11
©2008 Fairchild Semiconductor Corporation FDD8880 Rev. B3 FDD8880 FDD8880 N-Channel PowerTrench ® MOSFET 30V, 58A, 9mGeneral Description This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low r DS(ON) and fast switching speed. Applications DC/DC converters Features r DS(ON) = 9m, V GS = 10V, I D = 35A r DS(ON) = 12m, V GS = 4.5V, I D = 35A High performance trench technology for extremely low r DS(ON) Low gate charge High power and current handling capability MOSFET Maximum Ratings T C = 25°C unless otherwise noted Thermal Characteristics Package Marking and Ordering Information Symbol Parameter Ratings Units V DSS Drain to Source Voltage 30 V V GS Gate to Source Voltage ± 20 V I D Drain Current 58 A Continuous (T C = 25 o C, V GS = 10V) (Note 1) Continuous (T C = 25 o C, V GS = 4.5V) (Note 1) 51 A Continuous (T amb = 25 o C, V GS = 10V, with R θJA = 52 o C/W) 13 A Pulsed Figure 4 A E AS Single Pulse Avalanche Energy (Note 2) 53 mJ P D Power dissipation 55 W Derate above 25 o C 0.37 W/ o C T J , T STG Operating and Storage Temperature -55 to 175 o C R θJC Thermal Resistance Junction to Case TO-252 2.73 o C/W R θJA Thermal Resistance Junction to Ambient TO-252 100 o C/W R θJA Thermal Resistance Junction to Ambient TO-252, 1in 2 copper pad area 52 o C/W Device Marking Device Package Reel Size Tape Width Quantity FDD8880 FDD8880 TO-252AA 13” 12mm 2500 units G S D D-PAK (TO-252) D G S tm April 2008 RoHS Compliant

FDD8880 datasheet

Embed Size (px)

DESCRIPTION

N-FET POWER TRANSISTER

Citation preview

Page 1: FDD8880 datasheet

©

N

FD

D8880

April 2008

FDD8880 N-Channel PowerTrench® MOSFET30V, 58A, 9mΩGeneral DescriptionThis N-Channel MOSFET has been designed specifically toimprove the overall efficiency of DC/DC converters usingeither synchronous or conventional switching PWMcontrollers. It has been optimized for low gate charge, lowrDS(ON) and fast switching speed.

Applications• DC/DC converters

Features• rDS(ON) = 9mΩ, VGS = 10V, ID = 35A

• rDS(ON) = 12mΩ, VGS = 4.5V, ID = 35A

• High performance trench technology for extremely lowrDS(ON)

• Low gate charge

• High power and current handling capability

tm

• RoHS Compliant

G

S

D

TO-252D-PAK

D

G

S

MOSFET Maximum Ratings TC = 25°C unless otherwise noted

Thermal Characteristics

Package Marking and Ordering Information

Symbol Parameter Ratings UnitsVDSS Drain to Source Voltage 30 V

VGS Gate to Source Voltage ±20 V

ID

Drain Current58 AContinuous (TC = 25oC, VGS = 10V) (Note 1)

Continuous (TC = 25oC, VGS = 4.5V) (Note 1) 51 A

Continuous (Tamb = 25oC, VGS = 10V, with RθJA = 52oC/W) 13 A

Pulsed Figure 4 A

EAS Single Pulse Avalanche Energy (Note 2) 53 mJ

PDPower dissipation 55 W

Derate above 25oC 0.37 W/oC

TJ, TSTG Operating and Storage Temperature -55 to 175 oC

RθJC Thermal Resistance Junction to Case TO-252 2.73 oC/W

RθJA Thermal Resistance Junction to Ambient TO-252 100 oC/W

RθJA Thermal Resistance Junction to Ambient TO-252, 1in2 copper pad area 52 oC/W

Device Marking Device Package Reel Size Tape Width QuantityFDD8880 FDD8880 TO-252AA 13” 12mm 2500 units

(TO-252)

