29
Ferroelectric Negative Capacitance MOSFET: Design Framework based on Capacitance Tuning Asif I. Khan PI: Prof. Sayeef Salahuddin Laboratory for Emerging & Exploratory Devices (LEED) Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA-94720, USA

Ferroelectric Negative Capacitance MOSFET: Capacitance ... › wp-content › uploads › ...Ferroelectric Negative Capacitance Positive Capacitance Ferroelectric Negative Capacitance

  • Upload
    others

  • View
    40

  • Download
    0

Embed Size (px)

Citation preview

  • Ferroelectric Negative Capacitance MOSFET:

    Design Framework based on Capacitance Tuning

    Asif I. Khan PI: Prof. Sayeef Salahuddin

    Laboratory for Emerging & Exploratory Devices (LEED) Department of Electrical Engineering and Computer Sciences,

    University of California, Berkeley, CA-94720, USA

  • The Team

    2

    PI: Prof. S. Salahuddin EECS, UC Berkeley

    Collaborative PI’s: Prof. R. Ramesh MSE, UC Berkeley

    Prof. C. Hu EECS, UC Berkeley

    Students: Asif Khan Chun Yueng Asis Sarker EECS, UC Berkeley

  • MOSFET Scaling: The Negative Capacitance Approach

    Negative capacitance can give S < 60 mV/decade

    http://www.intel.com/technology/mooreslaw/

    Moore’s Law Negative Capacitance FET

    Salahuddin et al., Nanoletters 8, 405 (2008).

    Experimental Evidence of Negative Capacitance:

    A. Khan et al., APL 99, 113501 (2011). A. Rusu et al., IEDM 2010.

    3

  • MOSFET Scaling: The Negative Capacitance Approach

    Negative capacitance can give S < 60 mV/decade

    http://www.intel.com/technology/mooreslaw/

    Moore’s Law Negative Capacitance FET

    Salahuddin et al., Nanoletters 8, 405 (2008).

    Experimental Evidence of Negative Capacitance:

    A. Khan et al., APL 99, 113501 (2011). A. Rusu et al., IEDM 2010.

    4

  • Ferroelectric Negative Capacitance

    Positive Capacitance Ferroelectric

    Negative Capacitance

    V C

    Capacitor

    According to Landau-Devonshire Theory of Ferroelectrics, Ferroelectric capacitors can give rise to negative capacitance

    under certain conditions.

    5

  • Experimental Evidence of Ferroelectric Negative Capacitance

    V CDE

    CFE

    Substrate

    Metal

    DE STO

    FE PZT

    Metal

    Khan et al. APL 99, (2011)

    6

  • Experimental Evidence of Ferroelectric Negative Capacitance

    V CDE

    CFE

    Negative Capacitance effect @ > 110 oC.

    substrate

    SrRuO3

    Au

    . . .

    BSTO LAO

    BSTO LAO

    BSTO LAO

    Ba0.8Sr0.2TiO3-LaAlO3 superlattice

    Unpublished

    LAO (2.5nm)-BSTO(7.5nm) x 10 times superlattice

    100 kHz

    Negative Cap limit

    Superlattice

  • Sub 60mV/dec Negative Capacitance FET: Capacitance Tuning Perspective

    Intrinsic MOSFET VG

    Cox

    Cs Cdrain

    VD

    Csource

    0 V ᵠ

    1||||

    1 ox

    Drainsources

    s

    g

    C

    CCCm

    V

    Subthreshold Swing, SS = m x 60 mV/dec >60 mV/dec

    8

  • Sub 60mV/dec Negative Capacitance FET: Capacitance Tuning Perspective

    Ideal Switch: 0mV/decade ⇐ |CFE|=CMOS Is it possible to match CFE and CMOS over a large range of

    charge densities and voltages ?

    Negative Capacitance FET

    VG

    VD

    Intrinsic MOSFET

    CMOS

    CFE

    Cox

    Cs Cdrain Csource

    0V ᵠ

    9

  • Capacitance Cancellation in an NCFET

    -2 -1 0 1 2

    0.00

    0.04

    0.08Accumulation

    Depletion

    CM

    OS (

    F/m

    2)

    VG (V)

    Strong Inversion

    It may not be possible to match CFE and CMOS within the operational charge densities.

    MOS Capacitance changes by almost two orders of magnitude between on and off state.

    VG

    VD

    Intrinsic MOSFET CMOS

    CFE

    Cox

    Cs Cdrain Csource

    0V ᵠ

    10

  • Simulation of Negative Capacitance FET Structure

    Self-consistent 2D Electrostatics-1D Landau Simulation Intrinsic MOSFET: TCAD Sentaurus Simulation. Ferroelectric: 1-D Landau Simulation. PbZr0.5Ti0.5O3. Anisotropy Constants from Haun et al., Ferroelectrics 99, 63 (1989) Interlayer Metallic Electrode: To screen out non-uniformity in potential profile as well due to domain formation.

