95
Quick Start Guide for IRL-F Models IIRLI1611Av00 REv. 00 - 2016, December © ZIV GRID AUTOMATION 2016 IRL-F Feeder Multifunction Protection for MV Power Systems & Industry Making the Smart Grid Real

Feeder Multifunction Protection for MV Power Systems

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Feeder Multifunction Protection for MV Power Systems

Quick Start Guide for IRL-F ModelsIIRLI1611Av00

REv. 00 - 2016, December © ZIV GRID AUTOMATION 2016

IRL-FFeeder Multifunction Protection for MV Power Systems & Industry

Making the Smart Grid Real

Page 2: Feeder Multifunction Protection for MV Power Systems

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

I

Table of Contents

 1.1  Introduction ....................................................................................................... 1.1-1 1.1.1  Relay Overview and Applications ....................................................................... 1.1-2 1.1.2  Symbols .............................................................................................................. 1.1-3 1.1.3  Relay Family Features ........................................................................................ 1.1-4 1.1.3.a  Hardware Design ................................................................................................ 1.1-5 1.1.3.b  Measurement Processing ................................................................................... 1.1-6 1.1.3.c  Memory and Internal Clock ................................................................................. 1.1-7 1.1.4  Functional Diagram ............................................................................................. 1.1-7 1.2  Model Selection ................................................................................................ 1.2-1 1.2.1  Hardware Model Selection .................................................................................. 1.2-2 1.2.2  Firmware Model Selection .................................................................................. 1.2-2 1.2.3  Protection Functions according to Model ........................................................... 1.2-3 1.3  Technical Data .................................................................................................. 1.3-1 1.3.1  Power Supply Voltage ........................................................................................ 1.3-2 1.3.2  Power Supply Burden ......................................................................................... 1.3-2 1.3.3  Current Analog Inputs ......................................................................................... 1.3-2 1.3.4  Voltage Analog Inputs ......................................................................................... 1.3-3 1.3.5  Frequency ........................................................................................................... 1.3-3 1.3.6  Measurement Accuracy ...................................................................................... 1.3-3 1.3.7  Accuracy of the Pickup and Reset of the Overcurrent Elements ....................... 1.3-4 1.3.8  Repeatability ....................................................................................................... 1.3-5 1.3.9  Accuracy of the Pickup and Reset of the Voltage Elements .............................. 1.3-5 1.3.10  Accuracy of the Pickup and Reset of the Frequency Elements ......................... 1.3-5 1.3.11  Accuracy of the Reclosing Cycle Times ............................................................. 1.3-5 1.3.12  Transient Overreach ........................................................................................... 1.3-6 1.3.13  Digital Inputs ....................................................................................................... 1.3-6 1.3.14  Breaker Trip and Close Outputs and Auxiliary Outputs ...................................... 1.3-7 1.3.15  Transducer Inputs ............................................................................................... 1.3-7 1.3.16  Communications Link ......................................................................................... 1.3-8 1.4  Physical Description ........................................................................................ 1.4-1 1.4.1  General ............................................................................................................... 1.4-2 1.4.2  Dimensions ......................................................................................................... 1.4-4 1.4.3  Connection Elements .......................................................................................... 1.4-4 1.4.3.a  Terminal Blocks .................................................................................................. 1.4-4 1.4.3.b  Removing Printed Circuit Boards (Non Self-shorting) ........................................ 1.4-4 1.4.3.c  Internal Wiring ..................................................................................................... 1.4-4 1.4.4  Local Interface .................................................................................................... 1.4-5 1.4.4.a  Alphanumeric Display and Keypad ..................................................................... 1.4-5 1.4.4.b  Keypad associated to the Alphanumeric Display ............................................... 1.4-7 1.4.4.c  Command Buttons ............................................................................................. 1.4-7 1.4.4.d  Keys, Functions and Operation Modes .............................................................. 1.4-8 1.4.4.e  Access to Options ............................................................................................... 1.4-9 1.4.4.f  LEDs ................................................................................................................. 1.4-11 1.4.5  Inputs and Outputs ........................................................................................... 1.4-12 1.4.5.a  Digital Inputs ..................................................................................................... 1.4-12 1.4.5.b  Auxiliary Outputs ............................................................................................... 1.4-17 

Page 3: Feeder Multifunction Protection for MV Power Systems

Table of Contents

II BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.4.6  Communications ............................................................................................... 1.4-18 1.4.6.a  Communications Ports ...................................................................................... 1.4-18 1.4.6.b  Communication with the Configuration Tool ..................................................... 1.4-18 1.4.6.c  Communications Protocols ............................................................................... 1.4-19 1.4.6.d  Control Change Recording ............................................................................... 1.4-19 1.4.6.e  Communications Settings ................................................................................. 1.4-20 1.4.6.f  Time Synchronization ....................................................................................... 1.4-25 1.5  Installation and Commissioning...................................................................... 1.5-1 1.5.1  General ............................................................................................................... 1.5-2 1.5.2  Accuracy ............................................................................................................. 1.5-2 1.5.3  Installation ........................................................................................................... 1.5-3 1.5.4  Preliminary Inspection ......................................................................................... 1.5-4 1.5.5  Tests ................................................................................................................... 1.5-5 1.5.5.a  Isolation Test ....................................................................................................... 1.5-5 1.5.5.b  Power Supply Test .............................................................................................. 1.5-6 1.5.5.c  Metering Tests .................................................................................................... 1.5-6 1.6  Onload Test ....................................................................................................... 1.6-1 1.6.1  Introduction ......................................................................................................... 1.6-2 1.6.2  Voltage Connections ........................................................................................... 1.6-2 1.6.3  Current Connections ........................................................................................... 1.6-3 1.7  Standards and Type Tests ............................................................................... 1.7-1 1.7.1  Insulation ............................................................................................................. 1.7-2 1.7.2  Electromagnetic Compatibility ............................................................................. 1.7-2 1.7.3  Environmental Test ............................................................................................. 1.7-3 1.7.4  Power Supply ...................................................................................................... 1.7-4 1.7.5  Mechanical Test .................................................................................................. 1.7-4 1.8  Schemes and Drawings .................................................................................... 1.8-2

Page 4: Feeder Multifunction Protection for MV Power Systems

1.1 Introduction

 

1.1.1  Relay Overview and Applications ..................................................................... 1.1-2 

1.1.2  Symbols ............................................................................................................ 1.1-3 

1.1.3  Relay Family Features ..................................................................................... 1.1-4 

1.1.3.a  Hardware Design .............................................................................................. 1.1-5 

1.1.3.b  Measurement Processing ................................................................................. 1.1-6 

1.1.3.c  Memory and Internal Clock .............................................................................. 1.1-7 

1.1.4  Functional Diagram .......................................................................................... 1.1-7 

Page 5: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.1-2 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

This instruction manual provides a technical and functional description of the relay IRL-F. The manual may be used as technical reference in engineering, installation, commissioning, and normal operation of the relay since the manual contains operating and handling instructions apart from descriptions relative to technical data, function lists, logic diagrams, input and output signals, parameter settings and detail explanation of every function. ZIV has endeavoured to make this manual as precise and easy to understand as possible. However, ZIV shall not be held responsible for possible errors in the manuals and these will also be subject to possible upgrades. Therefore, ZIV would be very grateful to receive customer comments on possible errors or recommendations. Suggestions may be sent to ZIV through the following link.

1.1.1 Relay Overview and Applications

The IED generically called IRL integrates protection, control and metering functions for a great variety of applications, such as feeders, machine lines, frontier points, etc. These IEDs use the most advanced digital technology based on a potent microprocessor and DSPs that incorporate, depending on the selected model, Directional and Non-Directional Overcurrent Protection, Overvoltage, Undervoltage, Over / Underfrequency, Synchronism, Power Inversion, Thermal Image and Recloser function among many other protective functions adequate for systems with solid ground connection, through impedance or isolated or resonant ground. IRL relays are normally used in medium voltage lines, transformers, generators and power supplies in general, where full bay protection is required, and also has adequate use in high voltage applications as backup relay. The present Instruction manual refers to IRL-F relays, which are mainly used for line applications. The features of each of the four options available are specified in the Model Selection Chapter:

- Non-Directional Overcurrent Multifunction Protection (IRL-F/0A/). - Non-Directional Overcurrent Multifunction Protection with Sensitive Ground (IRL-F/0B/). - Directional Overcurrent Multifunction Protection (IRL-F/AA/). - Directional Overcurrent Multifunction Protection with Sensitive Ground (IRL-F/AB/).

Page 6: Feeder Multifunction Protection for MV Power Systems

1.1 Introduction

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.1-3

1.1.2 Symbols

The following symbols can be found in the manual as well as in the back of the relay.

Page 7: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.1-4 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.1.3 Relay Family Features

Multifunction protection and control of IRL relays are provided with leading edge digital technology based on powerful microprocessors such that all measurements acquisition tasks and breaker supervision are digitally processed within a modular design. Relay analog inputs capture currents and voltages transmitted by instrument and protection transformers converting them to relay internal processing level. IRL-F relays feature a maximum of 8 analog inputs whether current or voltage as a function of the selected relay. Analog measurements are processed through an analog digital converter included into the analog input board that sends the digital samples to the microcontroller. The microcontroller carries out all the management tasks and functions of the relay, which include, for example, the filtering and re-sampling of the measurements, protection algorithms, control functions, data storage, distribution of data to the communications ports, etc. Relay configurable inputs may be used to receive data from switchgear or other equipment through hardwiring. All relay outputs are configurable, and may be used for protection or control. The relay includes a front screen 128x64 with capacity for 6 lines and 20 characters per line. Also, additional data can be achieved by using 8 configurable LEDs the activation of which will be shown by a red light. The relay status will be shown through a non-configurable tricolour LED (green/red/orange). IRL relays include a front type B USB to be able to carry out maintenance tasks and two rear remote communications ports, one series and the other Ethernet that will allow relay communications under various protocols. Relay electronics will carry out its tasks thanks to an internal power supply the features of which could be decided at the time of selecting the required relay the details of which will appear in chapter Technical Data.

Page 8: Feeder Multifunction Protection for MV Power Systems

1.1 Introduction

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.1-5

1.1.3.a Hardware Design

The main components are:

- Main microcontroller module and memory to manage relay functions. - Secondary microcontroller to gather data from the different modules or slots. - Analog boards. - Power supply board with inputs and outputs. - Input and output expansion board with coil supervision. - Communications buses to link the various modules and to transmit the different types of

data separately.

Figure 1.1.1: General HW Design.

Page 9: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.1-6 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.1.3.b Measurement Processing IRL relays provide precise measurement with high resolution in a broad dynamic range thanks to high sampling frequency and the powerful measurement function with which they operate. Figure 1.1.2 (Measurement Processing) basically outlines the measurement processing from its capture at the relay terminals, through the 24 bit analog digital converter and other elements until finally having the measurement available. The relay includes an antialiasing analog filter past the instrument transformers. The analog digital converter, which has a maximum sampling frequency of 16 kHz, with 24 bit resolution, is set to sample at 4800 Hz, in accordance with the standard IEC 61869. For this purpose, it carries out a antialiasing digital filtering. The microcontroller included into every analog board carries out two consecutive re-samplings: the first, at 4800 Hz, to correct the angular error introduced by the measurement chain (instrument transformers, analog filters, etc.). The second, at 80 samples / cycle, to adapt the sampling frequency to the network frequency (Frequency Tracking) and, in this way, ensure a correct RMS measurement in the frequency range 15 to 80 Hz. The conversion to the network frequency will be made as long as the PLL element enable is set to YES.

Figure 1.1.2: Measurement Processing.

Page 10: Feeder Multifunction Protection for MV Power Systems

1.1 Introduction

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.1-7

1.1.3.c Memory and Internal Clock IRL relays include two types of different storage memory. Relevant data will remain in non-volatile flash memory:

- Protection settings. - Control logic. - Events. - Fault reports. - Oscillography. - Memorized LEDs.

In order to perform an adequate Flash memory management, data transfer of circular records (Events and fault reports) will be made through RAM powered by capacitors to properly write to Flash memory. In this way, data is stored first into the RAM to be later transferred periodically to the Flash memory. Memorized control logic signals will always be stored into this RAM. The relay RAM and the internal clock are powered by capacitors. This system keeps both the data stored and the internal clock for some two weeks.

1.1.4 Functional Diagram

Figure 1.1.3: Functional Diagram.

Page 11: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.1-8 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

Page 12: Feeder Multifunction Protection for MV Power Systems

1.2 Model Selection

 

1.2.1  Hardware Model Selection ............................................................................... 1.2-2 

1.2.2  Firmware Model Selection ................................................................................ 1.2-2 

1.2.3  Protection Functions according to Model ......................................................... 1.2-3 

Page 13: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.2-2 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.2.1 Hardware Model Selection

IRL F 1 A 0 A 1-2-3 4 5 6 7 8 9 10 11 12 13 14 15

4 Function

· Non-Directional O/C & E/F Protection [Slots C and D = 0A]

· Directional O/C & E/F Protection [Slots C and D = AA]

· Non-Directional O/C, E/F & SEF Protection [Slots C and D = 0B]

· Directional O/C, E/F & SEF Protection [Slots C and D = AB]

5 User Interface

1 Standard with alphanumeric display

6 Power Supply Voltage

A 24 - 48 VDC (±20%) B 110 - 250 VDC (±20%); 110 - 250 VAC

7 DI Auxiliary Supply Voltage

A 24 VDC C 125 VDC

B 48 VDC D 250 VDC

8 Slot A: Expansion of DIs / DOs

0 No B 9DI + 5DO (2DI for Coil Supervision) +

A 9DI + 5DO (2DI for Coil Supervision) + 1 Input Transducer (0-300VDC)

1 Input Transducer (-2.5mA to 20mA)

9 Slot B: Power Supply

A Power Supply + 6DI + 3DO + 1 Alarm DO

10 Slot C: Voltage Channels

0 No A 4 Analog Voltage Inputs: VA, VB, VC, VAUX

11 Slot D: Current Channels

0 No B 4 Analog Current Inputs: IA, IB, IC, IGs

A 4 Analog Current Inputs: IA, IB, IC, IG

12 Communication Interface for Remote Communication

A RS232/RS485 B FOC ST

13 ETHERNET Interface

A 100BASE-TX connectors RJ45 B 100BASE-FX Multimode GFO ST connectors

14 IRIG-B

0 No 1 IRIG-B with BNC type connector

15 Enclosure/Chassis and Conformal Coat

A 4U x 19" 1/2 Rack. Conformal Coated Circuit Boards

1.2.2 Firmware Model Selection

- * 16 17 18 19 20 21 22 23 24

16 IEC 61850

0 Without IEC 61850 1 IEC 61850 Ed1

17/18 Protection Functionality

00 Initial version

19 Remote Communication Protocols

0 LAN port: 1 Procome instance + 4 configurable instances (DNP3 or Modbus RTU)

21/22 Protection Version

00 Initial version

23 Version of ETH Communications

0 Initial version: IEC 61850 Edition 1 + 1 Procome instance + 4 configurable instances

24 Version of Serial Communications

0 Initial version: PROCOME 3.0, DNP3.0, MODBUS RTU

(*) Spare Code only for internal use at manufacturers.

Page 14: Feeder Multifunction Protection for MV Power Systems

1.2 Model Selection

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.2-3

1.2.3 Protection Functions according to Model

ANSI Functions Number of Units

0A AA 0B AB

50 Instantaneous Phase Overcurrent 3 3 3 3

51 Time-delayed Phase Overcurrent (Inverse / Fixed). 3 3 3 3

50N Instantaneous Neutral Overcurrent 3 3 3 3

51N Time-delayed Neutral Overcurrent (Inverse / Fixed). 3 3 3 3

50G Instantaneous Ground Overcurrent 3 3 0 0

51G Time-delayed Ground Overcurrent (Inverse / Fixed). 3 3 0 0

50Q Instantaneous Negative Sequence Overcurrent (I2). 3 3 3 3

51Q Time-delayed Negative Sequence Overcurrent (Inverse / Fixed) (I2).

3 3 3 3

50Ns Instantaneous Sensible Neutral Overcurrent. 0 0 1 1

51Ns Time-delayed Sensible Neutral Overcurrent. 0 0 1 1

51Ns EPTR_C Time-delayed Sensible Neutral Overcurrent with EPTR_C

0 0 1 1

51Ni/c Isolated / Compensated Neutral Overcurrent 0 0 1 1

50V Instantaneous Voltage Dependent Overcurrent 0 1 0 1

51V Time-delayed Voltage Dependent Overcurrent 0 1 0 1

67 Phase Directional 0 1 0 1

67N Neutral Directional 0 1 0 1

67G Ground Directional 0 1 0 0

67Ns Sensible Neutral Directional 0 0 0 1

67P Positive-Sequence Directional 0 1 0 1

67Q Negative Sequence Directional 0 1 0 1

67Ni/c Isolated / Compensated Neutral Directional 0 0 0 1

85 Overcurrent Teleprotection schemes 0 1 0 1

50FD Fault Detector 1 1 1 1

Phase Selector 1 1 1 1

46 Open Phase Detector 1 1 1 1

37 Time-Delayed Phase Undercurrent 1 1 1 1

27 Phase Undervoltage 0 3 0 3

59 Phase Overvoltage 0 3 0 3

59N Neutral Overvoltage 0 3 0 3

47 Negative Sequence Overvoltage 0 1 0 1

49 Thermal Image 1 1 1 1

81M Overfrequency 0 4 0 4

81m Underfrequency 0 4 0 4

81D Rate of Change of the Frequency 0 4 0 4

Load Shedding 0 1 0 1

32P/Q Directional Power (active / reactive) 0 2 0 2

50BF Breaker Failure Protection 1 1 1 1

78 Out-of-Step 0 1 0 1

Cold-Load 1 1 1 1

59V/Hz Overexcitation 0 1 0 1

87N Restricted Earth Fault 1 1 1 1

60VT VT Supervision and Fuse Failure 0 1 0 1

60CT CT Supervision 1 1 1 1

Page 15: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.2-4 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

ANSI Functions Number of Units

0A AA 0B AB

25 Synchrocheck 0 2 0 2

System Split 0 1 0 1

79 Recloser 1 1 1 1

Sequence coordination 1 1 1 1

3 Coil Supervision 2 2 2 2

Breaker Supervision 1 1 1 1

Fault Locator 0 1 0 1

2 Pole Discrepancy 1 1 1 1

Open Pole Detector 1 1 1 1

Dead Line Detector 0 1 0 1

Saturation Detector 1 1 1 1

Harmonics Blocking 1 1 1 1

Calendar 1 1 1 1

Analog Channels

Model Analog Channels

0A IA, IB, IC, IG

AA IA, IB, IC, IG, VA, VB, VC, VAUX

0B IA, IB, IC, IGs

AB IA, IB, IC, IGs, VA, VB, VC, VAUX

Page 16: Feeder Multifunction Protection for MV Power Systems

1.3 Technical Data

 

1.3.1  Power Supply Voltage ...................................................................................... 1.3-2 

1.3.2  Power Supply Burden ....................................................................................... 1.3-2 

1.3.3  Current Analog Inputs ...................................................................................... 1.3-2 

1.3.4  Voltage Analog Inputs ...................................................................................... 1.3-3 

1.3.5  Frequency ......................................................................................................... 1.3-3 

1.3.6  Measurement Accuracy .................................................................................... 1.3-3 

1.3.7  Accuracy of the Pickup and Reset of the Overcurrent Elements ..................... 1.3-4 

1.3.8  Repeatability ..................................................................................................... 1.3-5 

1.3.9  Accuracy of the Pickup and Reset of the Voltage Elements ............................ 1.3-5 

1.3.10  Accuracy of the Pickup and Reset of the Frequency Elements ....................... 1.3-5 

1.3.11  Accuracy of the Reclosing Cycle Times ........................................................... 1.3-5 

1.3.12  Transient Overreach ......................................................................................... 1.3-6 

1.3.13  Digital Inputs ..................................................................................................... 1.3-6 

1.3.14  Breaker Trip and Close Outputs and Auxiliary Outputs ................................... 1.3-7 

1.3.15  Transducer Inputs ............................................................................................ 1.3-7 

1.3.16  Communications Link ....................................................................................... 1.3-8 

Page 17: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.3-2 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.3.1 Power Supply Voltage

IEDs have two types of auxiliary power supplies. Depending on the model, their values are selectable: 24 - 48 VDC (±20%) 110 - 250 VDC/VAC (±20%) Note: In case of power supply failure, a maximum interruption of 100 ms is allowed for 110 Vdc input.