2008 Fairchild Semiconductor Corporation FDD8880 Rev. B3

Page 2: FDD8880 datasheet

©

F

D

D8880

Electrical Characteristics TC = 25°C unless otherwise noted

Off Characteristics

On Characteristics

Dynamic Characteristics

Switching Characteristics (VGS = 10V)

Drain-Source Diode Characteristics

Notes: 1: Package current limitation is 35A.2: Starting TJ = 25°C, L = 0.14mH, IAS = 28A, VDD = 27V, VGS = 10V.3

Symbol Parameter Test Conditions Min Typ Max Units

BVDSS Drain to Source Breakdown Voltage ID = 250µA, VGS = 0V 30 - - V

IDSS Zero Gate Voltage Drain CurrentVDS = 24V - - 1

µAVGS = 0V TC = 150oC - - 250

IGSS Gate to Source Leakage Current VGS = ±20V - - ±100 nA

VGS(TH) Gate to Source Threshold Voltage VGS = VDS, ID = 250µA 1.2 - 2.5 V

rDS(ON) Drain to Source On Resistance

ID = 35A, VGS = 10V - 0.007 0.009

ΩID = 35A, VGS = 4.5V - 0.009 0.012

ID = 35A, VGS = 10V, TJ = 175oC

- 0.013 0.015

CISS Input CapacitanceVDS = 15V, VGS = 0V,f = 1MHz

- 1260 - pF

COSS Output Capacitance - 260 - pF

CRSS Reverse Transfer Capacitance - 150 - pF

RG Gate Resistance VGS = 0.5V, f = 1MHz - 2.3 - ΩQg(TOT) Total Gate Charge at 10V VGS = 0V to 10V

VDD = 15VID = 35AIg = 1.0mA

- 23 31 nC

Qg(5) Total Gate Charge at 5V VGS = 0V to 5V - 13 17 nC

Qg(TH) Threshold Gate Charge VGS = 0V to 1V - 1.3 1.7 nC

Qgs Gate to Source Gate Charge - 3.8 - nC

Qgs2 Gate Charge Threshold to Plateau - 2.5 - nC

Qgd Gate to Drain “Miller” Charge - 5.0 - nC

tON Turn-On Time

VDD = 15V, ID = 35AVGS = 10V, RGS = 10Ω

- - 147 ns

td(ON) Turn-On Delay Time - 8 - ns

tr Rise Time - 91 - ns

td(OFF) Turn-Off Delay Time - 38 - ns

tf Fall Time - 32 - ns

tOFF Turn-Off Time - - 108 ns

VSD Source to Drain Diode VoltageISD = 35A - - 1.25 V

ISD = 15A - - 1.0 V

trr Reverse Recovery Time ISD = 35A, dISD/dt = 100A/µs - - 27 ns

QRR Reverse Recovered Charge ISD = 35A, dISD/dt = 100A/µs - - 14 nC

2008 Fairchild Semiconductor Corporation FDD8880 Rev. B3

Page 3: FDD8880 datasheet

©

FD

D8880

Typical Characteristics TC = 25°C unless otherwise noted

Figure 1. Normalized Power Dissipation vs Case Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

Figure 3. Normalized Maximum Transient Thermal Impedance

Figure 4. Peak Current Capability

TC, CASE TEMPERATURE (oC)

PO

WE

R D

ISS

IPA

TIO

N M

ULT

IPL

IER

00 25 50 75 100 175

0.2

0.4

0.6

0.8

1.0

1.2

125 1500

10

20

30

40

50

60

25 50 75 100 125 150 175

I D, D

RA

IN C

UR

RE

NT

(A

)

TC, CASE TEMPERATURE (oC)

CURRENT LIMITEDBY PACKAGE

VGS = 4.5V

VGS = 10V

0.1

1

10-5 10-4 10-3 10-2 10-1 100 1010.01

2

t, RECTANGULAR PULSE DURATION (s)

ZθJ

C, N

OR

MA

LIZ

ED

TH

ER

MA

L IM

PE

DA

NC

E

NOTES:DUTY FACTOR: D = t1/t2PEAK TJ = PDM x ZθJC x RθJC + TC

PDM

t1t2

0.50.20.10.05

0.010.02

DUTY CYCLE - DESCENDING ORDER

SINGLE PULSE

100

30

500

I DM

, PE

AK

CU

RR

EN

T (

A)

t , PULSE WIDTH (s)

