steampipe-

    work for extracted steam or back pressure steam.∗  Chemical cleaning must be done properly and profound  Photo 7 – 9. 

    TÜV SÜD Industry Services  IS-ATW1-MUC, Boiler Failure 2005/11 - Page 1 

  • 8/20/2019 Failure Analysis of Boiler Damages

    2/18

     

    TÜV Industrie Service GmbHTÜV SÜD GroupWestendstrasse 19980686 München Page 2 Germany 

    Deposit ion or Scaling may also lead to

    •  Localised concentration of impurities within or underneath of deposits at heated

    surfaces•  ”On Load Corrosion” with acidic or alkaline attack  Photo 10 – 12. 

    Attention: –  Scaling appears first at spots with high heat transfer and high steam production –  Even non corrosive deposits e.g. Photo 13 - 20 

    - iron oxides may lead to porous, thermal critical scale,- silicates as Ca-, Mg, Al-silicates to over-heating

     –  Boiler operation according to the BFW and BW requirements for some years leadmostly

    to some deposits of iron oxide, which should be preventively removed

    Causes and Risks:∗  Insufficient on-line quality control of make-up water, condensate return or BFW∗  Measurement of “Acid Conductivity” amplifies detection of ingress of impurities likecooling

    water and some process media but do not indicate ingress of free caustics!∗  Lack in Inspection of not safety related components like heat exchangers andcondensers∗  Preventive cleaning during operation or at shut down must be done according to the

    specifications

    Corrosion on boiler steel (carbon or low alloyed steel) can be mainly avoided, if the BFWand BW requirements were kept. Deviations may leads to

    •  Dissolution of the important protective layer, material attack and loss in form of- Uniform or General Corrosion or - more dangerous - to- Localised Corrosion (Pitting, On-load corrosion, etc.) Figs. 2 - 4 

    •  Crack formation in specific cases

    Attention: –  Uniform or General Corrosion isn’t problem if the material loss is less than 0.1 mm/year

    (is easy to achieve with normal protective iron oxide layer) –  Localised corrosion during operation underneath of deposits and within heated gaps aswell

    as during stand still in form of oxygen corrosion (pitting formation) –  Crack formation due to high concentration of free caustics in presence of high tensile

    stress (Caustic SCC) Photos 3 - 6 

    Causes and Risks:∗  Insufficient BFW and BW composition, which do not meet the requirements of the boiler

    manufacturer or approved standards∗  Inadequate preservation during shut down∗  Localised concentration of acidic acting impurities e. g. cooling water or sea wateringress

    ∗  Localised concentration of caustic acting impurities or free caustic underneath depositswithin heated gaps or at heated phase boundaries

    TÜV SÜD Industry Services  IS-ATW1-MUC, Boiler Failure 2005/11 - Page 2 

  • 8/20/2019 Failure Analysis of Boiler Damages

    3/18

     

    TÜV Industrie Service GmbHTÜV SÜD GroupWestendstrasse 19980686 München Page 3 Germany 

    ∗  Caustic SCC in case of contamination of super-heater due to mechanical carry over ofBW

    or contaminated injection water for desuperheating Photo 3 - 6 

    Corrosion due to non-corrosive BFW and BW conditions but elevated temperatures ordistinct temperature fluctuations may lead to

    •  Excessive Iron Oxide formation – particularly > 570 °C Photo 19 -20 •  Hydrogen production•  Hydrogen damage that includes

    - Decarburisation- Hydrogen Embrittlement- Fissuring (micro cracks)- Sudden brittle rupture  Photo 21 

    • Thermo shock Photos 22 - 23 

    Iron reacts very fast at temperatures > 570 °C with water or steam

    [1] Fe + H20 →  FeO + 2 {H} to wustite (FeO) and atomic hydrogen {H}[2] 2 {H} →  H2  that later recombines to molecular hydrogen(H2)

    Causes and Risks:Insufficient water (mass) flow e.g. due to –  Steam/Water separation in tubes with low slope (Design problem) or –  Too much refractory material (Design or repair problem) –  Insufficient mass flow due to deposits within headers

     –  Excessive localised heat input e. g. due to misalignment of burners

    Operational Faults may lead to Boiler / Super-Heater damages for instance

    •  Short-term increasing steam production or over-load may lead toFast pressure drop → Increasing BW level → BW carry over

    •  Immediate boiler pressure drop may lead toBW carry over → steam contamination→ super-heater/turbine damages

    •  Operation significantly below design pressure leads toIncreasing specific steam volume and poor steam/water separation that may lead tosteam contamination→ BW carry over → SH/turbine deposits

    •  Quick start up from cold shut down may lead to- Thermal stress on components with thick wall thickness (may cause crack)- Local overheating due to insufficient BW circulation (lack in steam production)

    •  Quick start up from hot stand by may lead toLocal overheating due to insufficient BW circulation (lack in steam production)

    •  BFW Temperature significant below design temperature may lead to- Material over-heating due to lack of steam production- Under cooled boiling (→ erosion corrosion, FAC)

    Design Problems may lead to several problems or damages, for instance

    •  Low slope riser tubes (on the way to the drum) heated also from top may lead to steam/water separation → Steam-side tube over-heating→ Loss in material strength → 

    TÜV SÜD Industry Services  IS-ATW1-MUC, Boiler Failure 2005/11 - Page 3 

  • 8/20/2019 Failure Analysis of Boiler Damages

    4/18

     

    TÜV Industrie Service GmbHTÜV SÜD GroupWestendstrasse 19980686 München Page 4 Germany 

    Steam-side excessive iron oxidation → Material loss → Hydrogen damage Photos 19 & 21