1.3.2 Power Supply Burden

Quiescent, powered at 125Vcc 5.4W Ethernet RJ45 and DOs deactivated

7.6W Ethernet RJ45 and DOs deactivated 6.8W Ethernet GFO and DOs deactivated 9.1W Ethernet GFO and DOs deactivated

Note: With power supply voltage from 72 to 300 Vdc the power consumption may be 0.4 W higher. The efficiency is a function of the power supply voltage and is maximum at 125 Vdc approximately.

1.3.3 Current Analog Inputs

Phase, Neutral and Polarization Currents Nominal Value In = 5 A or 1 A (selectable in the IED) Thermal withstand capability 20 A (continuously) 250 A (for 3 s) 500 A (for 1 s) Dynamic limit 1250 A Current circuits burden <0.2 VA (In = 5 A or 1 A)

Ungrounded and Sensitive Ground Currents Nominal Value In = 20 mA Thermal withstand capability 5 A (continuously) 62.5 A (for 3 s) 125 A (for 1 s) Dynamic limit 300 A Current circuit burden <0.05 VA (In = 1 A or 20 mA)

Page 18: Feeder Multifunction Protection for MV Power Systems

1.3 Technical Data

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.3-3

1.3.4 Voltage Analog Inputs

Nominal Value Un = 50 to 230 VAC (selectable in the IED) Thermal withstand capability 300 Vac (continuously) 600 Vac (for 10s) Voltage circuits burden 0.55 VA (110/120 Vac)

1.3.5 Frequency

Operating range 15 - 80 Hz

1.3.6 Measurement Accuracy

Measured currents ±0.15% or ±2 mA (the greater) Phase and Ground for 0.1*Inom≤I<2*Inom ±0.2% for 2*Inom≤I≤5*Inom Measured currents Ungrounded and Sensitive Ground ±0.1% or ±0.5 mA (the greater) Sensitive Ground Current <1.5 A ±0.15% or ±1 mA Sensitive Ground Current ≥1.5 A ±0.2% Calculated currents Phase - Phase ±0.2% or ±6 mA (the greater) I1, I2 and I0 ±0.3% or ±8 mA (the greater) for 0.1*Inom<I≤5*Inom Measured voltages ±0.2% or ±50 mV (the greater) Phase-Ground, Phase-Phase, Ground and for 0.2 V≤V<130 V Synchronism ±0.25% for 130 V≤V≤250 V Calculated voltages Phase-Phase (0 to 300V) ±0.3% or ±75 mV (the greater) VNeutral, V1, V2 and V0 ±0.3% or ±100 mV (the greater) for 0.2 V≤V≤250 V Active and reactive powers (In = 5A and Iphases>1A) Angles 0º or ±90º or 180º ±0.33% W/var Angles ±45º or ±135º ±1.6% W/var Angles ±75º / ±115º ±5% W / ±0.65 % var Angles ±0.5º Power factor ±0.013 Frequency ±0.005 Hz

Page 19: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.3-4 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

Note: Signal Processing Sampling function adjustment of analog input signals is made by means of zero pass count of one of the measured signals (Cosine filter of Clark alpha component voltage or current), and works detecting the change in said signal period. The value of the calculated frequency is used to modify the sampling frequency used by the metering device attaining a constant sampling frequency of 80 samples per cycle. The frequency value is saved for later use in Protection and Control tasks. Zero passage detection is carried out therefore through the Vclark cosine signal ((2VA - VB – VC)/3), and when the value of Vclark and Vcosine drops below the disable voltage setting, the frequency measurement becomes impossible. Upon losing this voltage, the following will be carried out:

- The last valid frequency is kept for two seconds. - After two seconds, the frequency measurement goes to zero.

When Protection and Control tasks are readjusted in accordance with the sampling function, phasor real and imaginary components of analog signals are calculated by means of the Fourier transform. Fourier components are calculated by means of said Discrete Fourier Transform (DFT) using 80 sample/cycle. Using DFT this way the magnitude and phase angle of the fundamental component at power system frequency of every analog input signal is obtained. The rest of measurements and calculations of Protection functions is obtained based on the fundamental components calculated by the Fourier method. DFT gives a precise measurement of the fundamental frequency component and it is an efficient filter for harmonics and noise. For frequencies other than the rated frequency, harmonics are not fully attenuated. For small deviations of ±1Hz this is not a problem but, in order to admit higher operating frequency deviations, the setting automatic conversion to the sampling frequency, PLL, is included. In the absence of an adequate signal to carry out the conversion of the sampling frequency or with the setting PLL disabled, the frequency will be converted to the rated frequency at which the relay is operating (50/60Hz). Angle reference for relay measurements is the channel VA or IA as per the setting.

1.3.7 Accuracy of the Pickup and Reset of the Overcurrent Elements

Overcurrent Elements Pickup of Phases and Ground ±3 % or ±10mA of the theoretical value (the greater) (for In = 1A and 5A) Reset of Phases and Ground 1.5 cycles Pickup of Sensitive Ground ±3 % or ±1mA of the theoretical value (the greater) Reset of Sensitive Ground 1.5 cycles

Measuring Times Fixed Time ±1 % of the setting or ±25 ms

(the greater) Inverse Time Class 2 (E = 2) or ±35 ms

(the greater) (UNE 21-136, IEC 255-4) (for measured currents of 100 mA

or greater)

Page 20: Feeder Multifunction Protection for MV Power Systems

1.3 Technical Data

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.3-5

1.3.8 Repeatability

Operating Time 2 % or 25 ms (the greater)

1.3.9 Accuracy of the Pickup and Reset of the Voltage Elements

Overvoltage and Undervoltage Elements Pickup ±2 % or ±250 mV of the theoretical value (the greater) Reset 1.5 cycles for 50 and 60Hz Measuring Times Fixed Time ±1 % of the setting or ±25 ms (the greater)

1.3.10 Accuracy of the Pickup and Reset of the Frequency Elements

Overfrequency Elements Pickup and reset ±0.01 Hz of the theoretical value Underfrequency Elements Pickup and reset ±0.01 Hz of the theoretical value Measuring Times Fixed Time ±1% of the setting or ±25 ms

(the greater)

1.3.11 Accuracy of the Reclosing Cycle Times

Accuracy 1% or ±20ms (the greater)

Page 21: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.3-6 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.3.12 Transient Overreach

Expressed as: 100xSTI

IIA

TA

<10% for totally inductive lines <5% for lines with an impedance angle of 70º IA = Pick up value for a current with no DC component IT = Pick up value for a current with maximum DC offset

1.3.13 Digital Inputs

Configurable inputs with polarity (all the Inputs are DC) Nominal Voltage Maximum Voltage Burden V on V off 24 VDC 28,8 VDC 50 mW 12 VDC 9 VDC 48 VDC 57,6 VDC 100 mW 30 VDC 25 VDC 125 VDC 150 VDC 262 mW 75 VDC 60 VDC 250 VDC 300 VDC 425 mW 130 VDC 96 VDC All digital inputs are in groups of 3 and in case coil supervision is used, two complete groups (6 DIs) of the expansion board (SLOT A) will be used for this application, one group of 3 DIs per coil to be supervised. SLOT A digital inputs for coil supervision: Trip Circuit supervision: use inputs DI1, DI2 and DI3. 2 Circuit supervision: use inputs DI4, DI5 and DI6.

Page 22: Feeder Multifunction Protection for MV Power Systems

1.3 Technical Data

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.3-7

1.3.14 Breaker Trip and Close Outputs and Auxiliary Outputs

All relay contacts have the same physical features and all are configurable with the exception of the relay in service /failed. I DC maximum limit (with resistive load) 30 A (1s) I DC continuous service (with resistive load) 8 A Close 2500 W Breaking capability (with resistive load) 150 W (48VDC) 55 W (110VDC) 1250 VA Break (L/R = 0.04 s) 60 W at 125VDC Switching voltage 250 VDC

1.3.15 Transducer Inputs

-20mA to 20mA Transducer Inputs Input impedance 196 ±5% Measurement accuracy ±0.2 % or ±8 A (the greater) 10V to 350V Voltage Transducers Input impedance 150 k±10% Measurement accuracy ±0.2 % or ±0.2 V (the greater)

Page 23: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.3-8 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.3.16 Communications Link

Local Communications Port (USB type B) Serial Remote Communications Ports (GFO or RS232C/RS485) Ethernet Remote Communications Ports (Electric or GFO)

Glass Fiber Optics (P3·Serial Remote Port) Type Multimode Wavelength 820 nm Connector ST Transmitter Minimum Power: 50/125 Fiber - 20 dBm 62.5/125 Fiber - 17 dBm 100/140 Fiber - 7 dBm Receiver Sensitivity - 25.4 dBm

RS232C Port Signals (P4·Serial Remote Port) Terminal unit DB-9 (9-pin) connectors Pin 5 - GND Pin 2 - RXD Pin 3 - TXD

RS485 Port Signals (P4·Serial Remote Port) Db 9 (9 pin) connector. Used signals Pin 4 - (A) TX+ / RX+ Pin 6 - (B) TX- / RX-

RJ45 Port Signals (Ethernet Port) Used signals Pin 1 - TX+ Pin 2 – TX- Pin 3 - RX+ Pin 4 - N/C Pin 5 - N/C Pin 6 - RX- Pin 7 - N/C Pin 8 - N/C

Page 24: Feeder Multifunction Protection for MV Power Systems

1.3 Technical Data

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.3-9

Glass Fiber Optics (Ethernet Port) Type Multimode Wavelength 820 nm Connector ST Transmitter Minimum Power: 50/125 Fiber - 20 dBm 62.5/125 Fiber - 17 dBm 100/140 Fiber - 7 dBm Receiver Sensitivity - 25.4 dBm

IRIG-B 123 and 003 B: 100pps 1: Amplitude modulated wave 0: By pulse width 2: 1kHz/1ms 0: Without carrier 3: BCD, SBS 3: BCD, SBS Type BNC connector Input impedance 211 Maximum input voltage 10 V Synchronization Accuracy ± 1ms When the IED is receiving an IRIG-B signal for synchronization both Date and Time settings will not be available through the HMI. Synchronization by IRIG-B has priority over any other synchronization method. It is possible to configure one of the auxiliary outputs to check the IRIG-B signal status. This output will remain active as long as the IRIG-B signal reception is correct. All the devices are also designed to give an indication for both the loss and recovery of such IRIG-B signal by generating the particular event.

Page 25: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.3-10 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

Page 26: Feeder Multifunction Protection for MV Power Systems

1.4 Physical Description

 

1.4.1  General ............................................................................................................. 1.4-2 

1.4.2  Dimensions ....................................................................................................... 1.4-4 

1.4.3  Connection Elements ....................................................................................... 1.4-4 

1.4.3.a  Terminal Blocks ................................................................................................ 1.4-4 

1.4.3.b  Removing Printed Circuit Boards (Non Self-shorting) ...................................... 1.4-4 

1.4.3.c  Internal Wiring .................................................................................................. 1.4-4 

1.4.4  Local Interface .................................................................................................. 1.4-5 

1.4.4.a  Alphanumeric Display and Keypad .................................................................. 1.4-5 

1.4.4.b  Keypad associated to the Alphanumeric Display ............................................. 1.4-7 

1.4.4.c  Command Buttons ........................................................................................... 1.4-7 

1.4.4.d  Keys, Functions and Operation Modes ............................................................ 1.4-8 

1.4.4.e  Access to Options............................................................................................. 1.4-9 

1.4.4.f  LEDs ............................................................................................................... 1.4-11 

1.4.5  Inputs and Outputs ......................................................................................... 1.4-12 

1.4.5.a  Digital Inputs ................................................................................................... 1.4-12 

1.4.5.b  Auxiliary Outputs ............................................................................................ 1.4-17 

1.4.6  Communications ............................................................................................. 1.4-18 

1.4.6.a  Communications Ports ................................................................................... 1.4-18 

1.4.6.b  Communication with the Configuration Tool .................................................. 1.4-18 

1.4.6.c  Communications Protocols ............................................................................. 1.4-19 

1.4.6.d  Control Change Recording ............................................................................. 1.4-19 

1.4.6.e  Communications Settings ............................................................................... 1.4-20 

1.4.6.f  Time Synchronization ..................................................................................... 1.4-25 

Page 27: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.4-2 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.4.1 General The equipments are made up of the following modules: · Processor module and HMI. · Analog inputs module. · Power Supply.

· Digital inputs, outputs and transducers inputs module. · Communications module.

The modules are mounted vertically, constituting removable modules that do not require the dismantling of the front of the unit. External connection is carried out by means of plug-in terminal blocks (supported on the bearing strip located at the back of each module) for ring lug connectors for analogical inputs, and pointed hubs for digital inputs and outputs and for transducer inputs. Depending on the terminal configuration, all the contact inputs / outputs may be used or some may remain as spare signals. Next figures represent the external appearance of the IRL-F models. Mounted on the front are the alphanumeric keypad and display, the local communication port type USB, the local control buttons and the LED targets.

Figure 1.4.1: Front of an IRL-F Model. Depending on the selected relay, the options the relay is not provided with (Slot A for I/O extension, voltage Slot C, remote ports not selected, etc.) will be sealed with a cover, such that all relay models have the same back plate and serigraphy.

Page 28: Feeder Multifunction Protection for MV Power Systems

1.4 Physical Description

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.4-3

Figure 1.4.2: Rear of an IRL-F Model.

Figure 1.4.3: Rear of an IRL-F Model with IRIG-B.

Page 29: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.4-4 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.4.2 Dimensions Relays are designed for panel flush mounting or in cabinet racks. The box is graphite grey. Dimensions are 1/2 rack of 19" 4 standard heights and two relays IRL-F can be placed on the same rack.

1.4.3 Connection Elements

1.4.3.a Terminal Blocks The number of connectors for the relays depend on the number of analogical inputs and the digital inputs / outputs of the specific model. Relays without connector will have a cover in its place. Strips are arranged vertically as shown in figures 1.4.2 and 1.4.3. Terminal arrangement by columns are as follows:

- Slot A: terminal block of 24 terminals for input converter, 9 digital inputs arranged in groups of 3 and 5 configurable digital outputs.

- Slot B: terminal block of 24 terminals for relay auxiliary power supply, 6 digital inputs arranged in groups of 3, 3 configurable digital outputs and one double contact of relay in anomaly / service.

- Slot C: terminal block of 10 terminals for 4 voltage transformer inputs. - Slot D: terminal block of 10 terminals for 4 current transformer inputs. - Communications ports: one column with all remote communications connectors, one

electrical Ethernet port with RJ45 connector or multimode FO with ST connector and one serial electrical port with connector DB9 or multimode FO with connector ST.

The self-shorting ring lug terminals corresponding to the current analog inputs take wires up to #10 AWG (6 mm2). We recommend ring lug terminals for these connections. The connectors are plug-in and not self-shorting. They can be assigned to the current circuits supporting a current of 20 A continuously. The terminals of the 24 terminals block admit a #13 AWG (2.5 mm2) cable. Use of pointed hubs is recommended to connect to terminals.

1.4.3.b Removing Printed Circuit Boards (Non Self-shorting) The IED's printed circuit board can be taken out. WARNING: the current connector is non self-shorting. Consequently, the CT secondaries must be short-circuited externally before board removal. The back plate and the printed circuit board are attached to the case with self-tapping screws. These screws must be removed before the board is withdrawn. This operation always requires the protection to be not in service.

1.4.3.c Internal Wiring The equipment uses traditional printed circuit board connections and internal buses to minimize internal wiring.

Page 30: Feeder Multifunction Protection for MV Power Systems

1.4 Physical Description

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.4-5

1.4.4 Local Interface

1.4.4.a Alphanumeric Display and Keypad The screen resolution is 128x64 with capacity for 6 lines and 20 characters per line and has a white backlight LED. You can visualize alarms, settings, measurements, status, etc. from the display. Next to the display is the keypad. The next section explains the functions associated to these keys. Figure 1.5.1 represents the layout of the default display.

- - - - ZIV / IRL-F 01/08/2016 09:42:15 Figure 1.4.4: Alphanumeric Display.

Default Display

As shown in the Figure, the default display presents the model in question and the date and time. The status of the front communications port, serial remote port and LAN port and protocol instances through the LAN port are shown on the upper left corner.

Command Panel Screen

IRL family is provided with a graphic screen for HMI commands in which data on the status of the signals and commands configured from the Zivercomplus®. Access to this command screen is gained by pressing the SEL key. Once on the screen press the SEL key to switch between configured controls. In order to operate the command it must be selected (blinking) and at that moment press the close (I) or open (O) key as a function of the action to be taken on the selected command. Relay HMI texts are the acronyms of the signals selected in the setting Command Panel Status Signal, and can show a maximum of 10 characters. Access to the command panel is gained through the SEL key. The different windows can be scrolled using also the SEL key. The selected command blinks and the text configured for activation and deactivation of the command is displayed on the bottom part. In this blinking state, press the open or close keys to carry out the desired action.

OPERATIONS SCREEN

Figure 1.4.5: Command Panel Default Screen.

The command panel is configured from the Zivercomplus®, within the relay settings. The controls are distributed from 1 to 4, and there are two controls, A and B per number. The number indicates the row and the letter the corresponding column where the configured command will be placed on the relay screen.

Page 31: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.4-6 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

Each command will have four settings:

- Command panel status signal: signal linked to the command, the acronym of which will be shown on the screen. When this signal is active, the corresponding square will be shown black whereas if the signal is deactivated, the square background will remain white.

- Command panel action text: texts that will appear in the bottom line of the screen when the command is selected. It is just a graphic presentation. The user can select the texts to be shown within a list available at the relay. Default texts are Activate / Deactivate.

- Command panel blocking signal: signal the user can link to the command. It can be any digital protection signal or signal generated in the control logic. When this blocking signal is active, the relay will prevent the command from being selected.

- Command panel O Button signal: command panel signal that will activate when the command is selected and the O button pressed.

- Command panel O Button action: O button signal activation mode. It can be a pulse, or step to 1 level (Activate) or 0 level (Deactivate). Default setting is to Disabled, which indicates that pressing the button will not effect any change to the associated signal.

- Command panel I Button signal: command panel signal that will activate when the command is selected and the I button pressed.