10-5 10-4 10-3 10-2 10-1 100 101

TC = 25oC

I = I25 175 - TC

150

FOR TEMPERATURES

ABOVE 25oC DERATE PEAK

CURRENT AS FOLLOWS:

TRANSCONDUCTANCEMAY LIMIT CURRENTIN THIS REGION

VGS = 4.5V

VGS = 10V

2008 Fairchild Semiconductor Corporation FDD8880 Rev. B3

Page 4: FDD8880 datasheet

©

FD

D8880

Figure 5. Forward Bias Safe Operating Area NOTE: Refer to Fairchild Application Notes AN7514 and AN7515Figure 6. Unclamped Inductive Switching

Capability

Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics

Figure 9. Drain to Source On Resistance vs Gate Voltage and Drain Current

Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

Typical Characteristics TC = 25°C unless otherwise noted

0.1

1

10

100

1000

1 10 60VDS, DRAIN TO SOURCE VOLTAGE (V)

I D, D

RA

IN C

UR

RE

NT

(A

)

TJ = MAX RATEDTC = 25oC

SINGLE PULSE

LIMITED BY rDS(ON)

AREA MAY BEOPERATION IN THIS

10µs

1ms

DC

100µs

10ms

1

10

100

0.01 0.1 1

500

10

I AS, A

VAL

AN

CH

E C

UR

RE

NT

(A

)

tAV, TIME IN AVALANCHE (ms)

STARTING TJ = 25oC

STARTING TJ = 150oC

tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)If R = 0

If R ≠ 0tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]

0

20

40

60

80

1.5 2.0 2.5 3.0 3.5 4.0

I D, D

RA

IN C

UR

RE

NT

(A

)

VGS, GATE TO SOURCE VOLTAGE (V)

PULSE DURATION = 80µsDUTY CYCLE = 0.5% MAXVDD = 15V

TJ = 175oC TJ = -55oC

TJ = 25oC

0

20

40

60

80

0 0.25 0.5 0.75 1.0

I D, D

RA

IN C

UR

RE

NT

(A

)

VDS, DRAIN TO SOURCE VOLTAGE (V)

PULSE DURATION = 80µsDUTY CYCLE = 0.5% MAX

TC = 25oC

VGS = 10VVGS = 4V

VGS = 3V

VGS = 5V

5

10

15

20

25

2 4 6 8 10

ID = 1A

VGS, GATE TO SOURCE VOLTAGE (V)

ID = 35A

r DS

(ON

), D

RA

IN T

O S

OU

RC

EO

N R

ES

ISTA

NC

E (

)

PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX

0.6

0.8

1.0

1.2

1.4

1.6

1.8

-80 -40 0 40 80 120 160 200

NO

RM

AL

IZE

D D

RA

IN T

O S

OU

RC

E

TJ, JUNCTION TEMPERATURE (oC)

ON

RE

SIS

TAN

CE

VGS = 10V, ID = 35A

PULSE DURATION = 80µsDUTY CYCLE = 0.5% MAX

2008 Fairchild Semiconductor Corporation FDD8880 Rev. B3

Page 5: FDD8880 datasheet

©

FD

D8880

Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature

Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

Figure 13. Capacitance vs Drain to Source Voltage

Figure 14. Gate Charge Waveforms for Constant Gate Current

Typical Characteristics TC = 25°C unless otherwise noted

0.4

0.6

0.8

1.0

1.2

-40 0 40 80 120 160 200-80

VGS = VDS, ID = 250µA

NO

RM

AL

IZE

D G

AT

E

TJ, JUNCTION TEMPERATURE (oC)

TH

RE

SH

OL

D V

OLT

AG

E

0.90

0.95

1.00

1.05

1.10

-80 -40 0 40 80 120 160 200

TJ, JUNCTION TEMPERATURE (oC)