    11

  • -2 -1 0 1 2

    0.00

    0.04

    0.08

    Case A: -CFE

    Case B: -CFE

    Cg (

    F/m

    2)

    VG (V)

    Case C: -CFE

    Capacitance Matching in a NCFET

    -4 -2 0 2 4

    -0.5

    0.0

    0.5

    Case C

    Depletion

    Acum

    ulat

    ion

    Strong Inversion

    Q (

    C/m

    2)

    VG (V)

    12

  • -2 -1 0 1 2

    0.00

    0.04

    0.08

    Case A: -CFE

    Case B: -CFE

    Cg (

    F/m

    2)

    VG (V)

    Case C: -CFE

    Capacitance Matching in a NCFET

    -4 -2 0 2 4

    -0.5

    0.0

    0.5

    Case C

    Depletion

    Acum

    ulat

    ion

    Strong Inversion

    Q (

    C/m

    2)

    VG (V)

    13

  • -2 -1 0 1 2

    0.00

    0.04

    0.08

    Case A: -CFE

    Case B: -CFE

    Cg (

    F/m

    2)

    VG (V)

    Case C: -CFE

    Capacitance Matching Condition: Antiferroelectric Hysteresis

    Antiferroelectric Hysteresis: Nominal hysteresis in exchange for

    large increase in the on-current and the on-off ratio.

    VDD Swing

    14

  • -2 -1 0 1 2

    0.00

    0.04

    0.08

    Case A: -CFE

    Case B: -CFE

    Cg (

    F/m

    2)

    VG (V)

    Case C: -CFE

    Capacitance Matching in a NCFET

    -4 -2 0 2 4

    -0.5

    0.0

    0.5

    Case C

    Depletion

    Acum

    ulat

    ion

    Strong Inversion

    Q (

    C/m

    2)

    VG (V)

    Three different classes of FE-MOS Q-V characteristics: 1. Non-hysteretic 2. Antiferroelectic Hysteretic 3. Ferroelectric Hysteretic

    15

  • Antiferroelectric NCFET: Optimization of FE Thickness

    15

    0n

    m

    0n

    m

    23

    0 n

    m

    25

    0 n

    m

    23

    0 n

    m

    25

    0 n

    m

    VDD=0.3 V LG=100nm NA=5x1017cm-3

    Significant enhancement of on-current in the presence of hysteresis.

    16

  • Antiferroelectric NC-FET: Optimization of FE Thickness

    w/o FE

    VDD=0.3 V Ioff = 100 nA/μm LG=100nm

    On set of Hysteresis

    Hysteresis>VDD

    17

  • Antiferroelectric NC-FET: Optimization of FE Thickness

    w/o FE

    VDD=0.3 V Ioff = 100 nA/μm LG=100nm

    Optimal tFE

    18

  • Antiferroelectric NCFET: Performance Projection

    Lg = 100 nm NA = 5x10

    17 cm-3

    tox = 5 A

    Ioff = 100 nA/μm

    Significant reduction in Vdd is possible by design optimization.

    ∆VDD=400 mV

    19

  • Capacitance Tuning by Source Overlap

    w/o FE

    Lov=0,50nm LG=100nm Lov

    CMOS

    CFE

    Overlap capacitance adds an VG independent capacitance in CMOS resulting in a better matching between CFE and CMOS.

    20

  • w/o FE

    Capacitance Tuning by Source Overlap

    tFE=210nm LG=100nm Lov

    CMOS

    CFE

    Overlap capacitance adds an VG independent capacitance in CMOS resulting in a better matching between CFE and CMOS.

    21

  • Capacitance Tuning by Source Overlap

    w/o FE

    tFE=210nm LG=100nm

    Overlap capacitance adds an VG independent capacitance in CMOS resulting in a better matching between CFE and CMOS.

    Lov CMOS

    CFE

    22

  • Negative Capacitance in Scaled Devices

    VG

    VD

    Intrinsic MOSFET

    CFE

    Cox

    Cs Cdrain Csource

    0V LG=100nm

    Dotted: no FE

    tFE=210nm

    23

  • Negative Capacitance in Scaled Devices

    VG

    VD

    Intrinsic MOSFET

    CFE

    Cox

    Cs Cdrain Csource

    0V LG=100nm

    Dotted: no FE Solid: w/ FE

    Matching between CFE and CMOS improves with scaling due to increased Drain coupling to the channel.

    tFE=210nm

    24

  • Hysteresis Free Operation of NC-FET

    25

    Hysteresis free operation can be obtained by reducing the difference between on-state and depletion capacitance.

    VDS=0.5V LG=100nm tTSOC=5nm

  • Initial Experimental Work on Negative Capacitance MOSFET

    26

    Crystalline STO from Prof. Droopad

    Process Flow I: Crystalline FE NC MOSFET

    Collaboration with C. W. Yeung & C. Hu, UCB and R. Droopad. Texas Tech U

  • Initial Experimental Work on Negative Capacitance MOSFET

    27

    SiO2

    Process Flow II: Polydomain PZT MOSFET

    Collaboration with C. W. Yeung & C. Hu, UCB

  • Conclusions

    • Capacitance tuning a powerful design concept for negative capacitance FETs.

    • Design parameters for NCFET optimization: FE thickness, Gate overlap.

    • Negative capacitance more dominant in scaled devices.

    • Effects of contact resistance, mobility degradation, domain formation etc.

    28

  • THANK YOU

    29