57
トポロジカル絶縁体・超伝導体 古崎 (理化学研究所) topological insulators (3d and 2d) July 9, 2009

トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

トポロジカル絶縁体・超伝導体

古崎

(理化学研究所)

topological insulators (3d and 2d)July 9, 2009

Page 2: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Outline• イントロダクション

バンド絶縁体,  トポロジカル絶縁体・超伝導体

• トポロジカル絶縁体・超伝導体の例:

整数量子ホール系

p+ip 超伝導体

Z2

トポロジカル絶縁体: 2d & 3d

• トポロジカル絶縁体・超伝導体の分類

Page 3: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

絶縁体 Insulator

• 電気を流さない物質

絶縁体

Page 4: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Band theory of electrons in solids

• Schroedinger equation

ion (+ charge)

electron Electrons moving in the lattice of ions

( ) ( ) ( )rErrVm

ψψ =⎥⎦

⎤⎢⎣

⎡+∇− 2

2

2h

( ) ( )rVarV =+

Periodic electrostatic potential from ions and other electrons (mean‐field)

Bloch’s theorem:( ) ( ) ( ) ( )ruaru

ak

aruer knknkn

ikr,,, , , =+<<−=

ππψ

( )kEn Energy band dispersion :n band index

Page 5: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

例:一次元格子模型

ε2A A A A AB B B B B

t−

n 1+n1−n

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛=

B

Aikn

uu

enψ ⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+−

−−

B

A

B

A

uu

Euu

ktkt

εε

)2/cos(2)2/cos(2

222 )2/(cos4 ε+±= ktE

k

E

ππ− 0

ε2

Page 6: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Metal and insulator in the band theory

k

E

aπ− 0

Interactions between electronsare ignored. (free fermion)

Each state (n,k) can accommodateup to two electrons (up, down spins).

Pauli principle

Page 7: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Band Insulator

k

E

aπ− 0

Band gap

All the states in the lower band are completely filled. (2 electrons per unit cell)

Electric current does not flow under (weak) electric field.

ε2

ε2

Page 8: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Topological (band) insulators

Condensed-matter realization of domain wall fermions

Examples: integer quantum Hall effect,

quantum spin Hall effect, Z2

topological insulator, ….

• バンド絶縁体

• トポロジカル数をもつ

• 端にgapless励起(Dirac fermion)をもつstable

Page 9: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Topological (band) insulators

Condensed-matter realization of domain wall fermions

Examples: integer quantum Hall effect,

quantum spin Hall effect, Z2

topological insulator, ….

• バンド絶縁体

• トポロジカル数をもつ

• 端にgapless励起(Dirac fermion)をもつ

Topological superconductorsBCS超伝導体

(Dirac or Majorana) をもつ

p+ip superconductor, 3He

stable

Page 10: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Example 1: Integer QHE

Page 11: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Prominent example: quantum Hall effect

• Classical

Hall effect

Br

e− −−−−−−

++++++

Er

vr

W

:n electron density

Electric current nevWI −=

BcvE =Electric field

Hall voltage IneBEWVH −

==

Hall resistanceneBRH −

=

Hall conductanceH

xy R1

=σBveFrrr

×−=Lorentz force

Page 12: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Integer quantum Hall effect

(von Klitzing 1980)

Hxy ρρ =

xxρ Quantization of Hall conductance

heixy

2

Ω= 807.258122eh

exact, robust against disorder etc.

Page 13: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Integer quantum Hall effect• Electrons are confined in a two-dimensional plane.

(ex. AlGaAs/GaAs interface)

• Strong magnetic field is applied(perpendicular to the plane)

Landau levels:

( ) ,...2,1,0 , ,21 ==+= n

mceBnE ccn ωωh

AlGaAs GaAsBr

cyclotron motion

k

E

ππ−

Page 14: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

TKNN number  (Thouless‐Kohmoto‐Nightingale‐den Nijs)TKNN (1982); Kohmoto (1985)

Che

xy

2

−=σ

Chern number (topological invariant)

∫∫ ⎟⎟⎠

⎞⎜⎜⎝

∂∂

∂∂

−∂∂

∂∂

=yxxy k

uku

ku

kurdkd

iC

**22

21π

( )yxk kkAkdi

, 21 2

rr×∇= ∫π

filled band

( ) kkkyx uukkA rrrr∇=,

integer valued

)(rue krki r

rrr⋅=ψ

Page 15: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Topological insulators: band insulators characterized by a topological number

Best known example:IQHE in 2DEG

Quantized Hall conductance

he

xy

2

×Ζ∈σ

Edge states

GS0=xyσ 1+=xyσ 2+=xyσ2−=xyσ 1−=xyσ

Quantum phase transitions

Space of gapped groundstates is partitioned intotopological sectors.