- Command panel I Button action: I button signal activation mode It can be a pulse, or step to 1 level (Activate) or 0 level (Deactivate). Default setting is to Disabled, which indicates that pressing the button will not effect any change to the associated signal.

Button signals could be protection signals so that their activation or deactivation would trigger directly the desired action (enable or disable protection elements, element blocking, editing settings tables, etc.), or command signals so that their activation and deactivation can be taken into account in the relay logic.

OPERATIONS SCREEN

52-1 89-L

HAB IOC P1 89-T

BLQ TOC G1 RECLOSER

86 TEST MODE

Close Open

Figure 1.4.6: Example of configured command panel screen.

Autodimming

IRL relays screen can be configured to keep the backlight permanently active or to switch the backlight off after a given time. For this, the user can modify the Autodimming settings from the relay HMI by gaining access to the Configuration menu or else from the Zivercomplus®. By default, autodimming will be enabled for 2 minutes, so that the screen will turn off by itself 2 minutes after the last interaction with the relay or after booting. If the time is set to zero, the screen backlight will never light up, and will always be off. If, instead, the screen must always be lit up, autodimming must be disabled. At the time a fault occurs, the relay backlight will automatically light up and will remain lit until the trip is reset.

Page 32: Feeder Multifunction Protection for MV Power Systems

1.4 Physical Description

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.4-7

1.4.4.b Keypad associated to the Alphanumeric Display The keypad has 6 keys, as follows.

▲ When this key is pressed from the default display, it gives to a screen where events and fault reports are visualized (only if there were).

► Measurements are visualized from the default display. Pressing again moves from one measurement screen to the next one.

▼ From the default display you can see the status of the digital inputs and outputs.

◄ From the default display is accessed the screen where is visualized the information about the last fault.

Figure 1.4.7:Keypad. The keypad also provides an Enter key (in the center) Escape (ESC) and Clear (CLR): Enter: Button used to Select or Accept. ESC: Button whose purpose is to return to the previous screen. CLR: button to gain access to the memorized LED reset menu, last trip screen reset, event reset and fault reports reset. Both events and fault reports are presented in the HMI. All events and fault reports captured by communications ports through Zivercomplus®) will be kept in the relay memory. Press the CLR button to switch between reset menus, and the relay will show them only if there are data subject to be erased.

To proceed with the reset, from the corresponding menu, press Enter for some two seconds until the prompt reset done is displayed on the screen. In case of resetting memorized LEDs, the relay will activate all LEDs and will reset the memories without showing any message on the screen. If after the reset command and the activation of the 8 LEDs, any LED remains lit, it is because the signal associated to this LED is active.

1.4.4.c Command Buttons IRL relays gain access to the command panel through the SEL key. This key is also used to scroll the command panel and go to the required place. The controls configured in the protection settings are run through buttons (I) and (O).

Figure 1.4.8: Command Buttons.

Page 33: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.4-8 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.4.4.d Keys, Functions and Operation Modes The following is a description of the functions provided by available keys, both as regards the functions associated to the alphanumeric display and those of the keypad.

Keypad

Confirmation key The confirmation key is used for confirming an action: after making a selection, or after editing a setting, or else to go on to visualize the totality of the registered data. After an operation is carried out (selection, change of settings, information, etc.), press ← again and return to the immediately previous level.

Escape key The ESC key is used to exit the display if you do not wish to make any modification in the setting, or if you simply wish to exit the information display. In any case, when you press this key the system returns to the immediately previous level.

Reset key Press the CLR key to gain access to the memorized LED reset menu, last trip screen reset, event reset and reset of fault reports shown in the HMI. To proceed

with the reset, from the corresponding menu, press Enter for some two seconds until the prompt reset done is displayed on the screen. In case of resetting memorized LEDs, the relay will activate all LEDs and will reset the memories without showing any message on the screen. If after the reset command and the activation of the 8 LEDs, any LED remains lit, it is because the signal associated to this LED is active.

Selection keys on the display You can go forward or backward in correlative order, using the selection keys, to any of the options available in a menu or submenu. When more than eight options are available in a menu, an arrow () will be visualized on the right-hand side of the display, indicating the existence of the same. These options will be accessed with key ▼ and the options that appear in the first place will cease to be visualized. Then, a bar with an arrow () will appear on the right-hand side of the display, which will indicate, at the same time, the existence of these first options. The key ◄ is also used for erasing digits within a setting when modifications are being carried out on the same. It only has this function when the setting is being introduced.

Page 34: Feeder Multifunction Protection for MV Power Systems

1.4 Physical Description

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.4-9

Auxiliary Function Keys

When this key is pressed from the default display, it gives access to the information provided by the registration of control changes (events) and fault reports.

The key ► is used for consulting the unit as regards the data pertaining to current, voltage, power, etc. The function key ► is used for rejecting the changes undertaken on the settings (when the unit requests the confirmation of these changes) and to reject the activation of a table of reserve settings (also when this confirmation is requested).

By pressing ▼ you can visualize the status of digital inputs and outputs from the unit. Once the status of digital inputs is on screen, click the function key ► to visualize the status of digital outputs.

By pressing ◄ you confirm the changes of settings undertaken (when the unit requests that changes need to be confirmed) or the activation of a table of settings is confirmed (when the unit requests that changes need to be confirmed).

1.4.4.e Access to Options To access options, you must scroll around the menus using the selection keys and afterwards confirm the option selected by pressing ENT.

Operation

Range Settings

Range settings are displayed as follows: the operational value of the setting is displayed under ACT (Actual). The new value is introduced in the next line, under NEW, where the cursor will display an intermittent flash. Auxiliary function keys are used for editing the new value which must tally with the range specified in the last line of the display. If there is an error when a value is introduced, you must use key ◄ to erase the same. Once the new value has been edited, press key to confirm the same and exit to the previous menu.

PHASE TOC PICKUP ACT: 0.10 A NEW: Range: 0.1 to 125 Figure 1.4.9: Range Settings.

Page 35: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.4-10 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

YES / NO Type Settings

There is a type of setting that adjusts to this scheme, but its range is limited to options YES and NO. Keys ▲ and ▼ correspond in this case to values YES and NO. After this, press key to confirm the setting and return to the previous screen. A similar case will be the numbered settings where the relay shows the various options. Scroll with the keys ▲ and ▼ to get the required option.

UNIT IN SERVICE ACT: SI NEW: 0 Range: 0 = NO 1 = YES Figure 1.4.10: Numbered Settings.

Settings for the Selection of an Option

These settings present the layout of an options menu. Select the required option through the selection keys and confirmation using . Thus, the system returns to the previous screen.

CHANGE SETTINGS 0 - General 1 - Protection 2 RECLOSER 3 - Logic 4 - Breaker Superv. Figure 1.4.11: Selection Settings.

Masks Settings

As can be observed from the figure, the different options are presented in vertical order. Its current setting is: an empty circle or a filled rectangle which indicates enabled () or disabled () respectively. The mask is modified (in the line indicated by brackets) using keys ◄ (1), enable, and ► (0), disabled. In the event that there are more options than those that can represented in one screen alone, an arrow () will appear at the end of the last line, which will indicate the existence of that second screen. This second screen appears as soon as the last option on the first screen has been set.

OSCILLO CHANN. MASK IA [] IB IC IN Figure 1.4.12: Mask Settings.

Exit Menus and Settings

In order to exit a menu or setting that you do not wish to modify, press ESC key. To exit a data display, you can either press the confirmation key or ESC. In all cases, you will return to the previous menu.

Page 36: Feeder Multifunction Protection for MV Power Systems

1.4 Physical Description

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.4-11

Last Trip Indication

If any trip should occur, the terminal would present, on the home screen, the data related to the same in a menu titled TRIP. Additional screens will be created depending on the last types of units that trip. The format is always similar: a heading line that indicates the type of unit that has tripped (for example, Phase Undervoltage), and below this, all the elements and phases that have been involved (UV A1, UV B1,...). If various functions should trip, and thus do not all fit into one screen, you can access all the functions involved through the selection keys. Only the last trip screen will appear if a trip occurs after a reset. This last trip screen will remain as home screen until removed through the reset menu accessed by the CLR key or until switch off and booting again.

1.4.4.f LEDs The relay includes nine LEDs on the front, one with a fixed function and eight configurable.

Fixed function LED

The LED on the upper right part of the relay with the greatest separation from the other LEDs is used to show the device status. It is a tricolor LED that will indicate the following conditions:

- Relay in operation: steady green. - Relay booting up: blinking green. - Writing to flash memory: blinking orange. - Relay in test mode: orange.

Configurable LED

The relay has eight configurable Mono Color LEDs. They can be configured to steady state or blinking state and will always show activation in red. These LEDs are configured through protection settings being able to assign up to 16 input signals to an OR gate such that when any of these 16 variables is activated, the corresponding LED is activated. Selected signals could be internal to the relay or user signals configured in the command configuration. Also, each LED will have two settings, Blinking and Memorizing such that can be set separately for each LED in order that:

- Blinking: when the setting is set to YES and any of the OR logic signals is activated, the LED starts blinking, being activated and deactivated as a function of a pulse train of fixed duration.

- Memorizing: when the setting is set to YES and the signals assigned to the OR logic are deactivated after one activation, the LED remains lit or blinking until a LEDs reset command is received.The reset command may be carried out through the CLR key or through digital input, command from the command panel or command through communications provided the relay has been so configured from the control logic.

Page 37: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.4-12 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.4.5 Inputs and Outputs

Inputs and outputs are located in two of the five modules that constitute the relay: power supply module and inputs module, digital outputs and input converters. The power supply module (Slot B of the relay) will always be present whereas the inputs module, digital outputs and output converters (Slot A of the relay) is optional and could be present in the relay or not as a function of the selected relay. This is why inputs and outputs are identified for each Slot and not in a global way, thus:

- Slot B: 6 digital inputs (digital input 1 to 6) and 3 digital outputs (digital output 1 to 3). - Slot A: 9 digital inputs (digital input 1 to 9) y 5 digital outputs (digital output 1 to 5).

Both inputs and outputs will be configured through protection settings being able to assign up to 16 input signals to an OR gate for each input and output, such that when any of these 16 variables is activated, the corresponding physical input or physical output will be activated. Selected signals could be internal to the relay or user signals configured in the command configuration.

1.4.5.a Digital Inputs The filtering and operation of the digital inputs is configurable according to the following options:

- Enable Digital Inputs: When this setting is set to NO (inputs disabled), the inputs switch to disable or invalid status regardless the status of the signals assigned for activation in settings..

- Number of Changes to Disable (2-60): in order to prevent a digital input under external or internal malfunction from causing problems, a settable time window is established, within which the number of times the status of this digital input changes is monitored; if this number of changes exceeds a settable value, the digital input is disabled and the last status is frozen.

- Disable Window (1-30s): settable time window to disable a digital input for excessive number of changes.

- Number of Changes to Enable (2-60): once an input is disabled, it will be enabled again when complying with the enable conditions, namely, when the number of changes within the time window is less than the setting value, or through an enable command.

- Enable Window (1-30s): settable time window to enable a digital input that has previously been disabled for excessive number of changes.

- Digital Inputs Power Supply Supervision (NO / Digital Input). To enable the control of Digital Input validation as a function of the supply voltage of a given digital input. When the setting is set to Digital Input, the relay will supervise the voltage value of the input and if it is below the activation value, the validity of all digital inputs will be deactivated.

- Digital Inputs Voltage Supervisory Inputs (ED 1 to 6 of Slot B). To select the digital input that will be used as supply voltage reference. If the selected Digital Input is energized, the Digital Input Validity will remain active, otherwise, the Digital Input Validity will be deactivated.

Page 38: Feeder Multifunction Protection for MV Power Systems

1.4 Physical Description

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.4-13

The relay includes 4 filters. Each filter is set through the settings below:

- Time between Samples (1-10 ms). To set up the sampling frequency of a digital input

status. - Number of Samples to Validate Changes (1-10): number of samples with the same

value to validate an input. The number of samples to logic “0” or logic “1” in a row to be detected in order to assume that the input is deactivated or activated respectively.

The filter for each input can be allocated through a setting:

- Filter Assignation (Filter 1 - Filter 2 – Filter 3 – Filter 4). Through this setting, “filter 1”, “filter 2”, “filter 3” or “filter 4” can be allocated to each configurable digital input. Filters 1, 2, 3, and 4 are made through the settings above allowing the creation of fast detection inputs or slow detection inputs.

A setting is also provided for each input to allow for automatic disabling:

- Automatic Disabling (YES / NO): There is a separate setting for each Digital Input. If set to YES, allows for Automatic ED Disable on excessive number of changes

The IED's metering elements and logic functions use Logic Input Signals in their operation. They are enumerated in the tables nested in the description of each of them and can be assigned to the Physical Digital Inputs or to logic output signals of opcodes configured in the programmable logic. More than one Logic Input Signal can be assigned to a Single Status Contact Input, but the same logic input signal cannot be assigned to more than one status contact input. The tables mentioned above only list the inputs available with the default configuration. The list of inputs can be expanded with those that are configured in the programmable logic (any logic input signal created in the programmable logic can be used with the description that the user creates). Each protection element module of the relay has a special Logic Input signal to put it “into service” or “out of service” from the HMI (buttons on the front), with a digital input by level and with the communications protocol configured in each port (control command). It is normal to do it either from the control logic through control functions or through a digital input. This logic input signal is called Enable Input…. It combines with the In Service setting in this algorithm.

Figure 1.4.13: Element Enable Logic.

Page 39: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.4-14 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

The default value of the logic input signal Element Enable Input... is a “1.” Therefore, when you do not configure the programmable logic at all, putting the protection elements into service depends only on the value of the In Service setting of each of them. The logic configuration to activate or switch off the enabling logic input signal will be as complicated or simple as you wish, from assigning it to a status contact input to building logical schemas with the various logic gates available (flip-flop’s) or allocate them to controls from the command panel or by communications. Those protection functions that are put “out of service” by any of these methods will not generate or activate any of their associated logic signals, not even those that may be configured in the programmable logic and are directly related to these functions. Digital input related settings may only be configured from the communications program:

Table 1.4-1:Digital Inputs of the Inputs Module Name Group IEC 61850 Description Vis. Function

SLOTB_DI01DISORD

Uni

t Ena

blem

ent

Con

trol

- Slot B Command to Disable Digital Input 1

Inpu

ts to

the

mod

ule

of d

igita

l inp

uts

that

act

ivat

e an

d de

activ

ate

each

of t

he d

igita

l in

puts

SLOTB_DI02DISORD - Slot B Command to Disable Digital Input 2

SLOTB_DI03DISORD - Slot B Command to Disable Digital Input 3

SLOTB_DI04DISORD - Slot B Command to Disable Digital Input 4

SLOTB_DI05DISORD - Slot B Command to Disable Digital Input 5

SLOTB_DI06DISORD - Slot B Command to Disable Digital Input 6

SLOTA_DI01DISORD - Slot A Command to Disable Digital Input 1

SLOTA_DI02DISORD - Slot A Command to Disable Digital Input 2

SLOTA_DI03DISORD - Slot A Command to Disable Digital Input 3

SLOTA_DI04DISORD - Slot A Command to Disable Digital Input 4

SLOTA_DI05DISORD - Slot A Command to Disable Digital Input 5

SLOTA_DI06DISORD - Slot A Command to Disable Digital Input 6

SLOTA_DI07DISORD - Slot A Command to Disable Digital Input 7

SLOTA_DI08DISORD - Slot A Command to Disable Digital Input 8

SLOTA_DI09DISORD - Slot A Command to Disable Digital Input 9

SLOTB_DI01ENAORD - Slot B Command to Enable Digital Input 1

SLOTB_DI02ENAORD - Slot B Command to Enable Digital Input 2

SLOTB_DI03ENAORD - Slot B Command to Enable Digital Input 3

Page 40: Feeder Multifunction Protection for MV Power Systems

1.4 Physical Description

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.4-15

Table 1.4-1: Digital Inputs of the Inputs Module Name Group IEC 61850 Description Vis. Function

SLOTB_DI04ENAORD U

nit E

nabl

eme

nt C

ontr

ol

- Slot B Command to Enable Digital Input 4

Inpu

ts to

the

mod

ule

of d

igita

l inp

uts

that

act

ivat

e an

d de

activ

ate

each

of t

he d

igita

l inp

uts

SLOTB_DI05ENAORD - Slot B Command to Enable Digital Input 5

SLOTB_DI06ENAORD - Slot B Command to Enable Digital Input 6

SLOTA_DI01ENAORD - Slot A Command to Enable Digital Input 1

SLOTA_DI02ENAORD - Slot A Command to Enable Digital Input 2

SLOTA_DI03ENAORD - Slot A Command to Enable Digital Input 3

SLOTA_DI04ENAORD - Slot A Command to Enable Digital Input 4

SLOTA_DI05ENAORD - Slot A Command to Enable Digital Input 5

SLOTA_DI06ENAORD - Slot A Command to Enable Digital Input 6

SLOTA_DI07ENAORD - Slot A Command to Enable Digital Input 7

SLOTA_DI08ENAORD - Slot A Command to Enable Digital Input 8

SLOTA_DI09ENAORD - Slot A Command to Enable Digital Input 9

Table 1.4-2: Digital Outputs of the Inputs Module Name Group IEC 61850 Description Vis. Function

SLOTB_DI01VALUE

Phy

sica

l Dig

ital I

nput

s

INSBGGIO1.Ind1 Slot B Digital Input 1 T

hey

ind

icat

e th

at th

e co

rres

pon

din

g in

put

ha

s be

en a

ctiv

ated

. SLOTB_DI02VALUE INSBGGIO1.Ind2 Slot B Digital Input 2

SLOTB_DI03VALUE INSBGGIO1.Ind3 Slot B Digital Input 3

SLOTB_DI04VALUE INSBGGIO1.Ind4 Slot B Digital Input 4

SLOTB_DI05VALUE INSBGGIO1.Ind5 Slot B Digital Input 5

SLOTB_DI06VALUE INSBGGIO1.Ind6 Slot B Digital Input 6

SLOTA_DI01VALUE INSAGGIO1.Ind1 Slot A Digital Input 1

SLOTA_DI02VALUE INSAGGIO1.Ind2 Slot A Digital Input 2

SLOTA_DI03VALUE INSAGGIO1.Ind3 Slot A Digital Input 3

SLOTA_DI04VALUE INSAGGIO1.Ind4 Slot A Digital Input 4

SLOTA_DI05VALUE INSAGGIO1.Ind5 Slot A Digital Input 5

SLOTA_DI06VALUE INSAGGIO1.Ind6 Slot A Digital Input 6

SLOTA_DI07VALUE INSAGGIO1.Ind7 Slot A Digital Input 7

SLOTA_DI08VALUE INSAGGIO1.Ind8 Slot A Digital Input 8

SLOTA_DI09VALUE INSAGGIO1.Ind9 Slot A Digital Input 9

Page 41: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.4-16 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

Table 1.4-2: Digital Outputs of the Inputs Module Name Group IEC 61850 Description Vis. Function

SLOTB_DI01VALIDITY

Val

idity

of D

igita

l Inp

uts

Slot B Validity of Digital Input 1

The

y in

dic

ate

the

valid

sta

tus

of th

e di

gita

l in

put.

