7
ガンマ線照射によりイネに誘発された突然変異の解析と利用 誌名 誌名 Gamma field symposia ISSN ISSN 04351096 巻/号 巻/号 47 掲載ページ 掲載ページ p. 41-46 発行年月 発行年月 2010年5月 農林水産省 農林水産技術会議事務局筑波産学連携支援センター Tsukuba Business-Academia Cooperation Support Center, Agriculture, Forestry and Fisheries Research Council Secretariat

ガンマ線照射によりイネに誘発された突然変異の解 …ガンマ線照射によりイネに誘発された突然変異の解析と利用 誌名 Gamma field symposia

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ガンマ線照射によりイネに誘発された突然変異の解 …ガンマ線照射によりイネに誘発された突然変異の解析と利用 誌名 Gamma field symposia

ガンマ線照射によりイネに誘発された突然変異の解析と利用

誌名誌名 Gamma field symposia

ISSNISSN 04351096

巻/号巻/号 47

掲載ページ掲載ページ p. 41-46

発行年月発行年月 2010年5月

農林水産省 農林水産技術会議事務局筑波産学連携支援センターTsukuba Business-Academia Cooperation Support Center, Agriculture, Forestry and Fisheries Research CouncilSecretariat

Page 2: ガンマ線照射によりイネに誘発された突然変異の解 …ガンマ線照射によりイネに誘発された突然変異の解析と利用 誌名 Gamma field symposia

Gamma Field Symposia, No. 47, 2008 Institute of Radiation Breeding

NlAS, Japan

41

Analysis and Application of Gamma-Ray-Induced Mutations

Ryouhei Mo阻TA

Institut巴ofRadiation Breeding, National Institute of Agrobiological Sciences

2425 Kamimurata, Hitachi-Ohmiya, Ibaraki 319-2293, Japan

Introduction

Gamma-irradiation -induc巴dmutations in higher

plants are widely used in plant breeding and research

for functional genomics. However, there has been

very little knowledge into the types of mutations that

gamma irradiation causes in higher plant g巴nomes.In

this s加dy,we used rice, the full genome sequence of

which is available, for analysis of mutations induc巴d

by gamma-irradiation.

Mutation analysis using mutants induced by

gamma irradiation

W巴 screenedrice mutants for Wx (WANG et al.,

1990), PLA (ITOH et al., 1998; KAWAKATSU et al.,

2006),巴ndospermprotein synthesis genes (TAKAIW A

et al., 1991; KRIs冊~AN et al., 1993; SHORROSH et al.,

1993), gibber巴llin-relatedgenes (SAKAMOTO et al.,

2004), and CAO (TANAKA et al., 1998)企oma popula-

tion derived from gamma-irradiation (Fig. 1). DNA

was extracted and the coding regions were amplified

by PCR. If the whole coding region is amplified, it is

judged that small mutations have occurred, so these

regions are sequenced. However, if part or all of the

coding region is not amplified, it is judged that a large

deletion or an inversion or translocation has occurred,

and detailed analysis is conducted. Investigation of a

total of 15 mutations showed that 12 were caused by

deletions, 2 were bas巴 substitutionsand 1 was an in-

version. Nine of the 12 deletions were small (1-6 bp)

and the remaining 3 were large (62.ふ129.7kbp).

There was no deletion ranging from several hundred

phenotype

Wx l CAO

PLA1

PLA2

GluA1,A2

GluB4,B5

GLB

Fig. 1 Phenotypes of mutants used in this s加dy.

z CPS,KS

KO,κAO GA30x

G101,2

Page 3: ガンマ線照射によりイネに誘発された突然変異の解 …ガンマ線照射によりイネに誘発された突然変異の解析と利用 誌名 Gamma field symposia

42 Ryouhei MORITA

bp to several kbps. These data suggested that the mu-

tations induced by gamma-irradiation tended to be de-

letions, and that deletions of several bp or more than

several tens ofkbp tended to be readily inducible. Mu-

tations induced by ionizing radiation are thought to oc-

cur during repair of DNA double-strand breaks

(DSBs) by non-homologous enふjoining(NHEJ), a re“

pair mechanism with frequent errors (SHIKAZONO et

al., 2001; KIMURA and SAKAGUCHI, 2006). Deletions

larger than several tens of kbp are thought to be the reω

sult of 2 DSBs and the loss of the DNA fragment be-

tween them after rejoining of the strands (NAITO et

al., 2005). The fact that deletions ranging from sev-

eral hundred bp to several kbp are difficult to induce

and deletions greater than several tens of kbp are easy

to induce shows that the interval between DSBs of

DNA caused by gamma-irradiation is greater than at

least several tens of kbp.