TKNN

Ζ∈#stable against disorder

Page 16: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Edge states• There is a gapless chiral edge mode along the sample

boundary.Br

xk

E

ππ−Number of edge modes C

hexy =

−=

/2

σ

Robust against disorder (chiral fermions cannot be backscattered)

Bulk: (2+1)d Chern-Simons theoryEdge: (1+1)d CFT

Page 17: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

( )xm

x

Effective field theory

( ) ( ) zyyxx xmivH σσσ +∂+∂−=

( ) zyyxx mivH σσσ +∂+∂−=

parity anomaly ( )mxy sgn21

Domain wall fermion

( ) ( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−⎥⎦

⎤⎢⎣⎡ −= ∫ i

dxxmv

ikyyxx

y

1''1exp,

0σψ

vkE −= 0>m 0<m

Page 18: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Example 2: chiral p-wave superconductor

Page 19: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

BCS理論

(平均場理論)

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )[ ]∑∫

∑∫

↓=↑

++

↓=↑

+

Δ+Δ+

⎥⎦

⎤⎢⎣

⎡−−∇−=

,,

*,,

,

22

'','','21

2

βαβαβαβαβα

σσσ

ψψψψ

ψμψ

rrrrrrrrrrdd

rAiem

rrdH

dd

drrh

( ) ( ) ( ) ( )''',, rrrrVrr βαβα ψψ−=Δ 超伝導秩序変数

S‐wave (singlet) ( ) ( ) ( ) ( )rrrrr Ψ↑↓−↓↑−=Δ 2

1'',, δβα

P‐wave (triplet)

+

( ) ( ) ( )rrrr

rr Ψ↑↑−∂∂

=Δ ''

',, δβα

xkk kk 0)( Δ∝∝Δ −ψψr

高温超伝導体22)( yxkk kkk −∝∝Δ −ψψ

r22 yx

d−

Integrating outGinzburg‐Landau

σψ

Page 20: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Spinless

px

+ipy

superconductor in 2 dim.• Order parameter

• Chiral (Majorana) edge state

)()( 0 yxkk ikkk +Δ∝∝Δ −ψψr

k

E

Δ

Ψ⋅Ψ=Ψ⎟⎟⎠

⎞⎜⎜⎝

−−−Δ+Δ−

Ψ= ++ 21

2)()()(2)(

21

22

22

σrr

kFFyx

FyxF hmkkkikk

kikkmkkH

Hamiltonian density ⎟⎟⎠

⎞⎜⎜⎝

⎛=Ψ +

−k

k

ψψ

⎟⎟⎠

⎞⎜⎜⎝

⎛ −+Δ−

Δ=

mkkk

kk

kkh Fyx

F

y

F

xk 2

222r

khEr

±=Gapped fermion spectrum22 : SS

hh

k

k →r

r

1=zL

Page 21: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

( ) ( )[ ]ψψψψψμψ yxyxF

iik

im

H ∂−∂+∂+∂Δ

−⎟⎟⎠

⎞⎜⎜⎝

⎛−∇−= +++

222

2h

( )( )

( )( )⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛ −+ rv

rue

trtr iEt h/

,,

ψψ

( )( ) ⎟⎟

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−∂−∂Δ−

∂+∂Δ−

vu

Evu

hiiiih

yx

yx

0

0

Hamiltonian density

Bogoliubov-de Gennes equation

⎟⎟⎠

⎞⎜⎜⎝

⎛→⎟⎟

⎞⎜⎜⎝

⎛−→ *

*

,uv

vu

EE Particle-hole symmetry (charge conjugation)

zeromode: Majorana fermion

[ ]Ht

i ,ψψ=

∂∂

Page 22: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Majorana edge state

( ) ( )

( ) ( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎟⎟⎟⎟

⎜⎜⎜⎜

+∂+∂∂−∂Δ

∂+∂Δ

−+∂+∂−

vu

Evu

km

ik

i

ik

ikm

FyxyxF

yxF

Fyx

222

222

21

21

Δ<E

px

+ipy

superconductor: vacuum:0>y 0<y 0=⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

vu

y

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟⎟

⎞⎜⎜⎝

⎛ Δ+=⎟⎟

⎞⎜⎜⎝

⎛11

cosexp 22 ykkykmikx

vu

FFk

k

FkkE Δ=

k

E

Δ2

( ) ( ) ( )( )∫ +Δ−−Δ− +=F

FF

k

kktxik

kktxik eedktx

0

//

4, γγ

πψ

+=ψψ

( ) ( )∫∫ ∂Δ

−=Δ

= + yydyk

ikkdkH y

F

k

kkF

F

ψψγγ0

edge

Page 23: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

• Majorana bound state in a quantum vortex

vortex ehc

Fn En / , 2000 Δ≈= ωωε

Bogoliubov-de Gennes equation

⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

−ΔΔ

− vu

vu

heeh

i

i

εϕ

ϕ

*0

0 ( ) FEAepm

h −+=2

0 21 rr

zero mode

phase⎟⎟⎠

⎞⎜⎜⎝

⎛⇒⎟⎟

⎞⎜⎜⎝

⎛− 2/

2/

ϕ

ϕ

i

i

veue

vu

⎟⎟⎠

⎞⎜⎜⎝

⎛⇔⎟⎟

⎞⎜⎜⎝

⎛ΨΨ+ v

u

00 =ε )( γ=Ψ=Ψ + Majorana (real) fermion!

ϕ

energy spectrum of vortex bound states

2N vortices GS degeneracy = 2N

phase winding:π2 γγ −→

Page 24: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

interchanging vortices braid groups, non-Abelian statistics

i i+11+→ ii γγ

ii γγ −→+1

D.A. Ivanov, PRL (2001)

Page 25: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Fractional quantum Hall effect at 

• 2nd

Landau level• Even denominator (cf. Laughlin states: odd denominator)• Moore-Read (Pfaffian) state

25

jjj iyxz +=

( ) ∑−Π⎟⎟⎠

⎞⎜⎜⎝

−= −

<

4/2MR

21Pf izjiji

ji

ezzzz

ψ ( ) ijij AA det Pf =

Pf(    ) is equal to the BCS wave function of px

+ipy

pairing state.

Excitations above the Moore-Read state obey non-Abelian statistics.

Effective field theory: level-2 SU(2) Chern-Simons theory

G. Moore & N. Read  (1991); C. Nayak & F. Wilczek (1996)

Page 26: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Example 3: Z2

topological insulator

Quantum spin Hall effect

Page 27: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Quantum spin Hall effect (Z2

top. Insulator)

• Time-reversal invariant band insulator• Strong spin-orbit

interaction

• Gapless helical edge mode (Kramers pair)

Kane & Mele (2005, 2006); Bernevig & Zhang (2006)

Br

Br

up-spin electrons

down-spin electrons

σλ rr⋅L

No spin rotation symmetry

Page 28: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

kykx

E

K

K’

K’

K’

K

K

Kane-Mele model (PRL, 2005)

( )∑ ∑ ∑∑ ++++ +×++=ij ij i

iiivij

jzijiRjz

iijSOji cccdscicscicctH ξλλνλrr

t

SOiλ

SOiλ−

i j

ijdr

A B( ) ( )( ) ↓=↑=Ψ ⋅ , ,, skke sBsA

rkirrrr

φφ

( ) ( ) zv

yxxyR

zzSOy

yx

xK sssivHK σλσσλσλσσ +−+−∂+∂=

2333 :

(B) 1 (A), 1 −+=iξ

( ) ( ) zv

yxxyR

zzSOy

yx

xK sssivHK σλσσλσλσσ ++++∂+∂−=

2333 :' '

'*

Ky

Ky HisHis =− time reversal symmetry

Page 29: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

• Quantum spin Hall insulator is characterized by Z2

topological index ν1=ν an odd

number of helical edge modes; Z2

topological insulator

an even (0)

number of helical edge modes0=ν1 0

Kane-Mele modelgraphene + SOI[PRL 95, 146802 (2005)]

Quantum spin Hall effectπ

σ2es

xy =

(if  Sz

is conserved)

0=Rλ

Edge states stable against disorder (and interactions)

Page 30: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Z2

: stability of gapless edge states

(1) A single Kramers doublet

zzyyx

xxz sVsVsVVivsH ++++∂= 0 HisHis yy =− *

(2) Two Kramers doublets

( ) ( )zzyyx

xy

xz sVsVsVVsIivH ++⊗++∂⊗= τ0

remain to be gapless

opens a gap

Odd number of Kramers doublet (1)

Even number of Kramers doublet (2)

Page 31: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

ExperimentHgTe/(Hg,Cd)Te quantum wells

Konig et al.  [Science 318, 766 (2007)]

