17
FEM analysis of plates and shells Jerzy Pamin e-mail: [email protected] With thanks to: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com Comp.Meth.Civ.Eng., II cycle

FEM analysis of plates and shellsjpamin/dyd/CMCE/CMCE_lecture8_JP.pdf · FEM approximation [3] Element tangent stiffness k e T = k 0 + k e u + ke σ ke 0 = Z Z Ae B nTD B 0 0 BmTDmBm

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • FEM analysis of plates and shells

    Jerzy Pamin

    e-mail: [email protected]

    With thanks to:

    M. Radwańska, A. WosatkoANSYS, Inc. http://www.ansys.com

    Comp.Meth.Civ.Eng., II cycle

  • Lecture contents

    Classification of models and finite elements

    Finite elements for plate bending

    Finite elements for shells

    Theory of moderately large deflections

    [1] T. Kolendowicz Mechanika budowli dla architektów. Arkady, Warszawa,1996.[2] G. Rakowski, Z. Kacprzyk. Metoda elementow skończonych w mechanicekostrukcji. Oficyna Wyd. PW, Warszawa, 2005.

    [3] M. Radwańska. Ustroje powierzchniowe, podstawy teoretyczne orazrozwiązania analityczne i numeryczne. Wydawnictwo PK, Kraków, 2009.

    Comp.Meth.Civ.Eng., II cycle

  • Classification of models and finite elements

    Reduction of model dimensions:I bar structures (one-dimensional geometry)I surface structures (small third dimension)I volume structures (three-dimensional)

    Finite elements for mechanics:I 1D - truss (kratowy)I 1.5D - beam (belkowy), frame (ramowy)I 2D - plane stress - panel (PSN), plane strain (PSO), axial symmetry

    (symetria osiowa)I 2.5D - plate/slab (płytowy), shell (powłokowy)I 3D - volume (bryłowy)

    Comp.Meth.Civ.Eng., II cycle

  • Plate/slab - 2.5D structure [1]

    Bending Transverse shear Torsion

    Figures from [1]

    Comp.Meth.Civ.Eng., II cycle

  • Shell - 2.5D structure

    Figures from [1]

    ANSYS simulation:Shell deflectionunder constant load

    Comp.Meth.Civ.Eng., II cycle

  • Plate in bending

    Fundamental unknown:deflection w(x , y)

    Figures taken from [2]Generalized stresses

    Comp.Meth.Civ.Eng., II cycle

  • Bending - generalized strains and stressesThin plate theory of Kirchhoff-Love

    Curvatures and twist (spaczenie)em = {κx , κy , κxy}

    Bending and torsional momentsm = {mx ,my ,mxy}

    Figures taken from [2]

    Comp.Meth.Civ.Eng., II cycle

  • Rectangular element for plate bending

    Nodal degrees of freedom and forces

    Hermite shape functions

    Figures from [2]

    Be careful with imposing boundary conditions (kinematic and/or static)

    Comp.Meth.Civ.Eng., II cycle

  • Geometry of shell

    Figures taken from [2]

    Comp.Meth.Civ.Eng., II cycle

  • Shell - generalized stresses

    Stresses in shell cross-sectionFigures taken from [2]

    Membrane and bending forces(transverse shear neglected)

    Comp.Meth.Civ.Eng., II cycle

  • Finite elements for plates and shellsReissner-Mindlin theory of moderately thick shells

    Rotation anglesapproximated independently

    Ahmad finite element- degenerated continuum

    Transverse sheartaken into account

    Figures from [2]

    Comp.Meth.Civ.Eng., II cycle

  • Geometrical nonlinearity

    Equilibrium of discretized system [3]:

    K ∆d = ft+∆text − ftint

    where tangent stiffness matrix:

    K = K0 + Ku + Kσ

    K0 - linear stiffness matrix

    Ku - initial displacement matrix(discrete kinematic relations matrix B dependent on displacements)