NO

RM

AL

IZE

D D

RA

IN T

O S

OU

RC

E

ID = 250µA

BR

EA

KD

OW

N V

OLT

AG

E

100

1000

0.1 1 10

2000

30

C, C

APA

CIT

AN

CE

(p

F)

VDS, DRAIN TO SOURCE VOLTAGE (V)

VGS = 0V, f = 1MHz

CISS = CGS + CGD

COSS ≅ CDS + CGDCRSS = CGD

0

2

4

6

8

10

0 5 10 15 20 25

VG

S, G

AT

E T

O S

OU

RC

E V

OLT

AG

E (

V)

Qg, GATE CHARGE (nC)

VDD = 15V

ID = 35AID = 1A

WAVEFORMS INDESCENDING ORDER:

2008 Fairchild Semiconductor Corporation FDD8880 Rev. B3

Page 6: FDD8880 datasheet

©

FD

D8880

Test Circuits and Waveforms

Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms

Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms

Figure 19. Switching Time Test Circuit Figure 20. Switching Time Waveforms

tP

VGS

0.01Ω

L

IAS

+

-

VDS

VDDRG

DUT

VARY tP TO OBTAIN

REQUIRED PEAK IAS

0V

VDD

VDS

BVDSS

tP

IAS

tAV

0

VGS +

-

VDS

VDD

DUT

Ig(REF)

L

VDD

Qg(TH)

VGS = 1V

Qgs2

Qg(TOT)

VGS = 10V

VDSVGS

Ig(REF)

0

0

Qgs Qgd

Qg(5)

VGS = 5V

VGS

RL

RGS

DUT

+

-VDD

VDS

VGS

tON

td(ON)

tr

90%

10%

VDS90%

10%

tf

td(OFF)

tOFF

90%

50%50%

10%PULSE WIDTH

VGS

0

0

2008 Fairchild Semiconductor Corporation FDD8880 Rev. B3

Page 7: FDD8880 datasheet

©

FD

D8880

Thermal Resistance vs. Mounting Pad AreaThe maximum rated junction temperature, TJM, and thethermal resistance of the heat dissipating path determinesthe maximum allowable device power dissipation, PDM, in anapplication. Therefore the application’s ambienttemperature, TA (oC), and thermal resistance RθJA (oC/W)must be reviewed to ensure that TJM is never exceeded.Equation 1 mathematically represents the relationship andserves as the basis for establishing the rating of the part.

In using surface mount devices such as the TO-252package, the environment in which it is applied will have asignificant influence on the part’s current and maximumpower dissipation ratings. Precise determination of PDM iscomplex and influenced by many factors:

1. Mounting pad area onto which the device is attached andwhether there is copper on one side or both sides of theboard.

2. The number of copper layers and the thickness of theboard.

3. The use of external heat sinks.

4. The use of thermal vias.

5. Air flow and board orientation.

6. For non steady state applications, the pulse width, theduty cycle and the transient thermal response of the part,the board and the environment they are in.

Fairchild provides thermal information to assist thedesigner’s preliminary application evaluation. Figure 21defines the RθJA for the device as a function of the topcopper (component side) area. This is for a horizontallypositioned FR-4 board with 1oz copper after 1000 secondsof steady state power with no air flow. This graph providesthe necessary information for calculation of the steady statejunction temperature or power dissipation. Pulseapplications can be evaluated using the Fairchild deviceSpice thermal model or manually utilizing the normalizedmaximum transient thermal impedance curve.

Thermal resistances corresponding to other copper areascan be obtained from Figure 21 or by calculation usingEquation 2 or 3. Equation 2 is used for copper area definedin inches square and equation 3 is for area in centimeterssquare. The area, in square inches or square centimeters isthe top copper area including the gate and source pads.