CdTeHgCdTeCdTe

Page 32: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Example 4: 3-dimensional Z2

topological insulator

Page 33: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

3‐dimensional Z2

topological insulatorMoore & Balents; Roy; Fu, Kane & Mele (2006, 2007)

bulkinsulator

surface Dirac fermion(strong) topological insulatorbulk: band insulatorsurface: an odd

number of surface Dirac modes

characterized by Z2

topological numbers

Ex: tight‐binding model with SO int. on the diamond lattice[Fu, Kane, & Mele; PRL 98, 106803 (2007)]

trivial insulator

Z2

topologicalinsulator

trivial band insulator: 0 or an even

number of 

surface Dirac modes

Page 34: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Surface Dirac fermions

• A “half”

of graphene

• An odd number of Dirac fermions in 2 dimensionscf. Nielsen-Ninomiya’s no-go theorem

kykx

E

K

K’

K’

K’

K

K

topologicalinsulator

Page 35: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Experiments• Angle-resolved photoemission spectroscopy (ARPES)

Bi1‐x

Sbx

p, Ephoton

Hsieh et al., Nature 452, 970 (2008)

An odd (5) number of surface Dirac modes were observed.

Page 36: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Experiments II

Bi2

Se3

Band calculations (theory)

Xia et al.,Nature Physics 5, 398 (2009)

“hydrogen atom”

of top. ins.

a single Dirac cone

ARPES experiment

Page 37: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

トポロジカル絶縁体・超伝導体の分類

Schnyder, Ryu, AF, and Ludwig,  PRB 78, 195125 (2008)

arXiv:0905.2029 (Landau100)

Page 38: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Classification oftopological insulators/superconductors

Schnyder, Ryu, AF, and Ludwig, PRB (2008)

Kitaev,  arXiv:0901.2686

Page 39: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of
Page 40: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Zoo of topological insulators/superconductors

Page 41: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Topological insulators are stable against (weak) perturbations.

Classification of topological insulators/SCs

Random deformation of Hamiltonian

Natural framework: random matrix theory (Wigner, Dyson, Altland & Zirnbauer)

Assume only basic discrete symmetries:

(1) time-reversal symmetry

HTTH =−1*0     no TRS

TRS =      +1   TRS with‐1    TRS with

TT +=Τ

TT −=Τ(integer spin)

(half‐odd integer spin)

(2) particle-hole symmetry

HCCH −=−Τ 10     no PHS

PHS =      +1   PHS with‐1    PHS with

CC +=Τ

CC −=Τ(odd parity: p‐wave)

(even parity: s‐wave)

( ) HTCTCH −=−110133 =+×

(3) TRS PHS chiral symmetry [sublattice symmetry (SLS)]× =

yisT =

Page 42: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

(2) particle-hole symmetry Bogoliubov-de Gennes

( ) ( ) zkyyxxkk

kkkk kkh

cc

hccH σεσσ ++Δ=⎟⎟⎠

⎞⎜⎜⎝

⎛= +

−−

+ 21

px

+ipy

Txkxkx CChh ==−=− σσσ *

dx2-y2

+idxy

( ) ( )[ ] zkyyyxyxkk

kkkk kkkkh

cc

hccH σεσσ ++−Δ=⎟⎟⎠

⎞⎜⎜⎝

⎛= +

↓−

↑↓−

+↑

22 21

Tykyky CiChh ==−=− σσσ *

Page 43: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

10 random matrix ensembles

IQHE

Z2

TPI

px

+ipy

Examples of topological insulators in 2 spatial dimensionsInteger quantum Hall EffectZ2

topological insulator (quantum spin Hall effect) also in 3DMoore-Read Pfaffian state (spinless p+ip superconductor)

dx2‐y2

+idxy

Page 44: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of
Page 45: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Table of topological insulators in 1, 2, 3  dim. Schnyder, Ryu, Furusaki & Ludwig, PRB (2008)

Examples:(a)Integer Quantum Hall Insulator,  (b) Quantum Spin Hall Insulator,(c)  3d Z2

Topological Insulator,  (d)  Spinless chiral p‐wave (p+ip) superconductor (Moore‐Read),(e)Chiral d‐wave                            superconductor,  (f)            

superconductor,

(g)  3He B phase.