SLOTB_DI02VALIDITY Slot B Validity of Digital Input 2

SLOTB_DI03VALIDITY Slot B Validity of Digital Input 3

SLOTB_DI04VALIDITY Slot B Validity of Digital Input 4

SLOTB_DI05VALIDITY Slot B Validity of Digital Input 5

SLOTB_DI06VALIDITY Slot B Validity of Digital Input 6

SLOTA_DI01VALIDITY Slot A Validity of Digital Input 1

SLOTA_DI02VALIDITY Slot A Validity of Digital Input 2

SLOTA_DI03VALIDITY Slot A Validity of Digital Input 3

SLOTA_DI04VALIDITY Slot A Validity of Digital Input 4

SLOTA_DI05VALIDITY Slot A Validity of Digital Input 5

SLOTA_DI06VALIDITY Slot A Validity of Digital Input 6

SLOTA_DI07VALIDITY Slot A Validity of Digital Input 7

SLOTA_DI08VALIDITY Slot A Validity of Digital Input 8

SLOTA_DI09VALIDITY Slot A Validity of Digital Input 9

FALLOTALIMENTACIONENTRADASDIGITALES

Ala

rm a

nd E

rror

S

ign

als

Digital Inputs Power Failure

Indi

catio

n of

vo

ltag

e re

fere

nce

lo

ss in

DIs

ENTRADASDIGITALESHABILITADAS

Oth

ers

Digital Inputs Enabled

Indi

catio

n of

D

Is e

nab

led

by s

ettin

g.

Page 42: Feeder Multifunction Protection for MV Power Systems

1.4 Physical Description

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.4-17

1.4.5.b Auxiliary Outputs The number of digital outputs available will depend on each particular model. They can all be configured with any input or output signal of the pre-existing protection and control modules or defined by the user in the programmable logic. Auxiliary outputs use normally open contact relays and the two first Slot B outputs may operate as normally open or closed as a function of the jumper position. For details on the arrangement of contacts for each model, see External Connections Scheme. When in operation, metering elements and logic elements generate a number of logic outputs. These signals or any other signal registered in the relay can be used to configure the activation of each digital output through the OR gate available in the protection settings. For more complex logic and to be able to allocate the resultant outputs to physical auxiliary outputs, necessary opcodes must be programmed in the programmable logic to generate a user signal to be used in the setting of the corresponding signal. There is an additional, non-programmable auxiliary output contact corresponding to relay In Service.

Table 1.4-3: Auxiliary Outputs of the Outputs Module Name Group IEC 61850 Description Vis. Function

SLOTB_DO01

Phy

sica

l Dig

ital

Out

puts

OUTSBGGIO1.Ind1 Slot B Digital Output 1

The

y in

dic

ate

that

the

corr

esp

ond

ing

inp

ut

has

been

act

ivat

ed.

SLOTB_DO02 OUTSBGGIO1.Ind2 Slot B Digital Output 2

SLOTB_DO03 OUTSBGGIO1.Ind3 Slot B Digital Output 3

SLOTA_DO01 OUTSAGGIO1.Ind1 Slot A Digital Output 1

SLOTA_DO02 OUTSAGGIO1.Ind2 Slot A Digital Output 2

SLOTA_DO03 OUTSAGGIO1.Ind3 Slot A Digital Output 3

SLOTA_DO04 OUTSAGGIO1.Ind4 Slot A Digital Output 4

SLOTA_DO05 OUTSAGGIO1.Ind5 Slot A Digital Output 5

Page 43: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.4-18 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.4.6 Communications

1.4.6.a Communications Ports The IEDs of the IRL platform are provided with different types of communications ports as a function of the selected model:

- 1 Front Local Port USB type B for connection with the configuration tool. - 1 LAN Port for ETHERNET type communications, to choose between:

o P1: RJ45 100BASE-T Port. o P2: GFO (ST 100BASE-FX connector) Port.

- 1 Serial Remote port to choose between: o P3: GFO (ST connector) interface. o P4: RS232 / RS485 electric interface.

IRL family relays include a controller per communications gate, such that communications can be established through all of them at the same time. Also, Ethernet ports support up to 5 protocols (PROCOME, DNP3 V3.0, MODBUS) simultaneously apart from MMS and GOOSE messages (IEC 61850) if a IEC 61850 relay is selected. Technical data for these communications links can be found in Technical Data section. Information on model ports can be found in Model Selection section.

1.4.6.b Communication with the Configuration Tool Protection, loading or reading programmable logic configuration and reading out protection data (events, fault reports, oscillograms, ...) can be configured through communications ports set for PROCOME protocol. The local port is always assigned this protocol, whereas remote ports must be assigned protocol PROCOME for this purpose. Communications are established through ZIV e-NET Tool® communications program, which allows dialog between the IRL family and other relays, whether locally (via a PC connected to front port) or remotely (via rear serial ports with PROCOME protocol), covering all needs regarding programming, settings, recording, reports, etc.. The configuration of the local communications gate may only be edited from the HMI, however, remote communications gate settings may also be edited through the communications program ZIV e-NET Tool®, but only communicating with the relay through the local port. The ZIV e-NET Tool® communications program that involves the application of the model involved is protected against non-authorized users through access passwords. The ZIV e-NET Tool®, that runs in WINDOWSTM environment is easy to operate and uses buttons or keys to display the different submenus.

Page 44: Feeder Multifunction Protection for MV Power Systems

1.4 Physical Description

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.4-19

1.4.6.c Communications Protocols IRL family relays are provided with the following protocols depending on the communications port:

- Local Port: uses only protocol PROCOME. - LAN P1 and P2 Ports: may communicate in MMS/GOOSE (IEC 61850) and

simultaneously with a PROCOME instance with fixed port tcp 32001 and four configurable instances at port tcp level and protocol (PROCOME, DNP3 V3.0 and MODBUS).

- Serial remote ports P3 and P4: each port may be configured to be able to communicate through a sole protocol PROCOME, DNP V3.0 or MODBUS.

It is worth mentioning that communications through all ports can be maintained simultaneously. PROCOME protocol complies with IEC-870-5 standards and is used, the same as for IEC61850, for both protection and control information management. On the other hand, protocols DNP V3.0 and MODBUS are used for control information management. For more details on protocols refer to the applicable protocol paragraph.

1.4.6.d Control Change Recording Depending on signals configured into the programmable logic through the ZIV e-NET Tool® program, the different system events make changed-state signals to be written. Different signal lists for PROCOME 3.0, DNP V3.0 and DNP 3.0 protocols can be configured through the programmable logic, saving changes into different and separate IRL relay files for each of the communications ports. This implies that although the tail of changes of one port is emptied after collecting said information, the same information is available at the other port for collection through the allocated protocol, whether it is the same as for the first port or not. Also, from the signals configured in PROCOME, DNP 3.0 or both, signals to be displayed through the HMI can be selected. They are also saved into separate files, so that even if tails of control changes of communications ports are emptied, the information is still available through HMI. Control change register data is displayed from the relay HMI, through the menu Data/Registers/Events or by pressing the Up arrow, and there exist the options Display events or fault reports. When entering into the option display events, the last generated event is always displayed (the most recent). Data is displayed as follows: YY/MM/DD|HH:MM:SS ms text1 or ms text2 or YY/MM/DD|HH:MM:SS ms text3 or ms text4 or

Page 45: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.4-20 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

Namely, events are grouped by “date” and “time”. Then, in the following line, the milliseconds corresponding to each control change and the label defined through the ZIV e-NET Tool® (maximum of 13 characters) are shown. And at the end of the line, a filled or blank square indicates ACTIVATION-ON () or DEACTIVATION-OFF () respectively. Default signal text labels are defined in input and output tables; in case of new signals generated into the programmable logic, said text must be defined. In any case, in order to use the names required by each user, the creation of a logic record card allocating a personalized name to every signal to be displayed is recommended. The date and time stamp will be generated every time a new event occurs in it. The MODBUS allows to display the actual value of the configured digital signals but do not record their changes.

1.4.6.e Communications Settings As the below described settings are independent for each port, they are grouped as follows: Local Port Settings, Remote Port 1 (P3 or P4), LAN1 Port (P1 or P2). Finally specific settings for each protocol are described. Every time a communications session is started through one of these ports, the relay communications port is displayed on the upper left corner of the relay alphanumeric screen (HMI). From left to right, local port, remote port (P3 or P4), LAN port (P1 or P2), LAN port instances 1, 2, 3 and 4. That indication, in case of PROCOME 3.0 protocol, remains displayed during Communications Password TimeOut setting indicated for the PROCOME Protocol after the last communication carried out; in case of MODBUS and DNP V3.0 protocols, the message remains displayed for one minute after the last communication. There are different time settings for each physical communications ports (Communications Fail Timer), which, regardless of the protocol allocated, allow to configure the period of time with no communications activity after which the corresponding alarms (digital signals and events) of Communications Fail remote port, protocol 1, protocol 2, protocol 3, protocol 4 and protocol PROCOME are generated. The setting options of the local communications port are:

- Communication Failure Indication Time (0-600 s.): maximum time between messages without indication of communication channel blocking.

Page 46: Feeder Multifunction Protection for MV Power Systems

1.4 Physical Description

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.4-21

Serial Remote Port (P3 or P4) has fiber optic and electrical access RS232 / RS485. The settings available for configuring this port are:

- Protocol: PROCOME 3.0, DNP 3.0 and MODBUS Protocols can be selected. The default protocol is PROCOME.

- Baud Rate: a value from 300 bauds to 57600 bauds can be chosen, default value being 38400 bauds

- Stop Bits: one of two stop bits can be selected. - Parity: Even, Odd or No Parity (None) can be selected. No Parity is configured by

default. - Comms Fail Timer (0-600 s.): maximum time between messages without indication of

communication channel blocking. - Advanced settings:

1. Operating Mode (RS232 / RS485): This setting allows selecting whether the Remote port 2 DB9 interface operates as port RS232 or RS485.

2. Time Stop Bytes Number RS-485 (0-4 bytes): it specifies the number of stop bytes between transmit and receive when the port is configured as RS485.

3. Message modification Number of Zeros (0-255): Number of zeros to insert as preamble to each message.

4. Collisions Type of Collision (NO / ECHO):

NO: Collision detection disabled. ECHO: A collision is considered to have occurred when the characters received do not coincide with the characters transmitted.

Number of Retries (0-3): Maximum number of retries in the transmission when collisions are detected. Minimum Time Between Retries (0-60000 ms): Minimum time between retransmissions on collision detection. Maximum Time Between Retries (0-60000 ms): Maximum time between retries on collision detection. Maximum Echo Delay (1-60000 ms)

Page 47: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.4-22 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

LAN Port (P1 or P2) have fiber optic and electrical access RJ45. The settings available for configuring this port are:

- DHCP Enable (YES – NO). - IP Address (ddd.ddd.ddd.ddd). - Network Mask (ddd.ddd.ddd.ddd). - Routing Tables

1. Default Gateway Default Route 1 IP Address (ddd.ddd.ddd.ddd). Default Route 1 Metric (0-65535) Default Route 2 IP Address (ddd.ddd.ddd.ddd). Default Route 2 Metric (0-65535)

2. Static Routes Destination Address of Route 1 (ddd.ddd.ddd.ddd). Network Mask of Route 1 (ddd.ddd.ddd.ddd). IP Gateway Address of Route 1 (ddd.ddd.ddd.ddd). Destination Address of Route 2 (ddd.ddd.ddd.ddd). Network Mask of Route 2 (ddd.ddd.ddd.ddd). IP Gateway Address of Route 2 (ddd.ddd.ddd.ddd).

- TCP/IP Protocols 1. PROCOME Protocol

Comms Fail Timer (0-600s) Advanced Settings

TCP KeepAlive Time (0-32767s) TCP KeepAlive Probes (1-127) TCP KeepAlive Interval (1-32767s)

2. Protocol 1 Ethernet Protocol (None, Procome, DNP3 3.0, Modbus) Port Number (1-65535) Comms Fail Timer (0-600s) Advanced Settings

TCP KeepAlive Time (0-32767s) TCP KeepAlive Probes (1-127) TCP KeepAlive Interval (1-32767s)

3. Protocol 2 Ethernet Protocol (None, Procome, DNP3 3.0, Modbus) Port Number (1-65535) Comms Fail Timer (0-600s) Advanced Settings

TCP KeepAlive Time (0-32767s) TCP KeepAlive Probes (1-127) TCP KeepAlive Interval (1-32767s)

4. Protocol 3 Ethernet Protocol (None, Procome, DNP3 3.0, Modbus) Port Number (1-65535) Comms Fail Timer (0-600s) Advanced Settings

TCP KeepAlive Time (0-32767s) TCP KeepAlive Probes (1-127) TCP KeepAlive Interval (1-32767s)

Page 48: Feeder Multifunction Protection for MV Power Systems

1.4 Physical Description

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.4-23

5. Protocol 4 Ethernet Protocol (None, Procome, DNP3 3.0, Modbus) Port Number (1-65535) Comms Fail Timer (0-600s) Advanced Settings

TCP KeepAlive Time (0-32767s) TCP KeepAlive Probes (1-127) TCP KeepAlive Interval TCP (1-32767s)

The configuration settings of the PROCOME 3.0 protocol are:

- Relay Number (0-254): it specifies the address of the IRL relay (acting as RTU or Remote Terminal Unit) in relation to the rest of equipment that communicate with the same master station (MTU or Master Terminal Unit).

- Communications Password Enable (YES-NO): this setting allows to enable the access password function to establish communication with the relay through the rear port: YES means enabling the permission and NO, disabling.

- Communications Password TimeOut (1-10 minutes): this setting allows establishing a period of time for activating a communication blocking with the relay (whenever communication is via the rear port): if the set time expires with no activity taking place in the communications program, the system blocks, and the communication must be reinitiated.

- Communications Password: the communications password allows establishing a specific password to access communications with the relay through the rear port. This password must have 8 characters, which will be entered using the HMI keys or through the communications program if communications are stablished via front port.

The DNP 3.0 protocol configuration settings include the definition of:

- Relay Number (0-65519): it specifies the address of the IRL relay (acting as RTU or Remote Terminal Unit) in relation to the rest of equipment that communicate with the same master station (MTU or Master Terminal Unit). The 0xFFF0 to 0xFFFF addresses are reserved for the Broadcast addresses.

- T. Confirm TimeOut (100-65535): it specifies the time lapse (in milliseconds) from the time the IRL sends a message requesting the master to confirm the Application layer (Level 7), until this confirmation is considered lost. The IRL requests confirmation of the Application Layer when it sends spontaneous (Unsolicited) messages or in response to requests for Class 1 or Class 2 Data. When this time expires, the message is retransmitted the number of times specified in the N. Retries parameter.

- N. Retries (0-65535): number of retries of the Application Layer (N7). The default value is 0 (zero), indicating that no retransmission will be attempted.

- Enable Unsolicited (YES/NO): enables (YES) or disables (NO) sending spontaneous messages (Unsolicited); it is used in combination with the MTU Number parameter. For the IRL relay to begin sending spontaneous messages the master must also enable them with the Function Code FC = 20.

- Unsolicited Start Enable (YES/NO): enables (YES) or disables (NO) sending spontaneous start messages (Unsolicited after Restart); it is used in combination with the MTU Number parameter. For the IRL relay to begin sending spontaneous start messages there is not need for the master to enable them.

- Master Number Unsolicited (0-65535): it specifies the address of the master station (MTU or Master Terminal Unit) to which the IRL relay will send spontaneous (Unsolicited) messages. It is used in combination with Enable Unsolicited parameter. Addresses 0xFFF0 to 0xFFFF are reserved for Broadcast addresses.

Page 49: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.4-24 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

- Time Grouping Unsolicited (100-65535): it specifies the time interval between the generation of a first event for an unsolicited message and the transmission of the message, with the purpose of grouping several events that may occur within this time interval in a single transmission message, in order not to saturate the communications line with multiple messages.

- Sync. Interval (0-120 minutes): it specifies the maximum time interval between two synchronizations. If no synchronization occurs within the interval, the need for synchronization is set in Internal Indication (IIN1-4 NEED TIME). This setting has no effect if the Sync. Interval is 0.

- DNP3 Revision (STANDARD ZIV/2003): indicates the DNP3 certification revision to use. STANDARD ZIV or 2003 (DNP3-2003 Intelligent Electronic Device (IED) Certification Procedure Subset Level 2 Version 2.3 29-Sept-03).

Up to 64 measurements or analog magnitudes can be set for DNP3 transmission. Among them, up to 16 measurements can be set for transmission upon a change request. To select the measurements to transmit upon a change request, enable the DNP3 Measurement Change control configuration option using ZIV e-NET Tool®. The measurement change transmission is set through two parameters for each measurement: Upper Limit (in profile I relays) or Maximum Value (in profile II relays) setting values and the Band setting value set for that measurement. Up to 16 band values may be configured through ZIV e-NET Tool®, which will be associated to the measurements enabled for change transmission in the same sequence as they are ordered in ZIV e-NET Tool®. Namely: band value 000 will be assigned to the first measurement enabled for change transmission, 001 to the second, and so on up to the last measurement enabled, with the limit of 16. The band represents a percentage of the Maximum Value, so that when a measurement change exceeds that band, the measurement value is annotated to be sent as change. When the relay receives a measurement change request, it will send all changes annotated. Analog changes will not be annotated for measurements with option DNP3 Measurement Change enabled but with the band set to 100%, or measurements with option DNP3 Measurement Change not enabled, they being deemed disabled for change transmission. Additionally, these are other settings defined for the DNP3.0 Profile II and DNP 3.0 Profile II ETHERNET Protocols:

- Class for Binary Changes (CLASS 1, CLASS 2, CLASS 3, NONE). Assigns the class to the binary changes.

- Class for Analog Changes (CLASS 1, CLASS 2, CLASS 3, NONE). Assigns the class to the analog changes.

- Class for Counter Changes (CLASS 1, CLASS 2, CLASS 3, NONE). Assigns the class to the counter changes.

- “Status” Type Binary Inputs (YES-NO). Binary inputs used are according to “status” type inputs (YES) or binary inputs used are not sent according to “status” type inputs (NO).

- 32 bits Analog Inputs (YES-NO). Analog inputs used are 32 bits resolution (YES) or analog inputs used are 16 bits resolution (NO).

In order for the relay to accept commands received through DNP3, the internal Remote Control signal must be active, for this, it must be activated through control logic. The only configuration setting of the MODBUS protocol is the Relay Number (0-254), which the same as for the other protocols specifies the IRL relay address (acting as RTU or Remote Terminal Unit) with reference to the rest of relays communicating with the same master station (MTU or Master Terminal Unit).

Page 50: Feeder Multifunction Protection for MV Power Systems

1.4 Physical Description

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.4-25

1.4.6.f Time Synchronization

Time Synchronization by Protocol

IRL relays may be synchronized as follows:

- Protocol SNTP: IEC 61850 relays will be able to be synchronized through protocol SNTP. The relay will be synchronized through SNTP if presence of synchronization by IRIG-B is not detected.

- Protocol PROCOME: the relay can receive the date and time through protocol PROCOME either from a central unit or from the communications program, which will send the PC local time. If synchronization is not detected, the relay will synchronize by IRIG-B or SNTP.

- Protocol DNP3: the relay may receive the date and time through protocol DNP3 from a server. If synchronization is not detected, the relay will synchronize by IRIG-B, SNTP or PROCOME.

- Manual: if synchronization is not detected from any source, the relay will accept manual synchronization through the HMI.