    •  Heated down-comer tubes may cause circulation problems like stagnant flow → 

    Insufficientwater supply for riser tubes → Lack in cooling of evaporator tubes → Material over-

    heating•  Heavily fluctuating water level in the boiler drum may lead to

    Fluctuating steam space load and problems with the steam purity

    •  Refractory material reduces heat input to evaporator tubes but mayalso affect the steam production and water circulation (mass flow)

    •  Defects at drum internals e. g leaks at baffle sheets, incorrect installed demistersor cyclones may affect the steam purity

     Annexes: Photos 1 – 23Figures 1 – 4

    Photographs

    Photo 1

    TÜV SÜD Industry Services  IS-ATW1-MUC, Boiler Failure 2005/11 - Page 4 

  • 8/20/2019 Failure Analysis of Boiler Damages

    5/18

     

    TÜV Industrie Service GmbHTÜV SÜD GroupWestendstrasse 19980686 München Page 5 Germany 

    Photo 2

    Photo 3

    TÜV SÜD Industry Services  IS-ATW1-MUC, Boiler Failure 2005/11 - Page 5 

  • 8/20/2019 Failure Analysis of Boiler Damages

    6/18

     

    TÜV Industrie Service GmbHTÜV SÜD GroupWestendstrasse 19980686 München Page 6 Germany 

    Photo 4

    Photo 5

    TÜV SÜD Industry Services  IS-ATW1-MUC, Boiler Failure 2005/11 - Page 6 

  • 8/20/2019 Failure Analysis of Boiler Damages

    7/18

     

    TÜV Industrie Service GmbHTÜV SÜD GroupWestendstrasse 19980686 München Page 7 Germany 

    Photo 6

    Photo 7

    TÜV SÜD Industry Services  IS-ATW1-MUC, Boiler Failure 2005/11 - Page 7 

  • 8/20/2019 Failure Analysis of Boiler Damages

    8/18

     

    TÜV Industrie Service GmbHTÜV SÜD GroupWestendstrasse 19980686 München Page 8 Germany 

    Photo 8

    Photo 9

    TÜV SÜD Industry Services  IS-ATW1-MUC, Boiler Failure 2005/11 - Page 8 

  • 8/20/2019 Failure Analysis of Boiler Damages

    9/18

     

    TÜV Industrie Service GmbHTÜV SÜD GroupWestendstrasse 19980686 München Page 9 Germany 

    Photo 10

    Photo 11

    TÜV SÜD Industry Services  IS-ATW1-MUC, Boiler Failure 2005/11 - Page 9 

  • 8/20/2019 Failure Analysis of Boiler Damages

    10/18

     

    TÜV Industrie Service GmbHTÜV SÜD GroupWestendstrasse 19980686 München Page 10 Germany 

    Photo 12

    Photo 13

    TÜV SÜD Industry Services  IS-ATW1-MUC, Boiler Failure 2005/11 - Page 10 

  • 8/20/2019 Failure Analysis of Boiler Damages

    11/18

     

    TÜV Industrie Service GmbHTÜV SÜD GroupWestendstrasse 19980686 München Page 11 Germany 

    Photo 14

    Photo 15

    TÜV SÜD Industry Services  IS-ATW1-MUC, Boiler Failure 2005/11 - Page 11 

  • 8/20/2019 Failure Analysis of Boiler Damages

    12/18

     

    TÜV Industrie Service GmbHTÜV SÜD GroupWestendstrasse 19980686 München Page 12 Germany 

    Photo 16

    Photo 17

    TÜV SÜD Industry Services  IS-ATW1-MUC, Boiler Failure 2005/11 - Page 12 

  • 8/20/2019 Failure Analysis of Boiler Damages

    13/18

     

    TÜV Industrie Service GmbHTÜV SÜD GroupWestendstrasse 19980686 München Page 13 Germany 

    Photo 18

    Photo 19

    TÜV SÜD Industry Services  IS-ATW1-MUC, Boiler Failure 2005/11 - Page 13 

  • 8/20/2019 Failure Analysis of Boiler Damages

    14/18

     

    TÜV Industrie Service GmbHTÜV SÜD GroupWestendstrasse 19980686 München Page 14 Germany 

    Photo 20

    Photo 21

    TÜV SÜD Industry Services  IS-ATW1-MUC, Boiler Failure 2005/11 - Page 14 

  • 8/20/2019 Failure Analysis of Boiler Damages

    15/18

     

    TÜV Industrie Service GmbHTÜV SÜD GroupWestendstrasse 19980686 München Page 15 Germany 

    Photo 22

    Photo 23

    Figures :

    TÜV SÜD Industry Services  IS-ATW1-MUC, Boiler Failure 2005/11 - Page 15 

  • 8/20/2019 Failure Analysis of Boiler Damages

    16/18

     

    TÜV Industrie Service GmbHTÜV SÜD GroupWestendstrasse 19980686 München Page 16 Germany 

    Fig.1

    Fig.2  

    TÜV SÜD Industry Services  IS-ATW1-MUC, Boiler Failure 2005/11 - Page 16 

  • 8/20/2019 Failure Analysis of Boiler Damages

    17/18

     

    TÜV Industrie Service GmbHTÜV SÜD GroupWestendstrasse 19980686 München Page 17 Germany 

    Fig. 3

    TÜV SÜD Industry Services  IS-ATW1-MUC, Boiler Failure 2005/11 - Page 17 

  • 8/20/2019 Failure Analysis of Boiler Damages

    18/18

     

    TÜV Industrie Service GmbHTÜV SÜD GroupWestendstrasse 19980686 München Page 18 Germany 

    Fig. 4

    TÜV SÜD I d t S i P 18