NAITO et al. (2005) analyzed mutations derived

from gamma-irr・adiationand carbon-ion-irradiation of

pollen in Arabidopsis plants; they reported that huge

deletions of several Mbps frequently occurred in the

Ml gener・ationthat were not inherited in the M2 gen-

eration. They considered that the non幽 inheritanceof

these large deletions indicated that, as the size of the

deletions increased, the probability that the genes nec-

essary for gametogenesis or survival were deleted inω

creased too. Because these deletions are weeded out,

only deletions ranging from tens of kbp to about 100

kbp are retained in the M2 generation. In contrast, neuω

tron irradiation results in deletions ranging fr・omsev-

eral hundred bp to several kbp (SUN et al., 1992;

BRUGGEMANN et al., 1996; SALMERON et al., 1996;

Li et al., 2001). Although the mechanism for DNA

mutation by neutrons is unknown, there may be differ-

ences in the sizes of deletions that can be readily in-

duced by gamma-rays and neutrons.

Knocking out tandem-duplicated genes

In plant genomes, around 15% of the genes are

members of tandem-duplicated gene (ARABIDOPSIS

GENOME INITIATIVE, 2000; INTERNATIONAL RICE

GENOME SEQUENCING PROJECT, 2005). Because of

genetic redundancy, it is often difficult to study

tandem“duplicated gene function. B巴causegamma 1r-

radiation can induce large deletion, it is possible to

knock out tandem-duplicated gene together. An exam-

ple is the glul mutant (IIDA et al., 1997). Analysis of

this mutant, in which one of the endosper羽 proteins

(glutelin) is not synthesized, showed that it was the re-

sult of a 129.7-kbp deletion that destroyed 2 glutelin

genes, GluB4 and GluB5 (Fig. 2) (MORITA et al.,

2007). As these 2 genes are extremely similar, glute-

lin synthesis is maintained if one of them is de-

stroyed. In the glul mutant, glutelin synthesis is

thought to be lost owing to the simultaneous destruc-

tion of both genes. Thus, when the knocking out

tandem-duplicated genes is desired, the use of gamma-

rays rather than chemical mutagens may be appropri-

ate.

Isolation of genes near centromeres

Mutants showing delayed leaf yellowing during

senescence are called stay-green mutants. We

screened stay-green mutants named nyc3 from a popu-

lation derかedfrom irradiation with gamma-rays and

carbon ions. Map倫 basedcloning to isolate the NYC3

gene revealed the gene near the centromere of chro-

mosome 6. Because recombination is suppr・essednear

the centromere, mapping using 838 nyc3 homozy-

gotes only limited the candidate region to about 5600

kbp. A new approach for reducing the size of the can-

didate region was needed. We thought that mainte-

nance of very large deletions induced near the

centromere by gamma-irr・adiationwould be easier

than in other regions because of the low density of

genes near centromeres (NAGAKI et al., 2004; Wu et

al., 2004). PCR markers were prepared at about 100-

kbp intervals, and large deletions were searched for

by the absence of amplification. As expected, nyc3

and most nyc3 alleles carried deletions larger than 500

kbp. These results showed that this region can main-

tain a high 合equencyof large deletions. The smallest

deletion, about 400 kbp, was found in nyc3-3. This re“

Page 4: ガンマ線照射によりイネに誘発された突然変異の解 …ガンマ線照射によりイネに誘発された突然変異の解析と利用 誌名 Gamma field symposia

Analysis and Application of Gamma-Ray-Induced Mutations 43

(A)

GluB5 GluB4 54280 54280 平 -R

'惨 4時十一一骨骨“時参............砂.. .... 卜

FO F1 R4 R1 F2 R2 F3 R3 R3 F3 R2 F2 R1 R4 F1 FO glu1-del-R1

(8) F1 F2 F3 FO 40866-F 54280-F F1 R1 R2 R3 R4 40866-R 54280-R 単目当坐旦1

(C)