Synchronization by SNTP

IEC 61850 relays can be synchronized through protocol SNTP by means of broadcast or unicast and with one or two servers. For this, there is a Synchronization section within the settings menu, where the following settings can be found:

- SNTP Enable (YES / NO) - Broadcast Synchronization Enable (YES / NO) - Unicast Synchronization Enable (YES / NO) - IP address of Primary SNTP Server (ddd.ddd.ddd.ddd). - IP address of Slave SNTP Server (ddd.ddd.ddd.ddd). - Unicast Validity Timer (10 - 1000000) - Unicast Error Timer (10 - 1000000) - Number of Connection Retries (1 - 10) - Tuning Period (10 - 1000000) - Retry Period (10 - 1000000) - Broadcast validity Timer (0 - 1000000) - Broadcast Error Timer (0 - 1000000) - Maximum Synchronism Time Delay (0 - 1000000) - Ignore Synchronization Leap Indicator (YES / NO) - Synchronism State Calculation (Timing / Leap Indicator) - Force Unicast Query (YES / NO) - Retry Period (1 - 1000000).

Page 51: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.4-26 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

Synchronization by IRIG-B 123 and 003

IRL family relays are provided (depending on the model) with a BNC type input for IRIG-B 123 or 003 standard time synchronization signals. Said input is located at the relay rear panel. Synchronization accuracy is ±1ms. In case the relay is receiving an IRIG-B synchronization signal, access from HMI to Date and Time settings is denied. An output can be configured to show IRIG-B signal received status. This output remains active while the relay receives correctly said signal. IRL family relays are also prepared for indication of both the loss and recovery of IRIG-B signal by generating events associated to each of these circumstances. Discerning whether the time received through BNC connector corresponds to UTC Time or a given Time Zone (Local) is possible through IRIG-B Time Type setting. In the first case, a correction must be introduced to adapt the UTC time to the time zone of the relay site. The Local Time Zone setting within the Date and Time settings group is used for this purpose, which allows putting UTC time forward or back as required. In the second case, the relay receives the time signal already adapted to the local time zone and no correction is needed. In this case local Local Time Zone has no effect.

Table 1.4-4: Auxiliary Outputs of the IRIG-B Function Name Description Function

SIGNAL_IRIGB IRIGB Active Signal indicates that IRIG-B signal is being received.

Page 52: Feeder Multifunction Protection for MV Power Systems

1.5 Installation and Commissioning

 

1.5.1  General ............................................................................................................. 1.5-2 

1.5.2  Accuracy ........................................................................................................... 1.5-2 

1.5.3  Installation ........................................................................................................ 1.5-3 

1.5.4  Preliminary Inspection ...................................................................................... 1.5-4 

1.5.5  Tests ................................................................................................................. 1.5-5 

1.5.5.a  Isolation Test .................................................................................................... 1.5-5 

1.5.5.b  Power Supply Test ........................................................................................... 1.5-6 

1.5.5.c  Metering Tests .................................................................................................. 1.5-6 

Page 53: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.5-2 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.5.1 General Improper handling of electrical equipment is extremely dangerous; therefore, only skilled and qualified personnel familiar with appropriate safety procedures and precautions should work with this equipment. Damage to equipment and injury to personnel can result when proper safety precautions are not followed. The following general safety precautions are provided as a reminder:

- High magnitude voltages are present in Power Supply and metering circuits even after equipment has been disconnected.

- Equipment should be solidly grounded before handling or operating. - Under no circumstances should the operating limits of the equipment be exceeded

(voltage, current, etc.). - The power supply voltage should be disconnected from the equipment before

extracting or inserting any module; otherwise damage may result. The tests defined next are those indicated for the start-up of an IED. They do not necessarily coincide with the final manufacturing tests to which each manufactured equipment is subjected. The number, the type and the specific characteristics of the acceptance tests are model dependent.

1.5.2 Accuracy

The accuracy of the measuring instruments and test source signals (auxiliary power supply voltage, AC currents and AC voltages) is key in electrical testing. Therefore, the information specified in the Technical Data section (2.1) of this manual can only be reasonably verified with test equipment under normal reference conditions and with the tolerances indicated in the UNE 21-136 and IEC 255 standards in addition to using precision instruments. It is extremely important that there be little or no distortion (<2%) in the test source signals as harmonics can affect internal measuring of the equipment. For example, distortions will affect this IED, made up of non-linear elements, differently from an AC ammeter, because the measurement is made differently in both cases. It must be emphasized that the accuracy of the test will depend on the instruments used for measuring as well as the source signals used. Therefore, tests performed with secondary equipment should focus on operation verification and not on measuring accuracy.

Page 54: Feeder Multifunction Protection for MV Power Systems

1.5 Installation and Commissioning

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.5-3

1.5.3 Installation

Location

The place where the equipment is installed must fulfill some minimum requirements, not only to guarantee correct operation and the maximum duration of useful life, but also to facilitate placing the unit in service and performing necessary maintenance. These minimum requirements are the following:

- Absence of dust - Absence of vibration - Easy access - Absence of humidity - Good lighting - Horizontal or vertical mounting

Installation should be accomplished in accordance with the dimension diagrams.

Connections

The first terminal of the terminal block corresponding to the auxiliary power supply must be connected to ground so that the filter circuits can operate. The cable used for this connection should be 14 AWG stranded wire, with a minimum cross section of 2.5 mm2. The length of the connection to ground should be as short as possible, but not more than 75 inches (30 cm). In addition, the ground terminal of the case, located on the rear of the unit, should be connected to ground.

Page 55: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.5-4 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.5.4 Preliminary Inspection The following equipment aspects should be examined:

- The unit is in good physical condition, mechanical parts are securely attached and no assembly screws are missing.

- The unit model number and specifications agree with the equipment order.

Figure 1.5.1: Name Plate (IRL-F).

Page 56: Feeder Multifunction Protection for MV Power Systems

1.5 Installation and Commissioning

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.5-5

1.5.5 Tests

1.5.5.a Isolation Test While testing for isolation of switchgear and external wiring, the IED must be disconnected to avoid damage in case the test is not performed properly or if there are shorts in the harness, since the manufacturer has performed isolation testing on 100% of the units.

Common Mode

All the terminals of the IED must be short-circuited, except those that relate to the power supply. The enclosure ground terminal must also be disconnected. Then 2000 Vac are applied between the interconnected terminals and the metal case for 1 min or 2500 Vac during 1s between the terminal group and the metal enclosure. When the IED has the inputs, outputs and converters expansion card, terminals of the transducers do not need to be short-circuited (See External Connection Schemes).

Between groups

The isolation groups are made up of the current and voltage inputs (independent channels), digital inputs, auxiliary outputs, trip and close contacts and power supply. Refer to the connection’s schematic to identify the terminals to group for performing the test. Then 2500 VAC are applied during 1 sec. between each pair of groups. For the transducers test 1000 VAC are applied during one second between this group and all the rest.

There are internal capacitors that can generate high voltage if the test points are removed for the insulation test without reducing the test voltage.

Page 57: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.5-6 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.5.5.b Power Supply Test Connect the power supply as indicated in following table.

VDC PROT CON1P CON2P

B3(+) – B2(-) B22-B23 B22-B24

It is important to verify that, when the IED is not energized, the contacts designated CON2P in the table mentioned previously are closed, and those designated CON1P are open. Then it is fed its rated voltage and the contacts designated CON1P and CON2P must change state and the “In Service” LED must light up.

1.5.5.c Metering Tests For this test it should be considered that, if it is required to avoid trips while this is being carried out, the elements should be disabled and the cutoff of the injection of current and/or voltage by the breaker avoided. Subsequently, the currents and voltages which, as an example, are indicated in the following Table, will be applied to each of the channels and the following measures will be verified:

Applied Current or

Voltage

Measured Current or

Voltage

Phase of I or V applied

Phase of I or V measured

Freq. Applied (V > 20 Vac)

Freq. Measured

(V > 20 Vac)

X X ±1% Y Y ±1º Z Z ±5 mHz

Note: if high current values are to be checked, they will be applied the shortest possible time; for example, less than 8 seconds for 20A. For angle display, phase A voltage must be applied or inject current into the phase A as a function of the reference angle setting value and the injected values must exceed the setting values set for this purpose. To measure the frequency, voltage higher than the disable voltage setting value must be injected into any phase.

Page 58: Feeder Multifunction Protection for MV Power Systems

1.6 Onload Test

 

1.6.1  Introduction ....................................................................................................... 1.6-2 

1.6.2  Voltage Connections ........................................................................................ 1.6-2 

1.6.3  Current Connections ........................................................................................ 1.6-3 

Page 59: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.6-2 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.6.1 Introduction

The objectives of Onload Test are the following ones:

- Confirm that the external wiring of the voltage and current analog input channels is correct.

- Check the polarity of the current tranformers. - Check the voltage and current measurements (module and angle).

In order to proceed with the test, primary injections will be done to check the polarity and transformation ratios. These tests can only be carried out if there are no restrictions related to the energization of the bay and all the other devices of the bay where the protection relay is located have already been commissioned. Before starting the tests, check that all the test leads have been removed and ensure that the external wiring is properly connected (it is possible that during the commissioning tests external wirings have been disconnected).

1.6.2 Voltage Connections

Using a multimeter check that the secondary voltage measurements are correctly rated, and by means of a phase rotation meter confirm that the system phase rotation is the correct one. Compare the secondary multimeter values with the measurements the relay shows in the measurement screen when the transformation ratio is set to 1. Check not only the module but also the angle. Modify the setting in order to show the measurements in primary values. The measurements that are displays in the HMI of the device or in the communication program should comply with the values which are specified in the Measurement Accuracy paragraph in Chapter 1.3, Technical Data.

Page 60: Feeder Multifunction Protection for MV Power Systems

1.6 Onload Test

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.6-3

1.6.3 Current Connections

Place a multimeter in series with each of the analog current inputs of the relay in order to test the secondary values of each phase. This test will be carried out comparing the value of the multimeter with the value displayed in the HMI of the relay when the transformation ratio is set to 1. Check not only the module but also the angle. Modify the setting in order to show the measurements in primary values. The measurements that are displays in the HMI of the device or in the communication program should comply with the values which are specified in the Measurement Accuracy paragraph in Chapter 1.3, Technical Data. Check that when injecting a balanced system, the current which is flowing through the neutral circuit of the transformer is negligible. Ensure the current polarity is the correct one measuring the phase angle between the current and the voltage which are being injected. Check that for load current flowing outside the bay (forward direction) the active power measurement is positive while for load current flowing inside the bay (reverse direction) the active power measurement is negative. In those models with ground differential current measurement, check that the current polarity of the polarization channels is the correct one. Inject the same current value in the polarization channel and just in one phase analog input lagging 180º and check that the ground differential current (IGN) is zero or almost zero. In case of having ground differential current, modify the wiring of the polarization channel.

Page 61: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.6-4 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

Page 62: Feeder Multifunction Protection for MV Power Systems

1.7 Standards and Type Tests

 

1.7.1  Insulation .......................................................................................................... 1.7-2 

1.7.2  Electromagnetic Compatibility .......................................................................... 1.7-2 

1.7.3  Environmental Test .......................................................................................... 1.7-3 

1.7.4  Power Supply ................................................................................................... 1.7-4 

1.7.5  Mechanical Test ............................................................................................... 1.7-4 

Page 63: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.7-2 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

The equipment satisfies the standards indicated below. When not specified, the standard is IEC-60255.

1.7.1 Insulation

Insulation Test (Dielectric Strength) IEC-60255-5 Between all circuit terminals and ground 2 kV, 50/60 Hz, for 1 min; or 2.5 kV, 50/60 Hz, for 1s Between all circuit terminals 2 kV, 50/60 Hz, for 1min;

or 2.5 kV, 50/60 Hz, for 1s Measurement of Insulation Resistance IEC-60255-5 Common mode R 100 M or 5A Differential mode R 100 k or 5mA Voltage Impulse Test IEC-60255-5 Common mode (Analog Inputs, DIs, AOs and PS) 5 kV; 1.2/50 s; 0.5 J Differential mode (AOs) 1 kV; 1.2/50 s Differential mode (Power Supply) 3 kV; 1.2/50 s

1.7.2 Electromagnetic Compatibility

1 MHz Burst Test IEC-60255-22-1 Class III Common mode 2.5kV Differential mode 2.5kV Oscillatory Waves Immunity Test IEC-61000-4-12 100 kHz and 1MHz Class III Common mode 2.5kV Differential mode 2.5kV Fast Transient Disturbance Test IEC-60255-22-4 Class IV (IEC 61000-4-4) 4 kV 10 % Radiated Electromagnetic Field Disturbance IEC 61000-4-3 Class III Amplitude modulated 10 V/m Pulse modulated 10 V/m Conducted Electromagnetic Field Disturbance IEC 61000-4-6 Class III Amplitude modulated 10 V Electrostatic Discharge IEC 60255-22-2 Class IV (IEC 61000-4-2) On contacts ±8 kV 10 % In air ±15 kV 10 %

Page 64: Feeder Multifunction Protection for MV Power Systems

1.7 Standards and Type Tests

BIRL1611F IRL: Overcurrent Multifunction Protection ZIV GRID AUTOMATION, S.L. Zamudio, 2016

1.7-3

Surge Immunity Test IEC-61000-4-5 (1.2/50s - 8/20s) Between conductors 4 kV Between conductors and ground 4 kV

Radiated Electromagnetic Field Disturbance IEC61000-4-8 at Industrial Frequency (50/60 Hz)

Radio Frequency Emissivity EN55022 (Radiated) EN55011 (Conducted)

1.7.3 Environmental Test

Temperature IEC 60068-2 Cold work IEC 60068-2-1 -5º C, 2 hours Cold work limit conditions IEC 60068-2-1 -10º C, 2 hours Dry heat IEC 60068-2-2 +45º C, 2 hours Dry heat limit conditions IEC 60068-2-2 +55º C, 2 hours Humid heat IEC 60068-2-78 +40º C, 93% relative humidity, 4 days Quick temperature changes IEC 60068-2-14 / IEC 61131-2

IED open, -25º C for 3h and +70º C for 3h (5 cycles)

Changes in humidity IEC 60068-2-30 / IEC 61131-2 +55º C for 12h and +25º C for 12h (6 cycles)

Endurance test +55º C for 1000 hours

Operating range From -40ºC to +85ºC (model with

Storage range From -40ºC to +85ºC (standard model)

Humidity 95 % (non-condensing)

Page 65: Feeder Multifunction Protection for MV Power Systems

Chapter 1. Description and Start-Up

1.7-4 BIRL1611F IRL: Overcurrent Multifunction Protection

ZIV GRID AUTOMATION, S.L. Zamudio, 2016

Environmental Test (55º, 99% humidity, 72 hours)

Time / Current Characteristic ANSI C37.60 Class II

1.7.4 Power Supply

Power Supply Interference and Ripple IEC 60255-11 < 20 % and 100 ms Inverse Polarity of the Power Supply IEC 61131-2 Resistance of Ground Connection IEC 61131-2 < 0.1 Gradual Stop / Start Test IEC 61131-2 (Test A) Surge Capacity IEC 60044-1

1.7.5 Mechanical Test

Vibration (sinusoidal) IEC-60255-21-1 a) Response: (Equipment running). Class II b) Endurance: (Equipment off). Class I Mechanical Shock and Bump Test IEC-60255-21-2 Class I External Protection Levels IEC-60529 / IEC 60068-2-75 Front IP54 Rear Protection IP20 IP10 in Analog Terminals Side IP30 Mechanical Protection IK07

The models comply with the EEC 89/336 standard of electromagnetic compatibility.

Page 66: Feeder Multifunction Protection for MV Power Systems

1.8 Schemes and Drawings

Dimension and Drill Hole Schemes 4U x 1/2 rack de 19” >>4BF0103/0001 External Connection Schemes IRL-F-1**0A0A >> 3RX0204/0001 IRL-F-1**AA0A >> 3RX0204/0002 IRL-F-1**BA0A >> 3RX0204/0003 IRL-F-1**0AAA >> 3RX0204/0004 IRL-F-1**AAAA >> 3RX0204/0005 IRL-F-1**BAAA >> 3RX0204/0006 IRL-F-1**0A0B >> 3RX0204/0007 IRL-F-1**AA0B >> 3RX0204/0008 IRL-F-1**BA0B >> 3RX0204/0009 IRL-F-1**0AAB >> 3RX0204/0010 IRL-F-1**AAAB >> 3RX0204/0011 IRL-F-1**BAAB >> 3RX0204/0012

Page 67: Feeder Multifunction Protection for MV Power Systems
Page 68: Feeder Multifunction Protection for MV Power Systems
Page 69: Feeder Multifunction Protection for MV Power Systems
Page 70: Feeder Multifunction Protection for MV Power Systems
Page 71: Feeder Multifunction Protection for MV Power Systems
Page 72: Feeder Multifunction Protection for MV Power Systems

Nombre /

NUM.:

Dibujado /

Aprobado /

PROYECTO /

TITULO:

Fecha /

Continua en Hoja:

Hoja /

Z I V Aplicaciones y Tecnologia

"ATENCION" "WARNING"El contenido del presente documento es propiedad de ZIV Aplicaciones y Tecnología, y no puede

The contents of this document belong to ZIV Aplicaciones y Tecnologia and may not beser reproducido ni copiado sin la expresa autorización escrita de ZIV Aplicaciones y Tecnología.

reproduced or copied without express written authorization from ZIV Aplicaciones y Tecnologia.