(EQ. 1)PDM

TJM TA–( )

RθJA-----------------------------=

Area in Inches Squared

(EQ. 2)RθJA 33.32 23.840.268 Area+( )

-------------------------------------+=

(EQ. 3)RθJA 33.32 1541.73 Area+( )

----------------------------------+=

Area in Centimeters Squared

25

50

75

100

125

0.01 0.1 1 10

Figure 21. Thermal Resistance vs Mounting Pad Area

RθJA = 33.32+ 23.84/(0.268+Area) EQ.2

RθJ

A (o

C/W

)

AREA, TOP COPPER AREA in2 (cm2)

RθJA = 33.32+ 154/(1.73+Area) EQ.3

(0.645) (6.45) (64.5)(0.0645)

2008 Fairchild Semiconductor Corporation FDD8880 Rev. B3

Page 8: FDD8880 datasheet

©

FD

D8880

PSPICE Electrical Model .SUBCKT FDD8880 2 1 3 ; rev April 2004Ca 12 8 9.5e-10Cb 15 14 9.5e-10Cin 6 8 1.15e-9

Dbody 7 5 DbodyMODDbreak 5 11 DbreakMODDplcap 10 5 DplcapMOD

Ebreak 11 7 17 18 33.15Eds 14 8 5 8 1Egs 13 8 6 8 1Esg 6 10 6 8 1Evthres 6 21 19 8 1Evtemp 20 6 18 22 1

It 8 17 1

Lgate 1 9 5.3e-9Ldrain 2 5 1.0e-9Lsource 3 7 1.7e-9

RLgate 1 9 53RLdrain 2 5 10RLsource 3 7 17

Mmed 16 6 8 8 MmedMODMstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD

Rbreak 17 18 RbreakMOD 1Rdrain 50 16 RdrainMOD 3.2e-3Rgate 9 20 2.2RSLC1 5 51 RSLCMOD 1e-6RSLC2 5 50 1e3Rsource 8 7 RsourceMOD 3.2e-3Rvthres 22 8 RvthresMOD 1Rvtemp 18 19 RvtempMOD 1S1a 6 12 13 8 S1AMODS1b 13 12 13 8 S1BMODS2a 6 15 14 13 S2AMODS2b 13 15 14 13 S2BMOD

Vbat 22 19 DC 1

ESLC 51 50 VALUE=(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*170),5))

.MODEL DbodyMOD D (IS=2E-12 IKF=10 N=1.01 RS=3.76e-3 TRS1=8e-4 TRS2=2e-7+ CJO=4.8e-10 M=0.55 TT=1e-17 XTI=2).MODEL DbreakMOD D (RS=0.2 TRS1=1e-3 TRS2=-8.9e-6).MODEL DplcapMOD D (CJO=5.5e-10 IS=1e-30 N=10 M=0.45)

.MODEL MmedMOD NMOS (VTO=2.0 KP=10 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.2)

.MODEL MstroMOD NMOS (VTO=2.5 KP=170 IS=1e-30 N=10 TOX=1 L=1u W=1u)

.MODEL MweakMOD NMOS (VTO=1.69 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=22 RS=0.1)

.MODEL RbreakMOD RES (TC1=8.3e-4 TC2=-8e-7)

.MODEL RdrainMOD RES (TC1=1.8e-3 TC2=8e-6)

.MODEL RSLCMOD RES (TC1=9e-4 TC2=1e-6)

.MODEL RsourceMOD RES (TC1=5e-3 TC2=1e-6)

.MODEL RvthresMOD RES (TC1=-1e-3 TC2=-8.2e-6)

.MODEL RvtempMOD RES (TC1=-2.6e-3 TC2=2e-7)

.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-3.5)

.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3.5 VOFF=-4)

.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.3 VOFF=-0.8)

.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.8 VOFF=-1.3)