GluB5 GluB4

YEロゴ記以;F 1 •

.J glu1-del-R1

Fig. 2 Identification of deletion in glul mutant by PCR. (A) Struc加 eof GluB5 and GluB4 and positions of primers. (B)

PCR amplification of the DNA regions around GluB5 and GluB4. (c) Structure of deletion in glul.

gion contains 15 predicted genes. We a仕巴mpteda

complementation test and confirmed that a gene

named Os06g0354700 is NYC3. (Morita et al., 2009)

Thus, gamma-iITadiation could be used to narrow th巴

size of the candidate region for genes located near the

centromere, where map-based c10ning is difficu1t.

Acknowledgments

This work was supported by grants丘omthe Min-

ishy of Agriculture, Fores仕y,and Fisheries of Japan

(Genomics for Agricultural Innovation A恥1R-0003

and GR-1003) and, in part, by the budget for nuc1ear

research of the Ministry of Education, Cul印re,

Sports, Science, and Technology of Japan.

References

1. ARABIDopsrs GENOME INrTIATIVE (2000) Analysis of

the genome sequence of the flowering plant Arabidop

sis thaliana. Na同re408・796-815

2. BRUGGEMANN, E., HANDWERGER, K., ESSEX, C. and

STORZ, G. (1996) Analysis of fast neutron-g巴nerated

mutants at the Arabidopsis thaliana HY4 locus. Plant J

10:755-760

3. lIDA, S., KUSABA, M. and Nrsmo, T. (1997) Mutants

lacking glutelin subunits in rice: mapping and combina-

tion of mutat巴dglutelin genes. Theor Appl Genet

94:177-183

4. lNTERNATIONAL RrCE GENOME SEQUENCING PRO-

JECT (2005) The map-based sequence of the rice ge-

nome. Nature 436:793-800

5. ITOH, J. 1., HASEGAWA, A., KrTANO, H. and NAGATO,

y. (1998) A recessive heterochronic mutation, PLAS

TOCHRON1, shortens the plastochron and elongates

the vegetative phase in rice. Plant Cell 10: 1511-1522

6. KAWAKATSU, T., ITOH, J.,恥位YOsm,K., KURATA, N.,

ALVAREZ, N., VEIT, B. and NAGATO, Y. (2006)

PLASTOCHRON2 regulates leaf initiation and matura-

tion in rice. Plant C巴1118:612-625

7. KrMuRA, S. and SAKAGUCm, K. (2006) DNA repair

in plants. Chem R巴v106:753-766

8. KRrSI王NAN,H. B. and PUEPPKE, S. G. (1993) Nucleo-

tid巴 sequenceof an abundant rice seed globulin: homol-

Page 5: ガンマ線照射によりイネに誘発された突然変異の解 …ガンマ線照射によりイネに誘発された突然変異の解析と利用 誌名 Gamma field symposia

44 Ryouhei MORITA

ogy with the high molecular weight glutelins of wheat,

rye and triticale. Biochem Biophys Res Commun

193:460“466

9. Lr, X., SONG, Y., CENTURY, K., STRAIGHT, S., RON-

ALD, P., DONG, X., LASSNER, M. and ZHANG, Y.

(ρ2001り)A fi白昌sはtneutron d巴el巴etIωonmut旬agenesiおs-bas巴dr陀.官E

V巴rs巴g巴neticssystem for plants. Plant J 27:235糊 242

10. MORITA, R., KUSABA, M., IIDA, S., r、~ISHIO, T. and

p、USHIMURA,M. (2007) Knockout of glutelin genes

which form a tandem array with a high lev巴lofhomol-

ogy in rice by ganuna irradiation. G巴nesGenet Syst

82:321-327

11. MORITA, R., SATO, Y., MASUDA, Y., NISHIMURA, M.

and KUSABA, M. (2009) Defect in non-yellow coloring

3,anα/s hydrolase-fold family protein, causes a stay-

green phenotype during leaf senescence in rice. Plant J

59: 940-952

12. NAGAKI, K., CHENG, Z., OUYANG, S., TALBERT, P.

B., KIM, M., JONES, K. M., HENIKOFF, S., BUELL, C.