Page 46: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Classification of 3d topological insulators/SCs

strategy (bulk boundary)• Bulk topological invariants

integer topological numbers:

3 random matrix ensembles

(AIII, CI, DIII)

• Classification of 2d Dirac fermions

Bernard & LeClair  (‘02)

13

classes

(13=10+3)        AIII, CI, DIII             AII, CII

• Anderson delocalization in 2dnonlinear sigma models

Z2

topological term (2)

or

WZW term (3)

BZ: Brillouin zone

Page 47: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Topological distinction of ground states

m filledbands

n

empty

bands

xk

ykmap from BZ to Grassmannian

( ) ( ) ( )[ ] Ζ=×+ nUmUnmU2π IQHE (2 dim.)

homotopy class

deformed “Hamiltonian”

Page 48: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

In classes AIII, BDI, CII, CI, DIII, Hamiltonian can be made off‐diagonal.

Projection operator is also off‐diagonal.

( )[ ] Ζ=nU3π topological insulators labeled by an integer

[ ] ( )( )( )[ ]∫ ∂∂∂= −−− qqqqqqkdq νμλλμνε

πν 111

2

3

tr24

Discrete symmetries limit possible values of [ ]qν

Z2

insulators in CII (chiral symplectic)

Page 49: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

The integer number                    # of surface Dirac (Majorana) fermions( )qν

bulkinsulator

surfaceDiracfermion

Page 50: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

(3+1)D 4-component Dirac Hamiltonian

( ) ⎟⎟⎠

⎞⎜⎜⎝

−⋅⋅

=+⊗=mk

kmmkkH x σστστ μμμ rrrr

AII: ( ) ( )kHikHi yy −=− σσ * TRS

DIII: ( ) ( )kHkH yyyy −−=⊗⊗ στστ * PHS

AIII: ( ) ( )kHkH yy −=ττ chS

[ ] ( )mq sgn21

( )zm

z

Page 51: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

(3+1)D 8-component Dirac Hamiltonian⎟⎟⎠

⎞⎜⎜⎝

⎛= + 0

0D

DH

( ) ( ) ( )imkikikD yyy −⊗−=−= μμμμ σστγαβσ 5CI:

( ) ( )kDkDT −=

CII: ( ) ( )kDmkkD +=+= βαμμ ( ) ( )kDikDi yy −=− σσ *

[ ] ( ) 2sgn21

×= mqν

[ ] 0=qν

( )zm

z

Page 52: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Classification of 3d topological insulators

strategy (bulk boundary)

• Bulk topological invariants

integer topological numbers:

3 random matrix ensembles

(AIII, CI, DIII)

• Classification of 2d Dirac fermions

Bernard & LeClair  (‘02)

13

classes

(13=10+3)        AIII, CI, DIII             AII, CII

• Anderson delocalization in 2dnonlinear sigma models

Z2

topological term (2)

or

WZW term (3)

Page 53: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Nonlinear sigma approach to Anderson localization• (fermionic) replica• Matrix field Q describing diffusion• Localization massive• Extended or critical massless topological Z2

termor WZW term

Wegner, Efetov, Larkin, Hikami, ….

( ) 22 ZM =π

( ) ZM =3π

Page 54: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Table of topological insulators in 1, 2, 3  dim. Schnyder, Ryu, Furusaki & Ludwig, PRB (2008)

arXiv:0905.2029

Examples:(a)Integer Quantum Hall Insulator,  (b) Quantum Spin Hall Insulator,(c)  3d Z2

Topological Insulator,  (d)  Spinless chiral p‐wave (p+ip) superconductor (Moore‐Read),(e)Chiral d‐wave                            superconductor,  (f)            

superconductor,

(g)  3He B phase.

Page 55: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Reordered TableKitaev, arXiv:0901.2686

Periodic table of topological insulators

Classification in any dimension

Page 56: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Classification oftopological insulators/superconductors

Schnyder, Ryu, AF, and Ludwig, PRB (2008)

Kitaev,  arXiv:0901.2686

Page 57: トポロジカル絶縁体・超伝導体qft.web/2009/slides/...2 σ ∈Ζ× Edge states GS σ xy =−2 σ xy =−1 σ xy =0 σ xy =+1 σ xy =+2 Quantum phase transitions Space of

Summary• Many topological insulators of non-interacting fermions

have been found.interacting fermions??

• Gapless boundary modes (Dirac or Majorana)stable against any (weak) perturbation disorder

• Majorana

fermionsto be found experimentally in solid-state devices

Z2

T.I. + s-wave SC Majorana

bound state (Fu & Kane)

Z2

T.I. + test charge Dyon

(Qi, Li, Zang, & S.-C. Zhang)

∫ ⋅= BExdtdhceS

rr3

2

2πθ

θ