.ENDS

Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

1822

+ -

68

+

-

551

+

-

198

+ -

1718

68

+

-

58 +

-

RBREAK

RVTEMP

VBAT

RVTHRES

IT

17 18

19

22

12

13

15S1A

S1B

S2A

S2B

CA CB

EGS EDS

14

8

138

1413

MWEAK

EBREAKDBODY

RSOURCE

SOURCE

11

7 3

LSOURCE

RLSOURCE

CIN

RDRAIN

EVTHRES 1621

8

MMED

MSTRO

DRAIN2

LDRAIN

RLDRAIN

DBREAK

DPLCAP

ESLC

RSLC1

10

5

51

50

RSLC2

1GATE RGATE

EVTEMP

9

ESG

LGATE

RLGATE20

+

-

+

-

+

-

6

2008 Fairchild Semiconductor Corporation FDD8880 Rev. B3

Page 9: FDD8880 datasheet

©

FD

D8880

SABER Electrical Model rev April 2004template FDD8880 n2,n1,n3 electrical n2,n1,n3

var i iscldp..model dbodymod = (isl=2e-12,ikf=10,nl=1.01,rs=3.76e-3,trs1=8e-4,trs2=2e-7,cjo=4.8e-10,m=0.55,tt=1e-17,xti=2)dp..model dbreakmod = (rs=0.2,trs1=1e-3,trs2=-8.9e-6)dp..model dplcapmod = (cjo=5.5e-10,isl=10e-30,nl=10,m=0.45)m..model mmedmod = (type=_n,vto=2.0,kp=10,is=1e-30, tox=1)m..model mstrongmod = (type=_n,vto=2.5,kp=170,is=1e-30, tox=1)m..model mweakmod = (type=_n,vto=1.69,kp=0.05,is=1e-30, tox=1,rs=0.1) sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-3.5)sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.5,voff=-4)sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1.3,voff=-0.8)sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.8,voff=-1.3)c.ca n12 n8 = 9.5e-10c.cb n15 n14 = 9.5e-10c.cin n6 n8 = 1.15e-9

dp.dbody n7 n5 = model=dbodymoddp.dbreak n5 n11 = model=dbreakmoddp.dplcap n10 n5 = model=dplcapmod

spe.ebreak n11 n7 n17 n18 = 33.15spe.eds n14 n8 n5 n8 = 1spe.egs n13 n8 n6 n8 = 1spe.esg n6 n10 n6 n8 = 1spe.evthres n6 n21 n19 n8 = 1spe.evtemp n20 n6 n18 n22 = 1

i.it n8 n17 = 1

l.lgate n1 n9 = 5.3e-9l.ldrain n2 n5 = 1.0e-9l.lsource n3 n7 = 1.7e-9

res.rlgate n1 n9 = 53res.rldrain n2 n5 = 10res.rlsource n3 n7 = 17

m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1um.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u

res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=-8e-7res.rdrain n50 n16 = 3.2e-3, tc1=1.8e-3,tc2=8e-6res.rgate n9 n20 = 2.2res.rslc1 n5 n51 = 1e-6, tc1=9e-4,tc2=1e-6res.rslc2 n5 n50 = 1e3res.rsource n8 n7 = 3.2e-3, tc1=5e-3,tc2=1e-6res.rvthres n22 n8 = 1, tc1=-1e-3,tc2=-8.2e-6res.rvtemp n18 n19 = 1, tc1=-2.6e-3,tc2=2e-7sw_vcsp.s1a n6 n12 n13 n8 = model=s1amodsw_vcsp.s1b n13 n12 n13 n8 = model=s1bmodsw_vcsp.s2a n6 n15 n14 n13 = model=s2amodsw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod

v.vbat n22 n19 = dc=1equations i (n51->n50) +=iscliscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/170))** 5))