R. and JIANG, J. (2004) Sequencing of a rice centro-

mere uncovers active genes. Nature Genet 36:138-145

13. NAITO, K., KUSABA, M., SHIKAZOl'、<0, N., TAKANO,

T., TANAKA, A., TANISAKA, T. and NISHIMURA, M.

(2005) Transmissible and nontransmissible mutations

induced by irradiating Arabidopsis thaliana pollen

with gamma-rays and carbon ions. Genetics 169:881-

889

14. SAKAMOTO, T., MIURA, K., ITOH, H., TATSUMI, T.,

UEGUCHI-TANAKA,乱1.,ISHIY AMA, K., KOBA Y ASHI,

M., AGRAWAL, G. K., TAKEDA, S., ABE, K., MIYAO,

A., HIROCHIKA, H., KITANO, H., ASHIKARI, M.昌nd

MATSUOKA, M. (2004) An overview of gibberellin me-

tabolism enzyme genes and their related mutants in

rice. Plant Physiol134:1642-1653

15. SALMERON, J. M., OLDROYD, G. E., ROMMENS, C.

M., SCOFIELD, S. R., KIM, H. S., LAVELLE, D. T.,

DAHLBECK, D. and STASKAWICZ, B. J. (1996) Tomato

P1fis a member ofthe leucine-rich repeat class ofplant

disease resistance g巴nesand lies embedded within the

Pto kinas巴genecluster. Cell 86:123-133

16. SHlKAZONO, N., TANAKA, A., WATANABE, H. and

TANO, S. (2001) Rearrangements of the DNA in car-

bon ion-induced mutants of Arabidopsis thaliana. Ge-

netics 157:379-387

17. SHORROSH, B. S., WEN, L., ZEN, K. c., HUANG, J. K.,

PAN, J. S., HERMODSON, M. A., TANAKA, K., MUT同

HUKRISHNAN, S. and REECK, G. R. (1992) A novel ce-

real storage protein: molecular genetics of the 19 kDa

globulin ofrice. Plant Mol Biol 18:151倫 154

18. SUN, T., GOODMAN, H. M. and AUSUBEL, F. M.

(1992) Cloning the Arabidopsis GAllocus by genomic

subtraction. Plant Cell 4: 119欄 128

19. TAKAIWA, F., OONO, K., WING, D. and KATO, A.

(1991) Sequence of thr巴ememb巴rsand expr巴ssionofa

newm司jorsubfamily of glutelin genes from rice. Plant

Mol Biol 17:875-885

20. TANAKA, A., ITO, H., TANAKA, R., TANAKA, N. K.,

YOSHIDA, K. and OKADA, K. (1998) Chlorophyll a

oxygenase (CAO) is involved in chlorophyll b forma-

tion from chlorophyll a. Proc Natl Acad Sci U S A

95:12719-12723

21. WANG, Z. Y., Wu, Z. L., XING, Y. Y., ZHENG, F. G.,

Guo, X. L., ZHANG, W. G. and HONG, M. M. (1990)

Nucleotide sequence of rice waxy gene. Nucleic Acids

Res 18:5898

22. Wu, J., YAMAGATA, H., HAYASHI-TSUGANE, M., HI-

JISHITA, S., FUJISAWA, M., SHIBATA, M., ITO, Y.,

NAKAMURA, M., SAKAGUCHI, M., YOSHIHARA, R.,

KOBAYASHI, H., ITO, K., KARASAWA, W., YAMA-

MOTO, M., SAJI, S., KATAGIRI, S., KANAMORI, H.,

NAMIKI, N., KATAYOSE, Y., MATSUMOTO, T. and

SASAKI, T. (2004) Composition and structure of the

C巴ntromericregion of rice chromosome 8. Plant Cell

16:967-976

Page 6: ガンマ線照射によりイネに誘発された突然変異の解 …ガンマ線照射によりイネに誘発された突然変異の解析と利用 誌名 Gamma field symposia