TITLE:PROJECT:

Drawn

Approved

Date Name Sheet:

Continued on sheet:

EXTERNAL CONNECTIONS IRL-F (AA0A)

AutoCAD SHX Text
SLOT A
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
A-OUT2
AutoCAD SHX Text
A22
AutoCAD SHX Text
A21
AutoCAD SHX Text
A-OUT1
AutoCAD SHX Text
A15
AutoCAD SHX Text
A16
AutoCAD SHX Text
A17
AutoCAD SHX Text
A18
AutoCAD SHX Text
A20
AutoCAD SHX Text
A19
AutoCAD SHX Text
A23
AutoCAD SHX Text
A-OUT5
AutoCAD SHX Text
A24
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
A-OUT4
AutoCAD SHX Text
A-OUT3
AutoCAD SHX Text
U
AutoCAD SHX Text
I
AutoCAD SHX Text
A1
AutoCAD SHX Text
+
AutoCAD SHX Text
A-IT1
AutoCAD SHX Text
CONV. DE ENTRADA
AutoCAD SHX Text
A2
AutoCAD SHX Text
(mA)
AutoCAD SHX Text
DE INTERRUPTOR
AutoCAD SHX Text
DE LAS ENTRADAS (A-IN5, A-IN6) PARA LA FUNCION DE VIGILANCIA DE BOBINAS
AutoCAD SHX Text
NOTA 2: LA BORNA A7 DEBERA CONECTARSE A POSITIVO SIEMPRE QUE SE USE ALGUNA
AutoCAD SHX Text
(NOTA 1)
AutoCAD SHX Text
(A-IN2, A-IN3) ARE BEING USED FOR THE BREAKER COIL SUPERVISION FUNCTION
AutoCAD SHX Text
NOTE 1: THE TERMINAL A3 SHOULD BE CONNECTED TO POSITIVE WHEN ANY OF THE INPUTS
AutoCAD SHX Text
INPUT TRANS.
AutoCAD SHX Text
(mA)
AutoCAD SHX Text
2
AutoCAD SHX Text
0
AutoCAD SHX Text
IRL
AutoCAD SHX Text
20/07/16
AutoCAD SHX Text
J.M.S.
AutoCAD SHX Text
CONEXIONES EXTERNAS IRL-F (AA0A)
AutoCAD SHX Text
3RX0204/0002
AutoCAD SHX Text
20/07/16
AutoCAD SHX Text
P.A.
AutoCAD SHX Text
-
AutoCAD SHX Text
Rev.
AutoCAD SHX Text
7
AutoCAD SHX Text
REV.
AutoCAD SHX Text
11
AutoCAD SHX Text
5
AutoCAD SHX Text
12
AutoCAD SHX Text
6
AutoCAD SHX Text
0
AutoCAD SHX Text
13
AutoCAD SHX Text
1
AutoCAD SHX Text
14
AutoCAD SHX Text
8
AutoCAD SHX Text
2
AutoCAD SHX Text
9
AutoCAD SHX Text
15
AutoCAD SHX Text
3
AutoCAD SHX Text
16
AutoCAD SHX Text
10
AutoCAD SHX Text
4
AutoCAD SHX Text
1
AutoCAD SHX Text
2
AutoCAD SHX Text
3
AutoCAD SHX Text
4
AutoCAD SHX Text
5
AutoCAD SHX Text
6
AutoCAD SHX Text
D
AutoCAD SHX Text
C
AutoCAD SHX Text
B
AutoCAD SHX Text
A
AutoCAD SHX Text
1
AutoCAD SHX Text
2
AutoCAD SHX Text
3
AutoCAD SHX Text
4
AutoCAD SHX Text
5
AutoCAD SHX Text
6
AutoCAD SHX Text
C
AutoCAD SHX Text
B
AutoCAD SHX Text
A
AutoCAD SHX Text
D
AutoCAD SHX Text
CD
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A-IN1
AutoCAD SHX Text
A-IN2
AutoCAD SHX Text
A-IN3
AutoCAD SHX Text
A-IN4
AutoCAD SHX Text
A-IN5
AutoCAD SHX Text
A-IN6
AutoCAD SHX Text
A3
AutoCAD SHX Text
A6
AutoCAD SHX Text
A4
AutoCAD SHX Text
A5
AutoCAD SHX Text
A7
AutoCAD SHX Text
A8
AutoCAD SHX Text
A9
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
+
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A10
AutoCAD SHX Text
A-IN7
AutoCAD SHX Text
A-IN8
AutoCAD SHX Text
A-IN9
AutoCAD SHX Text
A11
AutoCAD SHX Text
A12
AutoCAD SHX Text
A13
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A14
AutoCAD SHX Text
(NOTE 1)
AutoCAD SHX Text
(NOTA 2)
AutoCAD SHX Text
(NOTE 2)
AutoCAD SHX Text
DE INTERRUPTOR
AutoCAD SHX Text
DE LAS ENTRADAS (A-IN2, A-IN3) PARA LA FUNCION DE VIGILANCIA DE BOBINAS
AutoCAD SHX Text
NOTA 1: LA BORNA A3 DEBERA CONECTARSE A POSITIVO SIEMPRE QUE SE USE ALGUNA
AutoCAD SHX Text
(A-IN5, A-IN6) ARE BEING USED FOR THE BREAKER COIL SUPERVISION FUNCTION
AutoCAD SHX Text
NOTE 2: THE TERMINAL A7 SHOULD BE CONNECTED TO POSITIVE WHEN ANY OF THE INPUTS
Page 73: Feeder Multifunction Protection for MV Power Systems
Page 74: Feeder Multifunction Protection for MV Power Systems

Nombre /

NUM.:

Dibujado /

Aprobado /

PROYECTO /

TITULO:

Fecha /

Continua en Hoja:

Hoja /

Z I V Aplicaciones y Tecnologia

"ATENCION" "WARNING"El contenido del presente documento es propiedad de ZIV Aplicaciones y Tecnología, y no puede

The contents of this document belong to ZIV Aplicaciones y Tecnologia and may not beser reproducido ni copiado sin la expresa autorización escrita de ZIV Aplicaciones y Tecnología.

reproduced or copied without express written authorization from ZIV Aplicaciones y Tecnologia.

TITLE:PROJECT:

Drawn

Approved

Date Name Sheet:

Continued on sheet:

EXTERNAL CONNECTIONS IRL-F (BA0A)

AutoCAD SHX Text
SLOT A
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
A-OUT2
AutoCAD SHX Text
A22
AutoCAD SHX Text
A21
AutoCAD SHX Text
A-OUT1
AutoCAD SHX Text
A15
AutoCAD SHX Text
A16
AutoCAD SHX Text
A17
AutoCAD SHX Text
A18
AutoCAD SHX Text
A20
AutoCAD SHX Text
A19
AutoCAD SHX Text
A23
AutoCAD SHX Text
A-OUT5
AutoCAD SHX Text
A24
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
A-OUT4
AutoCAD SHX Text
A-OUT3
AutoCAD SHX Text
U
AutoCAD SHX Text
I
AutoCAD SHX Text
A1
AutoCAD SHX Text
+
AutoCAD SHX Text
A-IT1
AutoCAD SHX Text
CONV. DE ENTRADA
AutoCAD SHX Text
A2
AutoCAD SHX Text
(Vcc)
AutoCAD SHX Text
DE INTERRUPTOR
AutoCAD SHX Text
DE LAS ENTRADAS (A-IN5, A-IN6) PARA LA FUNCION DE VIGILANCIA DE BOBINAS
AutoCAD SHX Text
NOTA 2: LA BORNA A7 DEBERA CONECTARSE A POSITIVO SIEMPRE QUE SE USE ALGUNA
AutoCAD SHX Text
(NOTA 1)
AutoCAD SHX Text
(A-IN2, A-IN3) ARE BEING USED FOR THE BREAKER COIL SUPERVISION FUNCTION
AutoCAD SHX Text
NOTE 1: THE TERMINAL A3 SHOULD BE CONNECTED TO POSITIVE WHEN ANY OF THE INPUTS
AutoCAD SHX Text
INPUT TRANS.
AutoCAD SHX Text
(Vcc)
AutoCAD SHX Text
2
AutoCAD SHX Text
0
AutoCAD SHX Text
IRL
AutoCAD SHX Text
20/07/16
AutoCAD SHX Text
J.M.S.
AutoCAD SHX Text
CONEXIONES EXTERNAS IRL-F (BA0A)
AutoCAD SHX Text
3RX0204/0003
AutoCAD SHX Text
20/07/16
AutoCAD SHX Text
P.A.
AutoCAD SHX Text
-
AutoCAD SHX Text
Rev.
AutoCAD SHX Text
7
AutoCAD SHX Text
REV.
AutoCAD SHX Text
11
AutoCAD SHX Text
5
AutoCAD SHX Text
12
AutoCAD SHX Text
6
AutoCAD SHX Text
0
AutoCAD SHX Text
13
AutoCAD SHX Text
1
AutoCAD SHX Text
14
AutoCAD SHX Text
8
AutoCAD SHX Text
2
AutoCAD SHX Text
9
AutoCAD SHX Text
15
AutoCAD SHX Text
3
AutoCAD SHX Text
16
AutoCAD SHX Text
10
AutoCAD SHX Text
4
AutoCAD SHX Text
1
AutoCAD SHX Text
2
AutoCAD SHX Text
3
AutoCAD SHX Text
4
AutoCAD SHX Text
5
AutoCAD SHX Text
6
AutoCAD SHX Text
D
AutoCAD SHX Text
C
AutoCAD SHX Text
B
AutoCAD SHX Text
A
AutoCAD SHX Text
1
AutoCAD SHX Text
2
AutoCAD SHX Text
3
AutoCAD SHX Text
4
AutoCAD SHX Text
5
AutoCAD SHX Text
6
AutoCAD SHX Text
C
AutoCAD SHX Text
B
AutoCAD SHX Text
A
AutoCAD SHX Text
D
AutoCAD SHX Text
CD
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A-IN1
AutoCAD SHX Text
A-IN2
AutoCAD SHX Text
A-IN3
AutoCAD SHX Text
A-IN4
AutoCAD SHX Text
A-IN5
AutoCAD SHX Text
A-IN6
AutoCAD SHX Text
A3
AutoCAD SHX Text
A6
AutoCAD SHX Text
A4
AutoCAD SHX Text
A5
AutoCAD SHX Text
A7
AutoCAD SHX Text
A8
AutoCAD SHX Text
A9
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
+
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A10
AutoCAD SHX Text
A-IN7
AutoCAD SHX Text
A-IN8
AutoCAD SHX Text
A-IN9
AutoCAD SHX Text
A11
AutoCAD SHX Text
A12
AutoCAD SHX Text
A13
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A14
AutoCAD SHX Text
(NOTE 1)
AutoCAD SHX Text
(NOTA 2)
AutoCAD SHX Text
(NOTE 2)
AutoCAD SHX Text
DE INTERRUPTOR
AutoCAD SHX Text
DE LAS ENTRADAS (A-IN2, A-IN3) PARA LA FUNCION DE VIGILANCIA DE BOBINAS
AutoCAD SHX Text
NOTA 1: LA BORNA A3 DEBERA CONECTARSE A POSITIVO SIEMPRE QUE SE USE ALGUNA
AutoCAD SHX Text
(A-IN5, A-IN6) ARE BEING USED FOR THE BREAKER COIL SUPERVISION FUNCTION
AutoCAD SHX Text
NOTE 2: THE TERMINAL A7 SHOULD BE CONNECTED TO POSITIVE WHEN ANY OF THE INPUTS
Page 75: Feeder Multifunction Protection for MV Power Systems
Page 76: Feeder Multifunction Protection for MV Power Systems
Page 77: Feeder Multifunction Protection for MV Power Systems

Nombre /

NUM.:

Dibujado /

Aprobado /

PROYECTO /

TITULO:

Fecha /

Continua en Hoja:

Hoja /

Z I V Aplicaciones y Tecnologia

"ATENCION" "WARNING"El contenido del presente documento es propiedad de ZIV Aplicaciones y Tecnología, y no puede

The contents of this document belong to ZIV Aplicaciones y Tecnologia and may not beser reproducido ni copiado sin la expresa autorización escrita de ZIV Aplicaciones y Tecnología.

reproduced or copied without express written authorization from ZIV Aplicaciones y Tecnologia.

TITLE:PROJECT:

Drawn

Approved

Date Name Sheet:

Continued on sheet:

EXTERNAL CONNECTIONS IRL-F (AAAA)

AutoCAD SHX Text
SLOT A
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
A-OUT2
AutoCAD SHX Text
A22
AutoCAD SHX Text
A21
AutoCAD SHX Text
A-OUT1
AutoCAD SHX Text
A15
AutoCAD SHX Text
A16
AutoCAD SHX Text
A17
AutoCAD SHX Text
A18
AutoCAD SHX Text
A20
AutoCAD SHX Text
A19
AutoCAD SHX Text
A23
AutoCAD SHX Text
A-OUT5
AutoCAD SHX Text
A24
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
A-OUT4
AutoCAD SHX Text
A-OUT3
AutoCAD SHX Text
U
AutoCAD SHX Text
I
AutoCAD SHX Text
A1
AutoCAD SHX Text
+
AutoCAD SHX Text
A-IT1
AutoCAD SHX Text
CONV. DE ENTRADA
AutoCAD SHX Text
A2
AutoCAD SHX Text
(mA)
AutoCAD SHX Text
DE INTERRUPTOR
AutoCAD SHX Text
DE LAS ENTRADAS (A-IN5, A-IN6) PARA LA FUNCION DE VIGILANCIA DE BOBINAS
AutoCAD SHX Text
NOTA 2: LA BORNA A7 DEBERA CONECTARSE A POSITIVO SIEMPRE QUE SE USE ALGUNA
AutoCAD SHX Text
(NOTA 1)
AutoCAD SHX Text
(A-IN2, A-IN3) ARE BEING USED FOR THE BREAKER COIL SUPERVISION FUNCTION
AutoCAD SHX Text
NOTE 1: THE TERMINAL A3 SHOULD BE CONNECTED TO POSITIVE WHEN ANY OF THE INPUTS
AutoCAD SHX Text
INPUT TRANS.
AutoCAD SHX Text
(mA)
AutoCAD SHX Text
2
AutoCAD SHX Text
0
AutoCAD SHX Text
IRL
AutoCAD SHX Text
20/07/16
AutoCAD SHX Text
J.M.S.
AutoCAD SHX Text
CONEXIONES EXTERNAS IRL-F (AAAA)
AutoCAD SHX Text
3RX0204/0005
AutoCAD SHX Text
20/07/16
AutoCAD SHX Text
P.A.
AutoCAD SHX Text
-
AutoCAD SHX Text
Rev.
AutoCAD SHX Text
7
AutoCAD SHX Text
REV.
AutoCAD SHX Text
11
AutoCAD SHX Text
5
AutoCAD SHX Text
12
AutoCAD SHX Text
6
AutoCAD SHX Text
0
AutoCAD SHX Text
13
AutoCAD SHX Text
1
AutoCAD SHX Text
14
AutoCAD SHX Text
8
AutoCAD SHX Text
2
AutoCAD SHX Text
9
AutoCAD SHX Text
15
AutoCAD SHX Text
3
AutoCAD SHX Text
16
AutoCAD SHX Text
10
AutoCAD SHX Text
4
AutoCAD SHX Text
1
AutoCAD SHX Text
2
AutoCAD SHX Text
3
AutoCAD SHX Text
4
AutoCAD SHX Text
5
AutoCAD SHX Text
6
AutoCAD SHX Text
D
AutoCAD SHX Text
C
AutoCAD SHX Text
B
AutoCAD SHX Text
A
AutoCAD SHX Text
1
AutoCAD SHX Text
2
AutoCAD SHX Text
3
AutoCAD SHX Text
4
AutoCAD SHX Text
5
AutoCAD SHX Text
6
AutoCAD SHX Text
C
AutoCAD SHX Text
B
AutoCAD SHX Text
A
AutoCAD SHX Text
D
AutoCAD SHX Text
CD
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A-IN1
AutoCAD SHX Text
A-IN2
AutoCAD SHX Text
A-IN3
AutoCAD SHX Text
A-IN4
AutoCAD SHX Text
A-IN5
AutoCAD SHX Text
A-IN6
AutoCAD SHX Text
A3
AutoCAD SHX Text
A6
AutoCAD SHX Text
A4
AutoCAD SHX Text
A5
AutoCAD SHX Text
A7
AutoCAD SHX Text
A8
AutoCAD SHX Text
A9
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
+
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A10
AutoCAD SHX Text
A-IN7
AutoCAD SHX Text
A-IN8
AutoCAD SHX Text
A-IN9
AutoCAD SHX Text
A11
AutoCAD SHX Text
A12
AutoCAD SHX Text
A13
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A14
AutoCAD SHX Text
(NOTE 1)
AutoCAD SHX Text
(NOTA 2)
AutoCAD SHX Text
(NOTE 2)
AutoCAD SHX Text
DE INTERRUPTOR
AutoCAD SHX Text
DE LAS ENTRADAS (A-IN2, A-IN3) PARA LA FUNCION DE VIGILANCIA DE BOBINAS
AutoCAD SHX Text
NOTA 1: LA BORNA A3 DEBERA CONECTARSE A POSITIVO SIEMPRE QUE SE USE ALGUNA
AutoCAD SHX Text
(A-IN5, A-IN6) ARE BEING USED FOR THE BREAKER COIL SUPERVISION FUNCTION
AutoCAD SHX Text
NOTE 2: THE TERMINAL A7 SHOULD BE CONNECTED TO POSITIVE WHEN ANY OF THE INPUTS
Page 78: Feeder Multifunction Protection for MV Power Systems
Page 79: Feeder Multifunction Protection for MV Power Systems

Nombre /

NUM.:

Dibujado /

Aprobado /

PROYECTO /

TITULO:

Fecha /

Continua en Hoja:

Hoja /

Z I V Aplicaciones y Tecnologia

"ATENCION" "WARNING"El contenido del presente documento es propiedad de ZIV Aplicaciones y Tecnología, y no puede

The contents of this document belong to ZIV Aplicaciones y Tecnologia and may not beser reproducido ni copiado sin la expresa autorización escrita de ZIV Aplicaciones y Tecnología.

reproduced or copied without express written authorization from ZIV Aplicaciones y Tecnologia.

TITLE:PROJECT:

Drawn

Approved

Date Name Sheet:

Continued on sheet:

EXTERNAL CONNECTIONS IRL-F (BAAA)

AutoCAD SHX Text
SLOT A
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
A-OUT2
AutoCAD SHX Text
A22
AutoCAD SHX Text
A21
AutoCAD SHX Text
A-OUT1
AutoCAD SHX Text
A15
AutoCAD SHX Text
A16
AutoCAD SHX Text
A17
AutoCAD SHX Text
A18
AutoCAD SHX Text
A20
AutoCAD SHX Text
A19
AutoCAD SHX Text
A23
AutoCAD SHX Text
A-OUT5
AutoCAD SHX Text
A24
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
A-OUT4
AutoCAD SHX Text
A-OUT3
AutoCAD SHX Text
U
AutoCAD SHX Text
I
AutoCAD SHX Text
A1
AutoCAD SHX Text
+
AutoCAD SHX Text
A-IT1
AutoCAD SHX Text
CONV. DE ENTRADA
AutoCAD SHX Text
A2
AutoCAD SHX Text
(Vcc)
AutoCAD SHX Text
DE INTERRUPTOR
AutoCAD SHX Text
DE LAS ENTRADAS (A-IN5, A-IN6) PARA LA FUNCION DE VIGILANCIA DE BOBINAS
AutoCAD SHX Text
NOTA 2: LA BORNA A7 DEBERA CONECTARSE A POSITIVO SIEMPRE QUE SE USE ALGUNA
AutoCAD SHX Text
(NOTA 1)
AutoCAD SHX Text
(A-IN2, A-IN3) ARE BEING USED FOR THE BREAKER COIL SUPERVISION FUNCTION
AutoCAD SHX Text
NOTE 1: THE TERMINAL A3 SHOULD BE CONNECTED TO POSITIVE WHEN ANY OF THE INPUTS
AutoCAD SHX Text
INPUT TRANS.
AutoCAD SHX Text
(Vcc)
AutoCAD SHX Text
2
AutoCAD SHX Text
0
AutoCAD SHX Text
IRL
AutoCAD SHX Text
20/07/16
AutoCAD SHX Text
J.M.S.
AutoCAD SHX Text
CONEXIONES EXTERNAS IRL-F (BAAA)
AutoCAD SHX Text
3RX0204/0006
AutoCAD SHX Text
20/07/16
AutoCAD SHX Text
P.A.
AutoCAD SHX Text
-
AutoCAD SHX Text
Rev.
AutoCAD SHX Text
7
AutoCAD SHX Text
REV.
AutoCAD SHX Text
11
AutoCAD SHX Text
5
AutoCAD SHX Text
12
AutoCAD SHX Text
6
AutoCAD SHX Text
0
AutoCAD SHX Text
13
AutoCAD SHX Text
1
AutoCAD SHX Text
14
AutoCAD SHX Text
8
AutoCAD SHX Text
2
AutoCAD SHX Text
9
AutoCAD SHX Text
15
AutoCAD SHX Text
3
AutoCAD SHX Text
16
AutoCAD SHX Text
10
AutoCAD SHX Text
4
AutoCAD SHX Text
1
AutoCAD SHX Text
2
AutoCAD SHX Text
3
AutoCAD SHX Text
4
AutoCAD SHX Text
5
AutoCAD SHX Text
6
AutoCAD SHX Text
D
AutoCAD SHX Text
C
AutoCAD SHX Text
B
AutoCAD SHX Text
A
AutoCAD SHX Text
1
AutoCAD SHX Text
2
AutoCAD SHX Text
3
AutoCAD SHX Text
4
AutoCAD SHX Text
5
AutoCAD SHX Text
6
AutoCAD SHX Text
C
AutoCAD SHX Text
B
AutoCAD SHX Text
A
AutoCAD SHX Text
D
AutoCAD SHX Text
CD
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A-IN1
AutoCAD SHX Text
A-IN2
AutoCAD SHX Text
A-IN3
AutoCAD SHX Text
A-IN4
AutoCAD SHX Text
A-IN5
AutoCAD SHX Text
A-IN6
AutoCAD SHX Text
A3
AutoCAD SHX Text
A6
AutoCAD SHX Text
A4
AutoCAD SHX Text
A5
AutoCAD SHX Text
A7
AutoCAD SHX Text
A8
AutoCAD SHX Text
A9
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
+
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A10
AutoCAD SHX Text
A-IN7
AutoCAD SHX Text
A-IN8
AutoCAD SHX Text
A-IN9
AutoCAD SHX Text
A11
AutoCAD SHX Text
A12
AutoCAD SHX Text
A13
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A14
AutoCAD SHX Text
(NOTE 1)
AutoCAD SHX Text
(NOTA 2)
AutoCAD SHX Text
(NOTE 2)
AutoCAD SHX Text
DE INTERRUPTOR
AutoCAD SHX Text
DE LAS ENTRADAS (A-IN2, A-IN3) PARA LA FUNCION DE VIGILANCIA DE BOBINAS
AutoCAD SHX Text
NOTA 1: LA BORNA A3 DEBERA CONECTARSE A POSITIVO SIEMPRE QUE SE USE ALGUNA
AutoCAD SHX Text
(A-IN5, A-IN6) ARE BEING USED FOR THE BREAKER COIL SUPERVISION FUNCTION
AutoCAD SHX Text
NOTE 2: THE TERMINAL A7 SHOULD BE CONNECTED TO POSITIVE WHEN ANY OF THE INPUTS
Page 80: Feeder Multifunction Protection for MV Power Systems
Page 81: Feeder Multifunction Protection for MV Power Systems
Page 82: Feeder Multifunction Protection for MV Power Systems