    Kσ - initial stress matrix (dependent on generalized stresses)

    Comp.Meth.Civ.Eng., II cycle

  • Karman theory of moderately large deflectionsDeflection of the order of thickness admitted [3]

    Medium plane deflectionsεx = ε

    Lx + ε

    Nx =

    ∂u∂x +

    12

    (∂w∂x

    )2εy = ε

    Ly + ε

    Ny =

    ∂v∂y +

    12

    (∂w∂y

    )2γxy = γ

    Lxy + γ

    Nxy =

    ∂u∂y +

    ∂v∂x +

    ∂w∂x

    ∂w∂y

    Curvatures and twist as in linear theoryκx = κ

    Lx = −∂

    2w∂x2 , κy = κ

    Ly = −∂

    2w∂y2 , χxy = χ

    Lxy = −2 ∂

    2w∂x∂y

    Two equations of Karman theory for moderately large plate deflections

    ∇2∇2F (x , y) + Eh2 L(w ,w) = 0Dm∇2∇2w(x , y)− L(w ,F )− p̂z = 0where:F (x , y) - stress function (nx = F,yy , ny = F,xx , nxy = −F,xy )L(a, b) = a,xxb,yy − 2a,xyb,xy + a,yyb,xx

    Comp.Meth.Civ.Eng., II cycle

  • Theory of moderately large deflectionsFEM approximation [3]

    Total potential energy (additional membrane state energy)

    Π̃m = Um + Ũn −Wm

    Discretization

    un ={u(x , y)v(x , y)

    }=

    [Nu 0Nv 0

    ]{dn

    dm

    }

    wm = [w(x , y)] =[

    0 Nw]{ dn

    dm

    }Nonlinear kinematic equations

    B(6×LSSE) = BL(6×LSSE) + BN(6×LSSE)

    BL(6×LSSE) =[

    Bn 00 Bm

    ], BN(6×LSSE) =

    [0 Bnw0 0

    ]

    Comp.Meth.Civ.Eng., II cycle

  • Theory of moderately large deflectionsFEM approximation [3]

    Matrices of discrete kinematic relations

    Bn =

    Nu,xNv ,yNu,y + Nv ,x

    , Bm = −Nw ,xx−Nw ,yy−2Nw ,xy

    Bnw =

    w,xNw ,xw,yNw ,yw,xNw ,y + w,yNw ,x

    Deflection gradients

    g ={w,xw,y

    }=

    [Nw ,xNw ,y

    ]dm = Gmdm

    Comp.Meth.Civ.Eng., II cycle

  • Theory of moderately large deflectionsFEM approximation [3]

    Element tangent stiffness

    keT = ke0 + k

    eu + k

    ke0 =∫ ∫

    Ae

    [BnTDnBn 0

    0 BmTDmBm

    ]dA

    keu =∫ ∫

    Ae

    [0 BnTDnBnw

    BnTw DnBn 0

    ]dA

    keσ =∫ ∫

    Ae

    [0 00 GmTSnGm

    ]dA, Sn =

    [nx nxynxy ny

    ]Vector of nodal forces representing stresses

    feint =∫ ∫

    Ae

    [BnT 0BnTw B

    mT

    ] [Sn

    Sm

    ]dA

    Comp.Meth.Civ.Eng., II cycle

  • Square plate [3]Moderately large rotations

    p̂z

    x

    z ,w

    y

    a

    a

    C

    Dane:L = Lx = Ly = 2a = 1.0 mh = 0.002 mE = 200000 MPa, ν = 0.25

    Relation deflection-loading:

    0.001 0.003

    0.30

    0.15

    0.002

    wC [m]

    p̂z [kPa]

    FEM(geometrical nonlinearity)

    wC = 0.00406p̂zL4

    D

    linear solution:

    Comp.Meth.Civ.Eng., II cycle

    Classification of models and finite elementsFinite elements for plate bendingFinite elements for shellsTheory of moderately large deflections