Analysis and Application of Gamma-Ray-Induced Mutations 45

ガンマ線照射によりイネに誘発された突然変異の解析と利用

森田竜平

農業生物資源研究所放射線育種場

〒319-2293 茨城県常陸大宮市上村田2425

放射線照射により作出された突然変異体は育種

母本として利用されるだけでなく,基礎研究リ

ソースとして遺伝子の機能解析に利用され,大き

な成果をあげている。しかし,高等植物に放射隷

を照射した掠,ゲノムにどのような突然変異が誘

発されるかという分子レベルでの知見はほとんど

存在しない。そこで,ゲノム配列が決定されてい

るイネを材料に用いて ガンマ線照射で誘発され

る突然変異の解析を行った。ガンマ線を照射した

後代集団から ,Wx遺伝子,PLA遺伝子,経乳タン

パク質合成遺伝子,ジベレリン合成および感受性

遺松子,CAO遺伝子に突然変異が生じた個体をそ

れぞれスクリーニングし PCRによるDNA変異の

解析を行った。合計15個体の突然変異体を調査し

た結果, 12個体で欠失が, 2個体で塩基置換が,

l個体で逆{立が生じていた。欠失のサイズに注目

すると, 12個体中 9個体では小さい欠失(1-6

bp)が,残りの 31障体では大きい欠失 (62.8-

129.7kbp)が生じていた。数百bpあるいは数kbpの

欠失が生じた個体は存在しなかった。以上のこと

から,イネにガンマ線を照射した際に誘発される

突然変異の多くは欠失であることと,数bpあるい

は数十kbp以上の大きさの欠失が誘発されやすい

{頃向があることが明らかとなった。

ガンマ線照射で、日大欠失が誘発されると,隣接

した捜数の遺伝子が同時に破壊される O 植物のゲ

ノム中には遺怯子の重複が頻繁に観察されるが,

ガンマ線を照射すると重複した遺{云子群をまとめ

て破壊できる可能性がある。重捜した遺伝子がま

とめて破壊された併としてglul突然変異体が挙げ

られる。膳乳タンパク質グルテリンの 1つを合成

しない突然変異体glulを解析した結果,この突然

変異体では129.7kbpの欠失により,重複した 2つ

のグルテリン遺伝子GluB4とGluB5が破壊されて

いることが明らかとなった。 2つのグルテリン遺

伝子は非常に良く似ているため,どちらか一方が

破壊された場合にはグルテリンの合成能力は保た

れると考えられる。 glul突然変異体では 2つのグ

ルテリン遺伝子が同時に破壊されたため,グルテ

リンの合成能力を失ったと考えられた。このよう

に,隣接した複数の遺伝子を同時に破壊したい場

合には,化学変異原ではなくガンマ線を変異原と

して利用することが適していると考えられた。

ガンマ線を照射した集団から,クロロフィル分

解が遅延するstaygreen突然変異体nyc3をスクリー

ニングした。マップベースクローニングによる遺

伝子単離を試みたところ,原困遺伝子は第 6染色

体のセントロメア近傍に存在することが分かっ

た。セントロメア近傍は紐み換えが抑制された領

域であるため, F2個体数を増加しでも候補領域

を5600kbp以下に絞りこむことができなかった。

そこで,欠失を利用した候補領域の絞り込み法を

考案した。ガンマ線は数十kbp以上の欠失を誘発

可能であるが,セントロメア近傍は遺伝子密度が

低いことから,他の領域よりも在大な欠失が維持

されやすいことが考えられた。そこで,約100kbp

間隔でPCRマーカーを作成し,増幅の有無により

E大欠失を探索したところ,期待遇りnyc3には約

500kbpの欠失が生じていることが分かった。ま

た,複数のアリルについて欠失の有無を調査した

ところ,多くのアリルで臣大欠失が克っかり,こ

の領域では高い頻度で在大欠失が維持されること

が分かつた。最も欠失のサイズが小さいアリルで

は約400kbpの欠失が生じていた。この400kbpに含

Page 7: ガンマ線照射によりイネに誘発された突然変異の解 …ガンマ線照射によりイネに誘発された突然変異の解析と利用 誌名 Gamma field symposia

46 Ryouhei MORITA

まれる遺伝子数は15と予想され,相補試験により

原因遺伝子を特定することができた。 以上のこと

から,組み換えが抑制されマップベースクローニ

ングが国難なセントロメア近傍に位置する遺伝子

の候補領域の絞り込みに,ガンマ線照射が利用で

きるケースが存在すると考えられた。