Nombre /

NUM.:

Dibujado /

Aprobado /

PROYECTO /

TITULO:

Fecha /

Continua en Hoja:

Hoja /

Z I V Aplicaciones y Tecnologia

"ATENCION" "WARNING"El contenido del presente documento es propiedad de ZIV Aplicaciones y Tecnología, y no puede

The contents of this document belong to ZIV Aplicaciones y Tecnologia and may not beser reproducido ni copiado sin la expresa autorización escrita de ZIV Aplicaciones y Tecnología.

reproduced or copied without express written authorization from ZIV Aplicaciones y Tecnologia.

TITLE:PROJECT:

Drawn

Approved

Date Name Sheet:

Continued on sheet:

EXTERNAL CONNECTIONS IRL-F (AA0B)

AutoCAD SHX Text
SLOT A
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
A-OUT2
AutoCAD SHX Text
A22
AutoCAD SHX Text
A21
AutoCAD SHX Text
A-OUT1
AutoCAD SHX Text
A15
AutoCAD SHX Text
A16
AutoCAD SHX Text
A17
AutoCAD SHX Text
A18
AutoCAD SHX Text
A20
AutoCAD SHX Text
A19
AutoCAD SHX Text
A23
AutoCAD SHX Text
A-OUT5
AutoCAD SHX Text
A24
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
A-OUT4
AutoCAD SHX Text
A-OUT3
AutoCAD SHX Text
U
AutoCAD SHX Text
I
AutoCAD SHX Text
A1
AutoCAD SHX Text
+
AutoCAD SHX Text
A-IT1
AutoCAD SHX Text
CONV. DE ENTRADA
AutoCAD SHX Text
A2
AutoCAD SHX Text
(mA)
AutoCAD SHX Text
DE INTERRUPTOR
AutoCAD SHX Text
DE LAS ENTRADAS (A-IN5, A-IN6) PARA LA FUNCION DE VIGILANCIA DE BOBINAS
AutoCAD SHX Text
NOTA 2: LA BORNA A7 DEBERA CONECTARSE A POSITIVO SIEMPRE QUE SE USE ALGUNA
AutoCAD SHX Text
(NOTA 1)
AutoCAD SHX Text
(A-IN2, A-IN3) ARE BEING USED FOR THE BREAKER COIL SUPERVISION FUNCTION
AutoCAD SHX Text
NOTE 1: THE TERMINAL A3 SHOULD BE CONNECTED TO POSITIVE WHEN ANY OF THE INPUTS
AutoCAD SHX Text
INPUT TRANS.
AutoCAD SHX Text
(mA)
AutoCAD SHX Text
2
AutoCAD SHX Text
0
AutoCAD SHX Text
IRL
AutoCAD SHX Text
20/07/16
AutoCAD SHX Text
J.M.S.
AutoCAD SHX Text
CONEXIONES EXTERNAS IRL-F (AA0B)
AutoCAD SHX Text
3RX0204/0008
AutoCAD SHX Text
20/07/16
AutoCAD SHX Text
P.A.
AutoCAD SHX Text
-
AutoCAD SHX Text
Rev.
AutoCAD SHX Text
7
AutoCAD SHX Text
REV.
AutoCAD SHX Text
11
AutoCAD SHX Text
5
AutoCAD SHX Text
12
AutoCAD SHX Text
6
AutoCAD SHX Text
0
AutoCAD SHX Text
13
AutoCAD SHX Text
1
AutoCAD SHX Text
14
AutoCAD SHX Text
8
AutoCAD SHX Text
2
AutoCAD SHX Text
9
AutoCAD SHX Text
15
AutoCAD SHX Text
3
AutoCAD SHX Text
16
AutoCAD SHX Text
10
AutoCAD SHX Text
4
AutoCAD SHX Text
1
AutoCAD SHX Text
2
AutoCAD SHX Text
3
AutoCAD SHX Text
4
AutoCAD SHX Text
5
AutoCAD SHX Text
6
AutoCAD SHX Text
D
AutoCAD SHX Text
C
AutoCAD SHX Text
B
AutoCAD SHX Text
A
AutoCAD SHX Text
1
AutoCAD SHX Text
2
AutoCAD SHX Text
3
AutoCAD SHX Text
4
AutoCAD SHX Text
5
AutoCAD SHX Text
6
AutoCAD SHX Text
C
AutoCAD SHX Text
B
AutoCAD SHX Text
A
AutoCAD SHX Text
D
AutoCAD SHX Text
CD
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A-IN1
AutoCAD SHX Text
A-IN2
AutoCAD SHX Text
A-IN3
AutoCAD SHX Text
A-IN4
AutoCAD SHX Text
A-IN5
AutoCAD SHX Text
A-IN6
AutoCAD SHX Text
A3
AutoCAD SHX Text
A6
AutoCAD SHX Text
A4
AutoCAD SHX Text
A5
AutoCAD SHX Text
A7
AutoCAD SHX Text
A8
AutoCAD SHX Text
A9
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
+
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A10
AutoCAD SHX Text
A-IN7
AutoCAD SHX Text
A-IN8
AutoCAD SHX Text
A-IN9
AutoCAD SHX Text
A11
AutoCAD SHX Text
A12
AutoCAD SHX Text
A13
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A14
AutoCAD SHX Text
(NOTE 1)
AutoCAD SHX Text
(NOTA 2)
AutoCAD SHX Text
(NOTE 2)
AutoCAD SHX Text
DE INTERRUPTOR
AutoCAD SHX Text
DE LAS ENTRADAS (A-IN2, A-IN3) PARA LA FUNCION DE VIGILANCIA DE BOBINAS
AutoCAD SHX Text
NOTA 1: LA BORNA A3 DEBERA CONECTARSE A POSITIVO SIEMPRE QUE SE USE ALGUNA
AutoCAD SHX Text
(A-IN5, A-IN6) ARE BEING USED FOR THE BREAKER COIL SUPERVISION FUNCTION
AutoCAD SHX Text
NOTE 2: THE TERMINAL A7 SHOULD BE CONNECTED TO POSITIVE WHEN ANY OF THE INPUTS
Page 83: Feeder Multifunction Protection for MV Power Systems
Page 84: Feeder Multifunction Protection for MV Power Systems

Nombre /

NUM.:

Dibujado /

Aprobado /

PROYECTO /

TITULO:

Fecha /

Continua en Hoja:

Hoja /

Z I V Aplicaciones y Tecnologia

"ATENCION" "WARNING"El contenido del presente documento es propiedad de ZIV Aplicaciones y Tecnología, y no puede

The contents of this document belong to ZIV Aplicaciones y Tecnologia and may not beser reproducido ni copiado sin la expresa autorización escrita de ZIV Aplicaciones y Tecnología.

reproduced or copied without express written authorization from ZIV Aplicaciones y Tecnologia.

TITLE:PROJECT:

Drawn

Approved

Date Name Sheet:

Continued on sheet:

EXTERNAL CONNECTIONS IRL-F (BA0B)

AutoCAD SHX Text
SLOT A
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
A-OUT2
AutoCAD SHX Text
A22
AutoCAD SHX Text
A21
AutoCAD SHX Text
A-OUT1
AutoCAD SHX Text
A15
AutoCAD SHX Text
A16
AutoCAD SHX Text
A17
AutoCAD SHX Text
A18
AutoCAD SHX Text
A20
AutoCAD SHX Text
A19
AutoCAD SHX Text
A23
AutoCAD SHX Text
A-OUT5
AutoCAD SHX Text
A24
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
A-OUT4
AutoCAD SHX Text
A-OUT3
AutoCAD SHX Text
U
AutoCAD SHX Text
I
AutoCAD SHX Text
A1
AutoCAD SHX Text
+
AutoCAD SHX Text
A-IT1
AutoCAD SHX Text
CONV. DE ENTRADA
AutoCAD SHX Text
A2
AutoCAD SHX Text
(Vcc)
AutoCAD SHX Text
DE INTERRUPTOR
AutoCAD SHX Text
DE LAS ENTRADAS (A-IN5, A-IN6) PARA LA FUNCION DE VIGILANCIA DE BOBINAS
AutoCAD SHX Text
NOTA 2: LA BORNA A7 DEBERA CONECTARSE A POSITIVO SIEMPRE QUE SE USE ALGUNA
AutoCAD SHX Text
(NOTA 1)
AutoCAD SHX Text
(A-IN2, A-IN3) ARE BEING USED FOR THE BREAKER COIL SUPERVISION FUNCTION
AutoCAD SHX Text
NOTE 1: THE TERMINAL A3 SHOULD BE CONNECTED TO POSITIVE WHEN ANY OF THE INPUTS
AutoCAD SHX Text
INPUT TRANS.
AutoCAD SHX Text
(Vcc)
AutoCAD SHX Text
2
AutoCAD SHX Text
0
AutoCAD SHX Text
IRL
AutoCAD SHX Text
20/07/16
AutoCAD SHX Text
J.M.S.
AutoCAD SHX Text
CONEXIONES EXTERNAS IRL-F (BA0B)
AutoCAD SHX Text
3RX0204/0009
AutoCAD SHX Text
20/07/16
AutoCAD SHX Text
P.A.
AutoCAD SHX Text
-
AutoCAD SHX Text
Rev.
AutoCAD SHX Text
7
AutoCAD SHX Text
REV.
AutoCAD SHX Text
11
AutoCAD SHX Text
5
AutoCAD SHX Text
12
AutoCAD SHX Text
6
AutoCAD SHX Text
0
AutoCAD SHX Text
13
AutoCAD SHX Text
1
AutoCAD SHX Text
14
AutoCAD SHX Text
8
AutoCAD SHX Text
2
AutoCAD SHX Text
9
AutoCAD SHX Text
15
AutoCAD SHX Text
3
AutoCAD SHX Text
16
AutoCAD SHX Text
10
AutoCAD SHX Text
4
AutoCAD SHX Text
1
AutoCAD SHX Text
2
AutoCAD SHX Text
3
AutoCAD SHX Text
4
AutoCAD SHX Text
5
AutoCAD SHX Text
6
AutoCAD SHX Text
D
AutoCAD SHX Text
C
AutoCAD SHX Text
B
AutoCAD SHX Text
A
AutoCAD SHX Text
1
AutoCAD SHX Text
2
AutoCAD SHX Text
3
AutoCAD SHX Text
4
AutoCAD SHX Text
5
AutoCAD SHX Text
6
AutoCAD SHX Text
C
AutoCAD SHX Text
B
AutoCAD SHX Text
A
AutoCAD SHX Text
D
AutoCAD SHX Text
CD
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A-IN1
AutoCAD SHX Text
A-IN2
AutoCAD SHX Text
A-IN3
AutoCAD SHX Text
A-IN4
AutoCAD SHX Text
A-IN5
AutoCAD SHX Text
A-IN6
AutoCAD SHX Text
A3
AutoCAD SHX Text
A6
AutoCAD SHX Text
A4
AutoCAD SHX Text
A5
AutoCAD SHX Text
A7
AutoCAD SHX Text
A8
AutoCAD SHX Text
A9
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
+
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A10
AutoCAD SHX Text
A-IN7
AutoCAD SHX Text
A-IN8
AutoCAD SHX Text
A-IN9
AutoCAD SHX Text
A11
AutoCAD SHX Text
A12
AutoCAD SHX Text
A13
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A14
AutoCAD SHX Text
(NOTE 1)
AutoCAD SHX Text
(NOTA 2)
AutoCAD SHX Text
(NOTE 2)
AutoCAD SHX Text
DE INTERRUPTOR
AutoCAD SHX Text
DE LAS ENTRADAS (A-IN2, A-IN3) PARA LA FUNCION DE VIGILANCIA DE BOBINAS
AutoCAD SHX Text
NOTA 1: LA BORNA A3 DEBERA CONECTARSE A POSITIVO SIEMPRE QUE SE USE ALGUNA
AutoCAD SHX Text
(A-IN5, A-IN6) ARE BEING USED FOR THE BREAKER COIL SUPERVISION FUNCTION
AutoCAD SHX Text
NOTE 2: THE TERMINAL A7 SHOULD BE CONNECTED TO POSITIVE WHEN ANY OF THE INPUTS
Page 85: Feeder Multifunction Protection for MV Power Systems
Page 86: Feeder Multifunction Protection for MV Power Systems
Page 87: Feeder Multifunction Protection for MV Power Systems

Nombre /

NUM.:

Dibujado /

Aprobado /

PROYECTO /

TITULO:

Fecha /

Continua en Hoja:

Hoja /

Z I V Aplicaciones y Tecnologia

"ATENCION" "WARNING"El contenido del presente documento es propiedad de ZIV Aplicaciones y Tecnología, y no puede

The contents of this document belong to ZIV Aplicaciones y Tecnologia and may not beser reproducido ni copiado sin la expresa autorización escrita de ZIV Aplicaciones y Tecnología.

reproduced or copied without express written authorization from ZIV Aplicaciones y Tecnologia.

TITLE:PROJECT:

Drawn

Approved

Date Name Sheet:

Continued on sheet:

EXTERNAL CONNECTIONS IRL-F (AAAB)

AutoCAD SHX Text
SLOT A
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
A-OUT2
AutoCAD SHX Text
A22
AutoCAD SHX Text
A21
AutoCAD SHX Text
A-OUT1
AutoCAD SHX Text
A15
AutoCAD SHX Text
A16
AutoCAD SHX Text
A17
AutoCAD SHX Text
A18
AutoCAD SHX Text
A20
AutoCAD SHX Text
A19
AutoCAD SHX Text
A23
AutoCAD SHX Text
A-OUT5
AutoCAD SHX Text
A24
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
A-OUT4
AutoCAD SHX Text
A-OUT3
AutoCAD SHX Text
U
AutoCAD SHX Text
I
AutoCAD SHX Text
A1
AutoCAD SHX Text
+
AutoCAD SHX Text
A-IT1
AutoCAD SHX Text
CONV. DE ENTRADA
AutoCAD SHX Text
A2
AutoCAD SHX Text
(mA)
AutoCAD SHX Text
DE INTERRUPTOR
AutoCAD SHX Text
DE LAS ENTRADAS (A-IN5, A-IN6) PARA LA FUNCION DE VIGILANCIA DE BOBINAS
AutoCAD SHX Text
NOTA 2: LA BORNA A7 DEBERA CONECTARSE A POSITIVO SIEMPRE QUE SE USE ALGUNA
AutoCAD SHX Text
(NOTA 1)
AutoCAD SHX Text
(A-IN2, A-IN3) ARE BEING USED FOR THE BREAKER COIL SUPERVISION FUNCTION
AutoCAD SHX Text
NOTE 1: THE TERMINAL A3 SHOULD BE CONNECTED TO POSITIVE WHEN ANY OF THE INPUTS
AutoCAD SHX Text
INPUT TRANS.
AutoCAD SHX Text
(mA)
AutoCAD SHX Text
2
AutoCAD SHX Text
0
AutoCAD SHX Text
IRL
AutoCAD SHX Text
20/07/16
AutoCAD SHX Text
J.M.S.
AutoCAD SHX Text
CONEXIONES EXTERNAS IRL-F (AAAB)
AutoCAD SHX Text
3RX0204/0011
AutoCAD SHX Text
20/07/16
AutoCAD SHX Text
P.A.
AutoCAD SHX Text
-
AutoCAD SHX Text
Rev.
AutoCAD SHX Text
7
AutoCAD SHX Text
REV.
AutoCAD SHX Text
11
AutoCAD SHX Text
5
AutoCAD SHX Text
12
AutoCAD SHX Text
6
AutoCAD SHX Text
0
AutoCAD SHX Text
13
AutoCAD SHX Text
1
AutoCAD SHX Text
14
AutoCAD SHX Text
8
AutoCAD SHX Text
2
AutoCAD SHX Text
9
AutoCAD SHX Text
15
AutoCAD SHX Text
3
AutoCAD SHX Text
16
AutoCAD SHX Text
10
AutoCAD SHX Text
4
AutoCAD SHX Text
1
AutoCAD SHX Text
2
AutoCAD SHX Text
3
AutoCAD SHX Text
4
AutoCAD SHX Text
5
AutoCAD SHX Text
6
AutoCAD SHX Text
D
AutoCAD SHX Text
C
AutoCAD SHX Text
B
AutoCAD SHX Text
A
AutoCAD SHX Text
1
AutoCAD SHX Text
2
AutoCAD SHX Text
3
AutoCAD SHX Text
4
AutoCAD SHX Text
5
AutoCAD SHX Text
6
AutoCAD SHX Text
C
AutoCAD SHX Text
B
AutoCAD SHX Text
A
AutoCAD SHX Text
D
AutoCAD SHX Text
CD
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A-IN1
AutoCAD SHX Text
A-IN2
AutoCAD SHX Text
A-IN3
AutoCAD SHX Text
A-IN4
AutoCAD SHX Text
A-IN5
AutoCAD SHX Text
A-IN6
AutoCAD SHX Text
A3
AutoCAD SHX Text
A6
AutoCAD SHX Text
A4
AutoCAD SHX Text
A5
AutoCAD SHX Text
A7
AutoCAD SHX Text
A8
AutoCAD SHX Text
A9
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
+
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A10
AutoCAD SHX Text
A-IN7
AutoCAD SHX Text
A-IN8
AutoCAD SHX Text
A-IN9
AutoCAD SHX Text
A11
AutoCAD SHX Text
A12
AutoCAD SHX Text
A13
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A14
AutoCAD SHX Text
(NOTE 1)
AutoCAD SHX Text
(NOTA 2)
AutoCAD SHX Text
(NOTE 2)
AutoCAD SHX Text
DE INTERRUPTOR
AutoCAD SHX Text
DE LAS ENTRADAS (A-IN2, A-IN3) PARA LA FUNCION DE VIGILANCIA DE BOBINAS
AutoCAD SHX Text
NOTA 1: LA BORNA A3 DEBERA CONECTARSE A POSITIVO SIEMPRE QUE SE USE ALGUNA
AutoCAD SHX Text
(A-IN5, A-IN6) ARE BEING USED FOR THE BREAKER COIL SUPERVISION FUNCTION
AutoCAD SHX Text
NOTE 2: THE TERMINAL A7 SHOULD BE CONNECTED TO POSITIVE WHEN ANY OF THE INPUTS
Page 88: Feeder Multifunction Protection for MV Power Systems
Page 89: Feeder Multifunction Protection for MV Power Systems

Nombre /

NUM.:

Dibujado /

Aprobado /

PROYECTO /

TITULO:

Fecha /

Continua en Hoja:

Hoja /

Z I V Aplicaciones y Tecnologia

"ATENCION" "WARNING"El contenido del presente documento es propiedad de ZIV Aplicaciones y Tecnología, y no puede

The contents of this document belong to ZIV Aplicaciones y Tecnologia and may not beser reproducido ni copiado sin la expresa autorización escrita de ZIV Aplicaciones y Tecnología.

reproduced or copied without express written authorization from ZIV Aplicaciones y Tecnologia.