1822

+ -

68

+

-

198

+ -

1718

68

+

-

58 +

-

RBREAK

RVTEMP

VBAT

RVTHRES

IT

17 18

19

22

12

13

15S1A

S1B

S2A

S2B

CA CB

EGS EDS

14

8

138

1413

MWEAK

EBREAK

DBODY

RSOURCE

SOURCE

11

7 3

LSOURCE

RLSOURCE

CIN

RDRAIN

EVTHRES 1621

8

MMED

MSTRO

DRAIN2

LDRAIN

RLDRAIN

DBREAK

DPLCAP

ISCL

RSLC1

10

5

51

50

RSLC2

1GATE RGATE

EVTEMP

9

ESG

LGATE

RLGATE20

+

-

+

-

+

-

6

2008 Fairchild Semiconductor Corporation FDD8880 Rev. B3

Page 10: FDD8880 datasheet

©2008 Fairchild Semiconductor Corporation FDD8880 Rev. B3

FD

D8880

PSPICE Thermal Model REV 23 April 2004

FDD8880T

CTHERM1 TH 6 8e-4CTHERM2 6 5 1e-3CTHERM3 5 4 2.5e-3CTHERM4 4 3 2.6e-3CTHERM5 3 2 8e-3CTHERM6 2 TL 1.5e-2

RTHERM1 TH 6 1.44e-1RTHERM2 6 5 1.9e-1RTHERM3 5 4 3.0e-1RTHERM4 4 3 4.0e-1RTHERM5 3 2 5.7e-1RTHERM6 2 TL 5.8e-1

SABER Thermal ModelSABER thermal model FDD8880Ttemplate thermal_model th tlthermal_c th, tlctherm.ctherm1 th 6 =8e-4ctherm.ctherm2 6 5 =1e-3ctherm.ctherm3 5 4 =2.5e-3ctherm.ctherm4 4 3 =2.6e-3ctherm.ctherm5 3 2 =8e-3ctherm.ctherm6 2 tl =1.5e-2

rtherm.rtherm1 th 6 =1.44e-1rtherm.rtherm2 6 5 =1.9e-1rtherm.rtherm3 5 4 =3.0e-1rtherm.rtherm4 4 3 =4.0e-1rtherm.rtherm5 3 2 =5.7e-1rtherm.rtherm6 2 tl =5.8e-1

RTHERM4

RTHERM6

RTHERM5

RTHERM3

RTHERM2

RTHERM1

CTHERM4

CTHERM6

CTHERM5

CTHERM3

CTHERM2

CTHERM1

tl

2

3

4

5

6

th JUNCTION

CASE

Page 11: FDD8880 datasheet

Rev. I34

TRADEMARKSThe following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its globalsubsidianries, and is not intended to be an exhaustive list of all such trademarks.

* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTSHEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THEAPPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDERITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’SWORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICYFAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES ORSYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:1. Life support devices or systems are devices or systems which,

(a) are intended for surgical implant into the body or (b)support or sustain life, and (c) whose failure to perform whenproperly used in accordance with instructions for use providedin the labeling, can be reasonably expected to result in asignificant injury of the user.

2. A critical component in any component of a life support,device, or system whose failure to perform can be reasonablyexpected to cause the failure of the life support device orsystem, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONSDefinition of Terms

ACEx®

Build it Now™CorePLUS™CorePOWER™CROSSVOLT™CTL™Current Transfer Logic™EcoSPARK®

EfficentMax™EZSWITCH™ * ™

Fairchild®

Fairchild Semiconductor®FACT Quiet Series™FACT®

FAST®

FastvCore™FlashWriter® *

FPS™F-PFS™FRFET®

Global Power ResourceSM

Green FPS™Green FPS™ e-Series™GTO™IntelliMAX™ISOPLANAR™MegaBuck™MICROCOUPLER™MicroFET™MicroPak™MillerDrive™MotionMax™Motion-SPM™OPTOLOGIC®

OPTOPLANAR®®

PDP-SPM™Power-SPM™PowerTrench®

Programmable Active Droop™QFET®

QS™Quiet Series™RapidConfigure™Saving our world 1mW at a time™SmartMax™SMART START™SPM®

STEALTH™SuperFET™SuperSOT™-3SuperSOT™-6SuperSOT™-8SuperMOS™

®

The Power Franchise®

TinyBoost™TinyBuck™TinyLogic®

TINYOPTO™TinyPower™TinyPWM™TinyWire™µSerDes™

UHC®

Ultra FRFET™UniFET™VCX™VisualMax™

®

tm

tm

Datasheet Identification Product Status Definition

Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.

Preliminary First ProductionThis datasheet contains preliminary data; supplementary data will be pub-lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.

No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.

Obsolete Not In Production This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

@2008 Fairchild Semiconductor Corporation FDD8880 Rev. B3