TITLE:PROJECT:

Drawn

Approved

Date Name Sheet:

Continued on sheet:

EXTERNAL CONNECTIONS IRL-F (BAAB)

AutoCAD SHX Text
SLOT A
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
A-OUT2
AutoCAD SHX Text
A22
AutoCAD SHX Text
A21
AutoCAD SHX Text
A-OUT1
AutoCAD SHX Text
A15
AutoCAD SHX Text
A16
AutoCAD SHX Text
A17
AutoCAD SHX Text
A18
AutoCAD SHX Text
A20
AutoCAD SHX Text
A19
AutoCAD SHX Text
A23
AutoCAD SHX Text
A-OUT5
AutoCAD SHX Text
A24
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
A-OUT4
AutoCAD SHX Text
A-OUT3
AutoCAD SHX Text
U
AutoCAD SHX Text
I
AutoCAD SHX Text
A1
AutoCAD SHX Text
+
AutoCAD SHX Text
A-IT1
AutoCAD SHX Text
CONV. DE ENTRADA
AutoCAD SHX Text
A2
AutoCAD SHX Text
(Vcc)
AutoCAD SHX Text
DE INTERRUPTOR
AutoCAD SHX Text
DE LAS ENTRADAS (A-IN5, A-IN6) PARA LA FUNCION DE VIGILANCIA DE BOBINAS
AutoCAD SHX Text
NOTA 2: LA BORNA A7 DEBERA CONECTARSE A POSITIVO SIEMPRE QUE SE USE ALGUNA
AutoCAD SHX Text
(NOTA 1)
AutoCAD SHX Text
(A-IN2, A-IN3) ARE BEING USED FOR THE BREAKER COIL SUPERVISION FUNCTION
AutoCAD SHX Text
NOTE 1: THE TERMINAL A3 SHOULD BE CONNECTED TO POSITIVE WHEN ANY OF THE INPUTS
AutoCAD SHX Text
INPUT TRANS.
AutoCAD SHX Text
(Vcc)
AutoCAD SHX Text
2
AutoCAD SHX Text
0
AutoCAD SHX Text
IRL
AutoCAD SHX Text
20/07/16
AutoCAD SHX Text
J.M.S.
AutoCAD SHX Text
CONEXIONES EXTERNAS IRL-F (BAAB)
AutoCAD SHX Text
3RX0201/0012
AutoCAD SHX Text
20/07/16
AutoCAD SHX Text
P.A.
AutoCAD SHX Text
-
AutoCAD SHX Text
Rev.
AutoCAD SHX Text
7
AutoCAD SHX Text
REV.
AutoCAD SHX Text
11
AutoCAD SHX Text
5
AutoCAD SHX Text
12
AutoCAD SHX Text
6
AutoCAD SHX Text
0
AutoCAD SHX Text
13
AutoCAD SHX Text
1
AutoCAD SHX Text
14
AutoCAD SHX Text
8
AutoCAD SHX Text
2
AutoCAD SHX Text
9
AutoCAD SHX Text
15
AutoCAD SHX Text
3
AutoCAD SHX Text
16
AutoCAD SHX Text
10
AutoCAD SHX Text
4
AutoCAD SHX Text
1
AutoCAD SHX Text
2
AutoCAD SHX Text
3
AutoCAD SHX Text
4
AutoCAD SHX Text
5
AutoCAD SHX Text
6
AutoCAD SHX Text
D
AutoCAD SHX Text
C
AutoCAD SHX Text
B
AutoCAD SHX Text
A
AutoCAD SHX Text
1
AutoCAD SHX Text
2
AutoCAD SHX Text
3
AutoCAD SHX Text
4
AutoCAD SHX Text
5
AutoCAD SHX Text
6
AutoCAD SHX Text
C
AutoCAD SHX Text
B
AutoCAD SHX Text
A
AutoCAD SHX Text
D
AutoCAD SHX Text
CD
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A-IN1
AutoCAD SHX Text
A-IN2
AutoCAD SHX Text
A-IN3
AutoCAD SHX Text
A-IN4
AutoCAD SHX Text
A-IN5
AutoCAD SHX Text
A-IN6
AutoCAD SHX Text
A3
AutoCAD SHX Text
A6
AutoCAD SHX Text
A4
AutoCAD SHX Text
A5
AutoCAD SHX Text
A7
AutoCAD SHX Text
A8
AutoCAD SHX Text
A9
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
+
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A10
AutoCAD SHX Text
A-IN7
AutoCAD SHX Text
A-IN8
AutoCAD SHX Text
A-IN9
AutoCAD SHX Text
A11
AutoCAD SHX Text
A12
AutoCAD SHX Text
A13
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
+
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
CONFIGURABLE
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
dc
AutoCAD SHX Text
A14
AutoCAD SHX Text
(NOTE 1)
AutoCAD SHX Text
(NOTA 2)
AutoCAD SHX Text
(NOTE 2)
AutoCAD SHX Text
DE INTERRUPTOR
AutoCAD SHX Text
DE LAS ENTRADAS (A-IN2, A-IN3) PARA LA FUNCION DE VIGILANCIA DE BOBINAS
AutoCAD SHX Text
NOTA 1: LA BORNA A3 DEBERA CONECTARSE A POSITIVO SIEMPRE QUE SE USE ALGUNA
AutoCAD SHX Text
(A-IN5, A-IN6) ARE BEING USED FOR THE BREAKER COIL SUPERVISION FUNCTION
AutoCAD SHX Text
NOTE 2: THE TERMINAL A7 SHOULD BE CONNECTED TO POSITIVE WHEN ANY OF THE INPUTS
Page 90: Feeder Multifunction Protection for MV Power Systems

Warranty

Page 91: Feeder Multifunction Protection for MV Power Systems

ZIV GRID AUTOMATION, S.L. Standard Product Warranty

All new products sold to customers are warranted against defects in design, materials, and workmanship for a period of ten (10) years from the time of delivery (at the moment the product leaves ZIV GRID AUTOMATION premises, as indicated in the shipping documents). Customer is responsible of notifying ZIV GRID AUTOMATION of any faulty conditions as soon as they are detected. If it is determined that the new product defect is covered by the warranty, ZIV GRID AUTOMATION will repair, or substitute the product at its own discretion to the customer at no charge. ZIV GRID AUTOMATION may, at its own discretion, require the customer to ship the unit back to the factory for diagnosis before making a determination as to whether it is covered by this warranty. Shipping costs to the ZIV GRID AUTOMATION factory (including but not limited to, freight, insurance, customs fees and taxes, and any other expenses) will be the responsibility of the customer. All expenses related to the shipment of the repaired or replacement units back to the customer will be borne by ZIV GRID AUTOMATION. Customers are responsible for all expenses related to the shipment of defective units back to ZIV GRID AUTOMATION when it is determined that such units are not covered under this warranty or that the fault is not ZIV GRID AUTOMATION´s responsibility. Units repaired by ZIV GRID AUTOMATION are warranted against defects in materials, and manufacturing for a period of one (1) year from the time of delivery (at the moment the product leaves ZIV GRID AUTOMATION premises, as indicated by the shipping documents), or for the remaining of the original warranty, whichever is greater. ZIV GRID AUTOMATION warranty does not cover: 1) improper installation, connection, operation, maintenance, and/or storage, 2) minor defects not interfering with the operation of the product, possible indemnities, misuse or improper usage, 3) abnormal or unusual operating conditions or application outside the specifications for the product, 4) application in any way different from that for which the products were designed, 5) repairs or alterations performed by individuals other than ZIV GRID AUTOMATION employees or an authorised representative. Limitations:

1) Equipment or products provided but not manufactured by ZIV GRID AUTOMATION. Such products may be covered by a warranty issued by the corresponding manufacturer.

2) Software: ZIV GRID AUTOMATION warrants that the licensed Software corresponds with the specifications included in the instruction manuals provided with the units, or with the specifications agreed with the end-customer. ZIV GRID AUTOMATION sole and entire liability, and customer exclusive remedy, with respect to any claims relating to the Software shall be to provide a new set of diskettes free of charge.

3) In the case that a bank guarantee or similar instrument be required to back up the warranty period, such warranty period, and only for these purposes, will be of a maximum of twelve (12) months from the time of delivery (at the moment the product leaves ZIV GRID AUTOMATION premises, as indicated in the shipping documents).

THIS WARRANTY IS IN LIEU OF ANY OTHER WARRANTIES AND ZIV GRID AUTOMATION HEREBY DISCLAIMS ANY OTHER WARRANTY, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL ZIV GRID AUTOMATION BE LIABLE FOR ANY INDIRECT, INCIDENTAL, CONSEQUENTIAL, OR SPECIAL DAMAGES OR FOR ANY OTHER LOSS, INJURY, DAMAGE, OR EXPENSE OF ANY KIND INCLUDING LOST PROFITS OR ANY OTHER PECUNIARY LOSS ARISING FROM ANY SOURCE.

ZIV GRID AUTOMATION, S.L. Parque Tecnológico, 210

48170 Zamudio - Bizkaia - Spain Tel.- (+34)-(94) 452.20.03 Fax - (+34)-(94) 452.21.40

Page 92: Feeder Multifunction Protection for MV Power Systems

License agreement for Software Embedded in Equipment

ZIV APLICACIONES Y TECNOLOGÍA, S.L. End-User Software License Agreement

THE EQUIPMENT YOU HAVE PURCHASED INCLUDES EMBEDDED SOFTWARE PROGRAM(S). THE PROGRAM IS COPYRIGHTED AND IS BEING LICENSED TO YOU (NOT SOLD) FOR USE WITH THE EQUIPMENT. THIS IS A LEGAL AGREEMENT BETWEEN US (AS “LICENSEE) AND ZIV APLICACIONES Y TECNOLOGÍA, S.L. (AS “LICENSOR”) FOR THE SOFTWARE PROGRAM INCLUDED WITH THE EQUIPMENT. PLEASE READ THE TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT CAREFULLY BEFORE USING THE EQUIPMENT. IF YOU INSTALL OR USE THE EQUIPMENT, YOU ARE ACCEPTING AND AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT. IF YOU ARE NOT WILLING TO BE BOUND BY THE TERMS OF THIS LICENSE AGREEMENT, YOU SHOULD PROMPTLY RETURN THE EQUIPMENT UNUSED TO YOUR SELLER, AND YOU WILL RECEIVE A REFUND OF YOUR MONEY.

Terms and Conditions of License 1. License Grant. Licensor hereby grants to you, and your accept, a nonexclusive and non-

transferable license to use the embedded programs and the accompanying documentation, if any (collectively referred to as the “Software”), only as authorized in this License Agreement.

2. Restrictions. You may not (a) use, copy, modify or transfer the Software except as expressly provided in this or another Agreement with Licensor, (b) reverse engineer, decompile or disassemble or separate the components of the Software, or (c) rent, sell or lease the Software or make the Software available to others to do any of the foregoing.

3. No Assignment. This License is intended for your exclusive use with the purchased equipment. You agree that you will not assign, sublicense, transfer, pledge, lease, rent or share your rights under this License Agreement.

4. Licensor’s Rights. You acknowledge and agree that the Software is the proprietary product of Licensor protected under U.S. copyright law and international treaties.. You further acknowledge and agree that all right, title and interest in and to the Software, including associated intellectual property rights, are and shall remain with Licensor. This License Agreement does not convey to you an ownership interest in or to the Software, but only a limited right of use revocable in accordance with the terms of this License Agreement.

5. Confidentiality. The Software is confidential and no details or information relating to the same shall be disclosed to any third party without the prior written consent of Licensor. For the purposes of this clause, sub-contract staff, employed or retained by the Licensee to perform computer systems development work, shall not be deemed to be third parties provided such staff are subject to the disclosure restrictions set forth above. In no event, except with a prior written authorization duly signed by an officer of Licensor, may you disclose any such confidential information, even for subcontracted jobs, to persons or entities that may be considered to be direct competitors of Licensor.

Page 93: Feeder Multifunction Protection for MV Power Systems

6. Term. The License Agreement is effective upon delivery of the equipment to you and shall

continue until terminated. You may terminate this License Agreement at any time by returning the equipment to Licensor, or by destroying the equipment. Licensor may terminate this License Agreement upon your breach of any term hereof. Upon such termination by Licensor, you agree to return the equipment to Licensor.

7. Warranty and Disclaimer. Licensor warrants, for your benefit only, that the Software, when and as delivered to you, will conform to the specifications described in the instruction manuals for the equipment purchased, or any specifications agreed to in writing by Licensor with a particular customer. This warranty does not cover any minor errors or deviations from the specifications that do not affect the proper functioning of the equipment. EXCEPT FOR THE WARRANTIES SET FORTH ABOVE, THE SOFTWARE IS LICENSED “AS IS”, AND LICENSOR DISCLAIMS ANY AND ALL OTHER WARRANTIES, WHETHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

8. Licensee’s Remedy. You sole and exclusive remedy for any breach of Licensor’s warranty shall be the repair or replacement, at Licensor’s sole option, of any Software that does not conform to stated specifications. Licensor shall not be responsible for any failure arising from inadequate or improper use of the Software.

9. Limitation of Liability. Licensor’s cumulative liability to you or any other party for any loss or damages resulting from any claims, demands, or actions arising out of or relating to this Agreement shall not exceed the purchase price paid to Licensor for the equipment. In no event shall Licensor be liable for any indirect, incidental, consequential, special, or exemplary damages or lost profits, even if licensor has been advised of the possibility of such damages.

10. Trademark. All ZIV trademarks (including ZIVERCOM, ZIVERLOG and ZIVERSYS) are common law trademarks of Licensor. No right, license or interest to such trademarks is granted hereunder, and you agree that no such right, license or interest shall be asserted by you with respect to such trademark.

11. Licensee’s Indemnity. You shall defend, indemnify and hold Licensor harmless against any loss or damage of any kind arising from a breach by you of this License Agreement, or any use or misuse of the Software by you or your employees, agents or representatives, and from any other of your conduct or from any claim or action by any of your customers in connection with the Software or this License Agreement.

12. Governing Law. This License Agreement shall be construed and governed in accordance with the internal laws of the State of Illinois, U.S.A.

13. No Waiver. The failure of either party to enforce any rights granted hereunder or to take action against the other party in the event of any breach hereunder shall not be deemed a waiver by that party as to subsequent enforcement of rights or subsequent actions in the event of future breaches.

14. Entire Agreement. This License Agreement is the entire agreement between you and Licensor with respect to the use of the software and supersedes all prior understandings or agreements between the parties. This License Agreement may be amended only by a writing signed by an officer of Licensor.

ZIV Aplicaciones y Tecnología S.L.

Parque Tecnológico, 210 48170 Zamudio (Bizkaia)

Apartado 757 48080 Bilbao - Spain

Tel.- (34) 94 452.20.03

Page 94: Feeder Multifunction Protection for MV Power Systems
Page 95: Feeder Multifunction Protection for MV Power Systems

SpainHeadquartersParque Tecnológico, 21048170 Zamudio, BizkaiaT: +34 94 452 20 03F: +34 94 452 21 40

MadridC/ Diego Marín Aguilera 14Parque Tecnológico de Leganés.28918 Leganés, Madrid.T: +34 91 352 7056F: +34 91 352 6304

BarcelonaC/ Antonio Machado 78-80Viladecans Business ParkEdificio Australia08840 Viladecans, BarcelonaT: +34 93 349 07 00F: +34 93 349 22 58

SevillaAvda. de la Aeronáutica, 10(Edificio Helios) Planta 7ª, módulo 441020 SevillaT: +34 954 461 360F: +34 954 462 484

Las PalmasFernando Guanarteme 16. Ofic. 1ºA35007 Las Palmas de Gran CanariaT: +34 94 452 20 03

FranceGrenoble22 - Rue Jean Pierre Timbaud38600 FontaineT: +33 (0) 7 82 06 84 22

Paris84-88 Boulevard de la Mission Marchand92400 Courbevoie (France)

BrazilRua Visconde de Itaboraí, 74Ponta da Areia - NiteróiRJ - Cep: 24.030-091T: +55 21 36 02 8511F: +55 21 36 02 8511 opção 5

MexicoHoracio No. 1213Col. Polanco, Delegación Miguel HidalgoC.P. 11550 - México D.F.T: +52 044 (55) 58 26 76 44F: +52 (55) 55 31 51 72

Singapore133 Cecil Street, #08-02/02A,Keck Seng Tower,Singapore 069535T: +65 6410 9625

IndiaGlobal Village Tech Park,Block A ,Ground FloorRVCE Post , Mylasandra,Bangalore -560 0659T: +91 - 80 3003 7500- 598F: +91 - 80 3003 7599

IrelandCG Power Systems Ireland LimitedAutomation Systems Division Burton Chambers, 19-22 Dame St., Dublin 2.T: +353 1 415 3700F: +353 1 671 6343

UKUnit F, Network Business CentreJarrow, Tyne & WearNE31 1SF United KingdomT: +44 191 425 5200F: +44 191 425 5202

USA5410 Newport Drive, Suite 38Rolling Meadows, IL 60008T: +1 224 735 39 61F: +1 224 735 39 62

DubaiCG Middle East FZEDubai Silicon Oasis E/6/7P.O. Box. 341201,DUBAI. UAE.

IndonesiaPT. CG Power Systems IndonesiaAlamanda Tower, 18th Floor.Jl. TB Simatupang Kav. 23-24Jakarta -12340. IndonesiaT: +62 21 29660055F: +62 21 29660054

www.ziv.es

Please visit our website for local contact information in your area.